Consistent User Interface and Task Level Architecture
of a TCAD System

S. Halama, F. Fasching, H. Pimingstorfer, W. Tuppa and S. Selberherr
Institute for Microelectronics, Technical University of Vienna
GuBhausstrafle 27-29, A-1040 Austria

Abstract

A modern TCAD framework must provide an interactive environment for com-
fortable tool control and supervision. In this paper we investigate the design of the
interactive user interface and the implementation of the extension language from the
viewpoint of software architecture. The use of unified concepts assures the quality and
consistency of the TCAD framework.

1 Background

Besides a well balanced set of simulation tools, there are some indispensable key features
-for the acceptance of a TCAD framework: a common format for efficient data interchange
and communication between tools, an adequate tool control mechanism, a flexible extension
language, and an intuitive graphical user interface.

Our binary PIF implementation [1] serves as a database for the VISTA system [2]. It is
important to note that both the binary and the ASCII representations of PIF are a subset
of and hence conform to LISP syntax.

The other big components of a framework — interactive shell and user interface — demand
careful attention to maintain consistency throughout the whole framework. It turns out
that adhering to basic guidelines for good software architecture leads to a number of value
adding features.

2 Demands

2.1 User Interface Demands

The importance of the user interface for advanced process and device simulation is often
underestimated. The rapid development of software tools which use increasingly complex
physical models and numerical methods calls for a generic user interface that meets the
following demands: It must fit into a TCAD system, in our case consisting of a database
interface [1], simulators, and execution control [3]. It must be flexible enough to accom-
modate easily for the unforeseeable variety of new tools without the behavior of the user

THO0424 - 2/92/0000-0237 $1.00 © 1992 TEEE NUPAD IV -237

interface itself being changed. On the other hand it should be possible to tailor the user in-
terface to the specific needs of the user and to comply with existing environments, regardless
of the underlying simulation tools.

2.2 Task Level Demands

On the task level, a means for efficient tool integration (in terms of execution control) as well
as an extension language (which must be implemented as an interpreter) is required: Com-
pared to a compiled language, an interpreted language has intrinsic advantages regarding
quick turnaround cycles in rapid prototyping, macro modeling, and tool sequencing.

Process flow descriptions, simulator input specification, execution control parameters or
even parts of physical models must efficiently be stored in the extension language structures.

The basic data types or objects of the data level implementation should be easily ac-
cessible from within the extension language environment.

3 Software Architecture and Portability

A typical size of a classical single simulation tool lies in the range of 30k to 50k lines of
FORTRAN source code. Figure 1 shows a few examples. A framework for tool integration
like VISTA, consisting of a procedural interface for database access, an interactive user
interface, visualization tools and an extension language shell, requires about 140k lines of
code in different implementation languages (predominantly C).

kLines
SAMPLE EEETEIEEER 31
MiNIMOs B 34
PROMIS IR 44
VISTA s e e TRy 143

Figure 1: Comparison of source code size

It is obvious that special efforts are needed to ensure the consistency of such an amount
of code.

Good software architecture is an indispensable prerequisite for the maintainability of
the software system. As it is further developed by human beings, it should be possible
to understand the basic structure and the details of the system with a reasonable effort.
Therefore, the design and implementation of such a system must adhere to simple and
clear basic concepts. It is also desirable to keep the number of different concepts as small
as possible. The use of a high level of abstraction for implementing the desired functionality
greatly reduces the effort for understanding and maintaining the system.

Operating system independency is a necessity for the acceptance of a TCAD framework.
The enormous variety of computing environments which are used in the field of process and

238-NUPAD 1V

device simulation must not be neglected. The only feasible way to address this issue is
the consequent and disciplined use of highly portable C and FORTRAN 77 programming
techniques, whilst providing the source code to the end-user.

4 Implementation

4.1 User Interface Implementation

The previousely imposed requirements for the user interface can only be met by a rigorous
bottom—up approach: to implement this functionality, the VISTA user interface agent is
built up frorn a set of so-called widgets which consists of the standard Athene widget
set [5] and additional specialized widgets. The latter include vector graphics capabilities,
comfortable specification of integer and real values, a visual programming interface for
simulation flow control and a widget for interactive modification of PIF objects (the PIF
Editor).

This extended widget set is accessible from within the TCAD shell [3]. With LISP as
implementation language, a layer of functions is provided which makes the programming
interface fairly independent of the underlying (Athena) widget set (fig. 2).

The next layer is responsible for the creation of more complex (compound) parts of the
user interface, like dialog boxes for input deck assembly for the various simulation tools.

LISP LISP Tools
UIA - library Extension
Widget Interface VISTA
custom Widgets PIF Toclbox Language VLSICAP
| Athena Widgets
Network Layer MINIMOS
Core
PIF Database PROMIS
X11 Toolkit and X11 Xlib Database Simulator
Interfaces Interfaces
Figure 2: Structure of the User Interface Figure 3: Extension language model

4.2 Task Level Implementation

The choice of the extension language is a crucial point. When keeping in mind the archi-
tectural criteria stated above, the right decision is quite obvious. The use of PIF — which is
a subset of LISP — as the database format suggests to use LISP also for the extension and
shell prograrnming language, in accordance with the demanded minimization of different
concepts.

NUPAD 1V-239

The task level requirements are perfectly fulfilled. As an additional feature, the process
flow description, simulator input or implementation of a physical model can be stored in
language structures (and thus be seen as data) or executed from the command level (and
thus be seen as a program).

In contradiction to C, LISP has been explicitly designed for interpretation, and a number
of interpreters is publicly available. Among these we have chosen XLISP [4] to serve as
the core of the VISTA extension language. XLISP offers a subset of COMMON LISP in
a very compact implementation. Our extensions (which would have been neccessary for
any extension language) include interfaces to the database, to the X window system and to
various simulators (fig. 3). We could have chosen a more complex and powerful language
(e. g. COMMON LISP or SCHEME); however, we decided for the most simple, portable
and publicly available option, which is XLISP.

4.3 Callback Concept and Evaluation Loop

The X11 connection is not a feature of the original XLISP interpreter; this extension had
to be introduced to implement the user interface agent in a way which is consistent with
the extension language shell and the overall system architecture.

As a direct consequence, the VISTA callback concept was derived from the X11 toolkit
callback method. Events coming from the user interface are passed to the XLISP inter-
preter. In response to any user action (like a button press), a LISP expression is evaluated.
This expression is a property of the widget which issued the callback and can be used to
change parameter values, trigger other events like the execution of a simulator or start the
evaluation of any LISP program.

read 61 event] (toolCall ’ ' signal '

e O

L

Figure 4: Petri net of the TCAD shell evaluation loop

The same callback concept is used to control the simulator execution. The termination
of a simulation tool is signaled to the the parent process (cf. “signal” in fig. 4), which again

240-NUPAD Iv

causes the callback expression to be evaluated.

Callbacks can also be evaluated during the execution of a tool by explicitly calling
a function which returns immediately and just triggers the evaluation of a previousely
assigned callback expression via the network layer (cf. “toolCall”). This is especially useful
for the online visualization of computed data.

One of the advantages of the callback concept is that the tool which triggers the callback
does not have any information about the action which is taken in response to the evaluation
(= call) of the callback. This enforces a very proper interface for coupling tools at the
execution level.

Furthermore, the callback concept allows the TCAD shell to implicitly parallelize eval-
uations of callback expressions or to distribute evaluations adaptively on different hosts,
without any change in the tools which requested the evaluation (like optimizers or iterators).

Another application of the callback concept is the exception handling or the handling
of network events.

4.4 Tool Abstraction

Abstract descriptions of tools are used to generate the C interface code for task-level tool
integration automatically. The tools can thus be easily linked with the XLISP interpreter
or be included in separate executables, in either case yielding new LISP functions which
can then be used in TCAD shell programs. .

XLISP is used to generate the interface code, according to the software architecture
demands stared above.

This frees the programmer from the bothering task of writing all the interface code
manually and also greatly contributes to the correctness of the code.

5 Additional Features

5.1 User Interface Generation

The automatic generation of dialog boxes is a feature which is stimulated by the combination
of the flexible LISP language with the X11 toolkit user interface. The abovementioned
abstract tool description is fed into a user interface generator which produces the interaction
panel for the corresponding tool. At a closer look, this is a spin-off of the consequent pursuit
of the software architecture guidelines.

5.2 CASE Utilities

The symbol manipulating facilities of the LISP-based extension language make it the ideal
platform for various CASE (Computer Aided Software Engineering) tools which help to
ensure the operating system independence and consistency of the framework in many ways.

In the VISTA system, the XLISP interpreter is used to extract and maintain an up-
to-date documentation of all system components. A hierarchically organized, interactive

NUPAD IV -241

online documentation subsystem retrieves the requested information out of special com-
ments within the code at the time a module is loaded, while another LISP tool generates
UNIX man pages and large parts of the programmers’ manual out of the same comments.

The bulk of the C language PIF database access functions are automatically generated
out of a formal PIF syntax specification (written in LISP), and even parts of the VISTA
extension language interpreter are generated this way (a minimum version of XLISP is
required for the bootstrapping phase).

6 Conclusion

Our experience shows that the decoupling of the user interface from the actual simulators
and the generic functionality due to the bottom-up design of the user interface agent is
very well suited for both integrating existing simulation tools as well as implementing new
ones. '

The use of LISP as the basis of the extension language has proved to be a superior
solution to “conventional” programming languages as well as simple command line parsers.
Against common expectations for LISP based systems, only a small amount of computation
time is spent in the interpreter. Since the extension language environment only controls
the execution of simulation tools and handles callback-events triggered by simulators or
the user interface, the overall TCAD framework performance depends mainly on the tools
themselves.

Acknowledgement

This project is supported by the laboratories of: AUSTRIAN INDUSTRIES - AMS at
Unterpremstatten, Austria; DIGITAL EQUIPMENT Corporation at Hudson, USA; SIE-
MENS Corporation at Munich, Germany; and SONY Corporation at Atsugi, Japan.

References

(1] F. Fasching et al., A PIF Implementation for TCAD Purposes, Proc. SISDEP, Vol. 4,
pp. 477-482, Zurich, Switzerland, 1991

(2] S. Selberherr et al., The Viennese TCAD System, Proc. Int. Workshop on VLSI Process
and Device Modeling, pp. 32-35, Oiso, Japan, 1991

(3] H. Pimingstorfer et al., A Technology CAD Shell, Proc. SISDEP, Vol. 4, pp. 409-416,
Zurich, Switzerland, 1991

(4] D. M. Betz, XLISP: An Object-oriented Lisp, Version 2.0, Peterborough, NH, Febr. 1988

[5] A.Nyeand T. O’Reilly, X Toolkit Intrinsics Programming Manual, Vol 4, 1990, O'Reilly
& Associates, Inc.

242-NUPAD IV

