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ABSTRACT 

The capacitance, an integral quantity, can be calculated for some simple geometric structures 
analytically. The capacitance extraction in nonplanar VLSI structures leads to an electro­
static field calculation. For the design of line drivers, sensing amplifiers, data and bit lines 
of memories, the exact knowledge of all parasitic capacitances of a memory cell is essential. 
Therefore we have chosen the method of finite elements, since the capacitance extraction with 
the electrostatic energy which can be directly obtained from the variational integral is much 
more precise than a charge integration of the conductors. 

VARIATIONAL FORMULATION 

The calculation is based on the variational formulation I ~ min of Eq. ( 1), which is equi­
valent to the differential equation (2). 
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Imin = l c:(x,y,z) 8x + 8y + 8z dV (1) 

div c:(x,y,z) grad ,,P(x,y,z) = 0 (2) 

The functional Imin holds exactly twice the electrostatic field energy. For a charge-balanced, 
two conductor problem, the finite element formulation leads directly to the capacitance 
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With the finite element formulation a number of different materials can be handled easily. 
The boundary conditions and material interfaces are easy to implement. For the field calcu­
lation, the conductor boundaries represent Dirichlet boundary conditions, and the rest are 
homogenous Neumann conditions. For further development the method can be extended to 
regions with space charge to calculate nonlinear capacitances. 

IMPLEMENTATION 

With a three-dimensional transfinite interpolation [2], we obtain a boundary conforming 
grid which meshes various nonplanar interconnects. A discretization in hexahedron elements 
and additionally a hexahedron into tetrahedron element splitting were performed to avoid 
numerical integration of the element stiffness matrices. 

Quadratic element shape functions for the ten-node tetrahedron elements allow a precise 
potential calculation for the energy determination. With these functions, each element holds 
a 10 x 10 elements stiffness matrix, which will be assembled in the global stiffness matrix. 
The next step is the handling of the boundary conditions. For the Dirichlet nodes we have 
chosen the method of dummy equations to preserve the structure of the stiffness matrix for 



the node references. The global stiffness matrix is sparsely occupied. To achieve an efficient 
usage of computer memory, a compressed matrix format [1) is used. Only the nonzero row 
entries are stored. An additional index matrix holds the references to the column indices. To 
get an entry in the stiffness matrix, a binary search is used to find the column index in the 
index matrix. The example in Fig. 3 needs five searching steps on average. If a whole row or 
many entries of a row need to be manipulated, a temporary expansion of the row achieves a 
significant reduction of time consumption for assembling and solving the large linear system. 
These methods in combination with an iterative solver, make an efficient usage of computer 
resources possible with a relatively small effort. 

EXAMPLES 

There exist only a few simple really three-dimensional examples which can be calculated 
analytically to check the accuracy of the simulator. A reasonable alternative consists in 
checking two-and-half dimensional results which are calculated analytically or numerically. 

A comparison of the example of Fig. 1 with our two dimensional Simulator VLSI CAP [3], 
which is also based on finite elements for linear and nonlinear capacitances, shows a mis­
match for the calculated coupling capacitance Cmn of 1 3 (Fig. 2, 3) of this effectively 
two-dimensional problem. 

The more realistic example in Fig. 4 shows the cross-section of two conductor wires 
above a grounded plane. Due to the symmetry only a quarter of the original configuration 
has to be considered. For this three-conductor example, we need three energy calculation 
runs with different conductor potentials, and have to solve a small linear equation system 
to extract the three partial capacitances C12 , C13 and G23 • A charge-balanced n conductor 
system has n (n - 1)/2 partial capacitances. The capacitance in this example can only 
be obtained exactly with a three-dimensional tool. All simulations were carried out on a 
DECstation 5000. 

Figure 1: Parallel wires, rel. perm. 3.9 

CONCLUSION 

A first implementation of a three-dimensional tool for the calculation of linear capacitances 
in VLSI structures based on the finite element method has been performed. 

The disadvantage of the numerical very stable method lies in the necessity of performing 
spatial discretization, which is a very complicated task, particularly in three dimensions. 
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Figure 2: 2D-mesh Cmn = 52.30pF/m, 
78 elements, 159 nodes 

Figure 4: Crossing-lines, 
rel. perm. 3.9 
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Figure 3: 3D-mesh Cmn = 52.19pF, 
1056 elements, 1899 nodes, 
76 sec. sim. time 

Figure 5: 3D-crossing-lines mesh, 
C12 = 4 · 93.lOf F, C13 = 4 · 45.93j F, 
C23 = 4 · 140.0f F. 1164 elements, 
2079 nodes, 280 sec. sim. time 


