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Numerical Treatment of Nonrectanghlar Field-Oxide
for 3-D MOSFET Simulation
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Abstract—Presently there exists only a few three-dimensional simu-
lation programs that take into account effects at the channel edge due
to nonplanar interfaces. The finite element method is mostly used for
discretization to deal with those interfaces. Another approach has been
successfully implemented into MINIMOS to simulate three-dimen-
sional effects. We applied the box integration method after Forsythe
for discretization. This method is excellently suitable for nonplanar
interfaces. The most important nonplanar interface occurs at the tran-
sition of the gate oxide to the field oxide, which is commonly called
“‘bird’s beak.”’ Approximating this interface with right angles leads to
unrealistic results. This paper introduces the new numerical treatment
in three-dimensional MOSFET simulation with nonplanar interfaces.
We present the physical model used and show the numerical imple-
mentation of the basic equations. The simulations have been carried
out with MINIMOS 5, our fully three-dimensional simulation pro-
gram. Three-dimensional effects like threshold shift for small channel
devices, channel narrowing, and the enhanced conductivity at the
channel edge have been successfully modeled.

1. INTRODUCTION

HRINKING dimensions of the single MOSFET in
ULSI circuits brought up the need for suitable device
models in physics and mathematics. With two-dimen-
sional device simulators the electrical characteristics of
wide-channel transistors can be described fairly well. Ad-
vanced ULSI technology, however, has led to serious
problems in modeling very narrow-channel devices, and
therefore, a great demand appeared for three-dimensional
simulations [3], [14], [16], [22]. The three-dimensional
effects in MOSFET’s, like the shift of the threshold volt-
age, enhanced conductivity, or the large depletion region
at the channel edge near to the drain caused by the finite
channel width are not taken into account by two-dimen-
sional simulations [19]. Furthermore, as the channel edge
is usually defined by the ‘‘bird’s beak”’ produced by local
oxidation of silicon (LOCOS), the channel width may not
be assumed to be a constant with respect to the coordinate
perpendicular to the wafer surface. Therefore, it is nec-
essary to incorporate possibilities for modeling nonplanar
geometries into the program.
Unfortunately, vast amounts of CPU time and memory
are needed for fully three-dimensional simulations, so

Manuscript received August 3, 1989; revised February 14, 1990. This
paper was recommended by Associate Editor M. Rudan.

M. Thurner is with the Campus-Based Engineering Center, Digital
Equipment Corporation, A-1040 Wien, Austria.

P. Lindorfer and S. Selberherr are with the Institut fiir Mikroelectronik,
Technische Universitat Wien, A-1040 Wien, Austria.

IEEE Log Number 9038017.

very skilled and efficient algorithms have to be used. De-
mands on computer resources are normally kept moderate
by using rectangular geometries. A new concept of treat-
ing nonplanar interfaces, while using a rectangular sim-
ulation volume has been developed. It has been imple-
mented in MINIMOS 5, which is an integrated two- and
three-dimensional device simulator for silicon MOS-
FET’s with small signal analysis capabilities.

Section II deals with some physical and numerical as-
pects of three-dimensional simulations, while Section III
describes the implementation of the basic equations in
MINIMOS 5. Section IV reports some examples which
show the capabilities of three-dimensional simulation.

II. MINIMOS 5
2.1. Physical Model

MINIMOS 5 solves the basic semiconductor equations
(2.1)-(2.3) in their stationary form which have been com-
pletely presented for the first time by VanRoosbroeck
[24]:

divgradyb:%-(n—p—C) (2.1)
divJ,=q-R (2.2)
divJ, = —¢ - R (2.3)

During the past ten years MINIMOS has been improved
continuously. Enhancements and extensions have been
achieved on one hand by improved models for physical
parameters and on the other hand by adding further steps
in an hierarchical order to the iterative solving process.
The solution of each step is based on the previous one and
incorporates additional effects which have been neglected
before. A major improvement has been achieved by in-
cluding a hot electron model [12], [13] which takes into
account hot carrier effects. This model uses slightly dif-
ferent current relations (2.4) and (2.5) with electronic
voltages describing the heating of electrons and holes. A
new model for the carrier mobilities has been included to
guarantee a consistent set of equations:

1
Jn=q-nn-n-<—grad¢+;-grad(u,,,-n)>

(2.4)
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1
J,,=q'up'p'(—gmd\b—l—)'grad(Ur,,'p)>

(2.5)
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1
F, = lgrad ¥ - ;grad (n- Ut)
. (2.7)
F,= 'grad ¥ +;grad (p - Ut)
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Ut,, = Ut + 5 - 75, - (52 <———>
e = U 3 T () e
(2.8)

ps'S denotes the mobility influenced by lattice-, ionized

impurities-, and surface-scattering (cf. [2], [18]). The
driving forces F, , are given by (2.7). In (2.8) the model
of the electronic voltages is given, where 7, , denotes the
energy relaxation time of electrons and holes. A discus-
sion of this formulation can be found in [11].

The most recent milestone in the evolution of MINI-
MOS is the extension from two to three space dimensions
[21]. Following the approach of two-dimensional MINI-
MOS a similar hierarchical solving process is applied in
the three-dimensional case. The two-dimensional simu-
lation starts with a simple one-carrier model, takes into
account avalanche generation for both carrier types—if re-
quested—and stops with the solution of the hot electron
model. The three-dimensional simulation takes a two-di-
mensional solution as an initial guess and solves as a first
step only the Poissor equation (2.1) in three dimensions
whereas the carrier densities of electrons and holes are
only extended into the third dimension using the quasi-
Fermi levels:

1
Neyz = Mayzlwe - €XP <_'(j * (e — ‘/’x,yrz)>
t
(2.9)
1
Px,y.z = Px,y.z|w2 * €XP +E : (wx,y,zlw/z - ‘/’x,y,z) .
'

(2.10)

The index w/2 denotes the middle of the channel width.
The underlying assumptions for this first step are:

¢ negligible current flow in the direction of the channel
width which is plausible in the absence of contacts
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which would cause great potential differences in this
direction:
J,, =J,. = 0. (2.11)
¢ Boltzmann statistics are assumed to be valid in chan-
nel width direction which means constant quasi-
Fermi levels:

ey _ 0 _

az 0z

This model allows a relatively ‘‘simple’” and ‘‘fast’’ so-
lution in terms of three-dimensional calculations and gives
sufficiently accurate solutions especially in the subthres-
hold region. Like the two-dimensional simulation a fully
automatic grid adaption is performed.

The second step of the three-dimensional simulation
solves the Poisson equation as well as the two continuity
equations fully three-dimensionally, including avalanche
generation and carrier heating, if requested. This model
gives accurate results also under high bias conditions. The
second step is very CPU-time and memory consuming,
because of GauB elimination which is used for solving the
continuity equations. At present strong efforts are made
to speedup the solution of these equations by means of
new algorithms.

Capabilities of future versions of MINIMOS will be
transient simulations and the simulation of GaAs-MES-
FET’s. Therefore, models for carrier transport in GaAs
and Schottky boundary conditions as well as algorithms
for time dependent simulations are now under investiga-
tion.

(2.12)

2.2. Numerical Aspects

The discretization in MINIMOS is based on a finite dif-
ference grid. This method is superior to other discretiza-
tion schemes, especially when using rectangular bounded
simulation domains. In this approach meshlines and
boundaries coincide and one can obtain the discrete
boundary conditions easily [17]. In the first version of
three-dimensional MINIMOS the finite difference discre-
tization has been implemented since only rectangular in-
terfaces have been used. It turned out, however, that it is
necessary to consider nonplanarities, especially in the di-
rection of the channel width to obtain realistic results for
narrow channel devices. To maintain the finite difference
grid, a special technique is applied to allow arbitrarily
shaped interfaces in the rectangular grid. This technique
uses the box integration method after Forsythe [6] for dis-
cretization to obtain implicit boundary conditions which
will not destroy the structure of the matrix of the linear
system—compared to the finite element method, which is
mostly used for nonplanar geometries. A detailed descrip-
tion will be given in Section III. One main advantage of
this method is that the matrices one obtains are very sparse
and structured, i.e., that one has only five nonzero diag-
onals in the matrix for the two-dimensional and seven for
the three-dimensional case, respectively. This implies that
one can use very efficient and specialized solvers—also
specialized for different computer architectures—for solv-
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ing the linear system which is of major importance in case
of three-dimensional simulations where the typical rank
of the matrix goes from 50 000 to 100 000. A typical ex-
ample with 60 000 gridpoints is solved in 3.5 CPU hours
on a VAX 6240. The interested reader is referred to, e.g.,
[71, 181, [10].

At this point a few comments should be made on the
calculation of the terminal currents. Due to the nonrect-
angular field oxide the channel width is not constant over
the channel depth. Therefore, the problem arises on how
to define the proper channel width which has to be used
to calculate the terminal currents from the two-dimen-
sional simulation. The oxide reduces gradually the chan-
nel width which is given by the mask specifications. This
situation is shown in Fig. 1. To tackle this problem we
introduce an effective channel width wg for the two-di-
mensional current calculation instead of the given mask
width. The effective channel width is calculated by

l w
Wef = W — — So fox(z)|i/2 dz (2.13)

Dch

where w is the width specified by the mask, D, denotes
the channel depth at the channel edge (Fig. 1 vertical
dashed line crossing the interface line), //2 denotes half
of the channel length, and fox(z) is the function which
describes the geometry of the channel in width direction.

2.3. Device Structures

Using a finite difference scheme for discretization usu-
ally leads to a rectangular bounded simulation volume.
This simulation volume consists of different regions sep-
arated either by physical or artificial boundaries. There
are essentially three different regions in a MOSFET: the
contacts, the oxide, and the semiconductor. A physical
boundary, for example, is the interface between the oxide
and the semiconductor whereas artificial boundaries are
introduced to separate the single device in a chip for sim-
ulation. To obtain realistic results, one has to consider the
nonplanar shape of the interfaces especially in the direc-
tion of the channel width. Fig. 2 shows such a simulation
cube with the grid and the nonplanar interfaces. It should
be mentioned that Fig. 2 shows a cube with geometry data
and a grid actually used by MINIMOS. Nonplanarities are
treated in the way that the oxide volume (‘‘oxide body’’)
of a MOSFET, which exists between the contacts and the
semiconductor, is described by two interfaces: the inter-
face between metallic contacts and the oxide and the in-
terface between the oxide and the semiconductor, respec-
tively.

One of the most general device structures we are able
to simulate, is plotted in Fig. 3. One can see the source
contact on the left hand, the gate strip in the middle, and
the drain contact on the right. The thin gate oxide in the
middle spreads up to the field oxide in the direction of the
channel width, where one can see the characteristic bird’s
beak. Source and drain contacts are recessed into silicon
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Fig. 1. Cross-sectional view of a MOSFET channel in width direction.

3D MOS-MODEL

Y-DIRECTION

Fig. 2. Perspective view of the three-dimensional MOSFET structure with
discretization grid.

Fig. 3. Oxide body of a MOSFET structure (the oxide is between the up-
per and lower plane).

due to a reoxidation. For the sake of visibility the two
interfaces are expanded.

It has to be mentioned that geometry data can easily be
provided by the user via the input deck. About 25 param-
eters can be used in the present version specifying dis-
tances and transition lengths to define the shape of the
contacts and the semiconductor surface (most of the 25
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Fig. 4. Device structure of a T-gate MESFET.

parameters have default values if not specified). For use
of geometry data obtained from a process simulator, a
standardized interface for these data will be implemented
in a future version. Fig. 4 shows another example which
can be defined easily by the user. It shows a T-gate struc-
ture commonly used in todays MESFET’s for controlling
ion implantation between the contacts. One can clearly
see the T-like shape of the gate contact on the planar
semiconductor surface. Of course, the term *‘oxide body’’
cannot be used in this case, but the approach for treating
these nonplanarities remains the same.

III. THE DISCRETIZATION OF THE BAsiC EQUATIONS

The physical model for the simulation has been char-
acterized in the previous section. The basic semiconduc-
tor equations cannot be solved explicitly in general.
Therefore, the solution must be calculated by means of
numerical approaches. Dividing the domain—the simu-
lation region—into a finite number of subdomains, in
which the solution can be approximated easily [5], [15],
we use the classical finite difference grid for the three di-
mensions (x, y, z). The coupled nonlinear difference
equations—the basic semiconductor equations—are solved
essentially with Gummel’s iterative method [9]. Finally
the set of linearized equations with the huge number of
unknowns arising from the discretization scheme are
solved with iterative methods. For detailed information
on numerical aspects for solving large systems of linear
equations, the interested reader is referred to, e.g., [7],
[8], [25]. For discretization we apply the box integration
method after Forsythe [6] to deal with the boundary con-
ditions of the nonrectangular interfaces. The discretiza-
tion of the Dirichlet boundary conditions for the contact
regions and of the Neumann boundary conditions for the
artificial boundaries is straightforward and can be found
in [17].
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-1,k

Fig. 5. Perspective view of a discretization point at the interface, e.g.,
oxide-semiconductor interface (hatched part denotes the volume in the
semiconductor).

3.1 Poisson’s Equation

The boundary condition for Poisson’s equation at the
interface is given by

A

€ . ——
ns a;[

i

= esem a—’

— Oim (31)

ins sem

where ¢ denotes the permittivity; the indexes ins, sem, int
denote the insulator, semiconductor, and the interfaces,
and o,, denotes the charge at the interface. We shall dis-
cuss the discretization method for the nonrectangular in-
terface boundary conditions (3.1) in detail, since by now
nonplanar interfaces have been implemented only in de-
vice simulation programs using finite elements. A point
close to the interface is shown in Fig. 5. The surrounding
finite integration volume is divided into two parts; one
below the interface (hatched in this picture), representing
the semiconductor region and one above the interface,
representing the oxide region. In this picture we can also
see the discretization grid and the neighboring points. In-
tegrating (3.1) over the interface element F; we obtain

3y
SF,- Esem aﬁ do

S €eem grad Y| - 7 do
Fi

S €ins grad ¢|.ms + Ado + S Oy do.
Fi Fi

(3.2)

For each point at the interface we can write the Poisson
equation in the semiconductor and the Laplace equation
in the insulating material. Both equations are integrated
over the respective volume ( Viems Vins)-

In the semiconductor region we obtain

S div (egem * grad ¥) dv = S pdv. (3.3)
Vsem Vsem

In the insulating region we obtain

SV_ div (e, - grad ¥) dv = 0. (3.4)
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Using the law of GauB and splitting the surface integral
into its components (remembering the discretization grid)
we can rewrite (3.3) and (3.4):

(ﬁo (€sem * grad ¥) do

= S (esem : grad ‘l/) 20
Fi.

+ S (€sem * grad ¥) do
Fan

+ g (€sem * grad ¢) do
F3n

+ S (fsem - grad \L) 30
Fan

+ S (€em = grad ¥) do
Fseem

+ S (€sem * grad ) do
Fe,

+ SF (esem . grad ¢) 30 = S pdv (35)
! Vsem
§ (€ins - grad ¥) do
Oins
= g (eins - grad ‘l/) 20
Fi

+ (fins - grad '/’) 20

A
|

i

(€ins * grad ¢) do
€

+

( ins grad ‘p) 30

Fa,

(€ins - grad ¥) do
Fs,,,

+ (€ins * grad ¢) do

Fins

S
o
S

+ S (eins : grad \&) 30 = 0. (36)
F;

The integration areas F denote the boundaries of the finite
integration volume and the indexes sem and ins denote the
parts in the semiconductor and the insulator, respectively.
The indexes (1 - - - 6) of the integration areas define the
position and the orientation in the following way: F, de-
notes the area perpendicular to the z-axis in the middle of
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the grid lines (k) and (k — 1), F, denotes the area per-
pendicular to the y-axis in the middle of the grid lines ( j)
and (j — 1), F; denotes the area perpendicular to the x-
axis in the middle of the grid lines (i) and (i — 1), F,
denotes the area perpendicular to the x-axis in the middle
of the grid lines (i) and ({ + 1), F5 denotes the area
perpendicular to the y-axis in the middle of the grid lines
(j)and (j + 1), and Fg denotes the area perpendicular
to the z-axis in the middle of the grid lines (k) and (k +
1). The integration area F; is the interface element.

Using (3.5) and (3.6) we can now substitute the gra-
dients of y perpendicular to the interface in (3.2) and thus
we obtain (3.7).

S pdv + S Oine dO
Viem F

i

:esem.<sI grad\l/30+§ gradx/x[io
Fi, 153

sem

+S grad#xt?o+§ gradx//(—io
F3.., em

Fy,

+S grad‘//30+g
5.

em 6

grad ¢ 20)
+€ins'<S grad ¥ do + S grad  do
Fije Fa,

+ S grad ¢ do + S
F3,,

|
Fs,

The discretization of the terms in (3.7) is quite simple,
suitable approximations can be found in, e.g., [17], [21],
and we can write the discretized equation in a more formal
way by

grad ¢ do

Fa,

grad ¢ do + SR grad ¢ 30>- (3.7)

ins

1

‘/’i,j,k—] : (Asem * €sem T Ains ) 6ins) —
My -y
1
+ \I/i,j—l,k : (Bscm * €sem + Bins ’ Eins) .
mj,I
1
+ ‘/’i—l.j.k : (Csem * €sem + Cing 6ins) : l*'
i—1
- \&i.j,k . (Gsem * €em T Gins * Eins)
1
+ ¢i+1,j,k : (Dscm * €sem + Dins ° eins) . z
i
1
+ ‘l’i.j+l.k . (Esem * €sem T Eins : eins) T
m;
1
+ \[/i,j,k+l * (Fsem * €sem + Rns ° eins) : n_
k
= (0ijik * Veem + 0ijuk = Ai)- (3.8)
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A4, B, C, D, E, F correspond to the areas F\, F,, F3, F,,
Fs, Fg, and the coefficient G is the sum of the coefficients
(A/n_y), (B/m-_ ), (C/L_)), (D/li)7 (E/mj), (F/"k),
where [, m, n are the distances to the neighboring points
in x, y, and z direction, respectively (see Fig. 5). The
indexes sem and ins denote the sections of the areas in the
semiconductor and the insulator, respectively. € is the
permittivity, o is the interface charge, p is the space
charge, and A,,, is the interface area.

3.2 Continuity Equation

The discretization of the continuity equation at points
which are located totally within the semiconductor region
can be found in various publications [17]. We shall pre-
sent the numerical treatment of the boundary conditions
for the continuity equation at nonrectangular interfaces by
means of the box integration method. The interface con-
ditions are

Jo- i

-

p A=+ g R,

o E Rsurf

~

(3.9)

For the electrons we integrate the boundary condition
(3.9) over the interface element F; and obtain

jifao=S7f
F; Fi
(3.10)

Furthermore, the continuity equation (3.2) must hold in
the semiconductor region at the interface. So we can eval-
uate the volume integral:

ndo = S —q * R™ do.
Fi

Sdivj,,dv=g div.7,,dv=§ —q - Rdv.
v Viem

Vsem

(3.11)
Using GauB’s law and remembering the discretization grid
we can write:

S div J, dv
Viem

Il
ey
m

~i
3
Ul
Q
+
o
il
=
Ul
Q
+
5
S~
x
QUL
Q

Fa, Fs, Fs,,
+ S .7,, 30
F
= SV —q " Rdv. (3.12)

The integration areas F and their indexes have been de-
scribed in the previous section. The discretization of the
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currents penetrating the areas F, to Fy can be found in,
e.g., [17], [21]. Thus we can substitute (3.12) into (3.10)
and obtain

S L30+§
F F

Liem

= S —q - Rdv + S q * R* do. (3.13)
Vscm E

Using a suitable discretization for the current densities we
can write the discretized boundary condition at the semi-
conductor oxide interface by

ta (X, ¥ 21)
n(xh Yjs Zk+l) : T : B(nzl : Ezl) i
Z
F"n(x" Yjs ZO)
+ n(x, ¥ z-1) — . B(no - £)
szo
I‘Ln(xL yj: zk)
: Bsem + n(xH—]’ Yi» Zk) T e
Exl
) B(nxl : Exl) * Coem + ”(xi—la Yj» Zk)
1 (%0, ¥, 7i)
. B("’xO ’ Ex()) : Dsem
ExO
W (X v,z
+ n(x;, Yi+1s %) - M : B(nyl : Eyl)
gvl
n\ Xi» 0> Z,
. Esem + n(xi’ yj—]’ Zk) . M
EyO
: B(Wyo ' fyo ) * Fom — ’l(xi, Yis Zk) .
I"n(x" Yj» Z])
( T 'B(_"’zl'ézl)'Asem
£
Hn(Xis ¥j 20)
+ — B(—ﬂzo . 520 ) * Biem
EzO
“"n(xh Yjs Zk)
+%j : B(—"]n : Exl ) ) Csem
Exl
”’n(xo’ Y zk)
+ —_— B(_ﬂm : EXO ) : Dsem
EXO
-xiy yl, g
+ M ' B(_nyl ’ Eyl ) : Esem
Eyl
(X, Y0,
+ M : B(~7’y0 ) EyO ) : Fsem>
30

= —R(xu ¥ %) * Ve + 7% (x;, 3, 2) + A
(3.14)
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Viem is the part of the integration volume in the semicon-
ductor, RSURF denotes the surface recombination rate and
Ain is the interface element. The coefficients £, .4, £,0,
&5 &20- £215 and ni0, Mers M40, My1s Mz00 M include the
dependence on the potential  and the electronic voltage
Ut, of the carriers [21]. The general expressions for § and

7 are
1 <Ut,,f,,>
n 0
Ut,,‘p

£

~ (AUr,,)/h
Ay — AU
n= - % (3.15)

where Utg,, and Ut , denote the potential at the point un-
der consideration and at the neighboring point, respec-
tively; h is the distance between the two points. A fully
analogous expression can be found for the continuity
equation of the holes.

_ At interfaces without any recombination the equation
J, + # = 0 must hold. In this special case the driving
forces (2.7) have to be set to zero:

-

= 0. (3.16)

n lim

Not being aware of this interface condition we might ob-
tain unrealistic mobilities at the interface. This condition
is straightforward to include into the discretization.

IV. SOME RESULTS

For demonstrating the influence of nonplanarities in
channel width direction on the device characteristic we
have selected two devices which differ only in the channel
width. The channel length equals 1.2 um; the channel
width specified by mask for transistor 1 is 1.0 um whereas
the width of transistor 2 is 3.0 um. The geometry of the
examples is shown in Fig. 1. Besides the field-oxide for
channel stopping we applied a field-implantation to re-
duce the parasitic currents at the channel edge. The gate
oxide is 0.015 pm and the field-oxide thickness is 0.6 pm.
The doping concentration on source and drain is in the
order of 1.5 - 10°°. The devices of our examples are
biased with UDS = 3.0 V, UGS = 1.0 V, and USB =
0. V.

Figs. 6(a) and 7(a) show the potential distribution of
both transistor 1 and transistor 2. The distribution is
shown in a depth of 0.002 um under the silicon surface.
In the pictures the source contact is on the left side,
whereas the drain contact is on the right. We can clearly
see the higher potential on the right. Between source and
drain the potential distribution in the channel is shown,
extending from the middle of the device to the field oxide
(see Fig. 1). The change of the potential distribution in
width direction (z-direction) indicates clearly the channel
edge. The carrier concentrations are illustrated in Figs.
6(b) and 7(b), where one can realize an enlarged depletion
region at the channel edge near drain. For transistor 1 we
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Fig. 6. (a) Potential distribution of transistor 1 at Ugs = 1.0 V, Upg =
3.0V, Usg = 0.0 V. (b) Minority carrier distribution of transistor 1 at
Ugs = 1.0V, Ups = 3.0V, Ugy = 0.0 V. (c) Current density component
in x- direction of the minority carriers of transistor 1 at Ugs = 1.0 V,
Ups = 3.0V, Usg = 0.0 V. (d) Current density component in y-direction
of the minority carriers of transistor 1 at Ugg = 1.0V, Ups = 3.0 V,
Usg = 0.0 V.
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Fig. 7. (a) Potential distribution of transistor 2 at Ugs = 1.0 V, Ups =
3.0V, Ugg = 0.0 V. (b) Minority carrier distribution of transistor 2 at
Ugs = 1.0V, Ups =3.0V, Usg = 0.0 V. (c) Current density component
in x- direction of the minority carriers of transistor 2 at Ugs = 1.0 V,
Ups = 3.0V, Ug = 0.0 V. (d) Current density component in y- direc-
tion of the minority carriers of transistor 2 at Ugs = 1.0 V, Ups = 3.0
V,Us =0.0V.
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can observe that the influence of the channel edge extends
much more into the channel compared to transistor 2. The
magnitude of this effect is the same in both devices, but
the influence on the overall characteristic is much higher
for the narrow channel device (1.0 um). The same be-
havior can be seen with the x- and y-components of the
minority current densities, as shown in Figs. 6(c), (d) and
7(c), (d). Detailed investigation on the behavior of the
device characteristics due to differently shaped oxide-
bodies can be found (e.g., [1], [3], [4], [23]).

V. CoNcLUSION

We have shown that the box integration method is ex-
cellently practicable for discretization even for devices
with nonplanar interfaces. Due to this method the highly
optimized solver used in the simulation programs for rect-
angular interfaces (structured sparse matrices) are kept.
The method described in this paper helps to reduce the
CPU-time and memory requirements to an amount that
three-dimensional simulations are now applicable for in-
dustrial use with present computer systems. Continuous
improvements of both computer systems and mathemati-
cal algorithms will make future three-dimensional simu-
lations as practicable as two-dimensional simulations are
now.
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