A Monte Carlo MOSFET simulator based on a new method
for the Poisson-transport iteration

H. Kosina and S. Selberherr
Institute for Microelectronics, Technical University of Vienna
GuBhausstrafle 27-29, A-1040 Austria

Abstract

A two-dimensional, steady state Monte Carlo (MC) device simulator which is espe-
cially suited for the simulation of submicron MOSFETs is described. A unique Monte
Carlo-Poisson coupling scheme has been adopted, which exhibits a significantly better
convergence rate than conventional schemes. This technique is based on MC-Drift-
Diffusion (DD} coupling, a method which proves to be correct within the Boltzmann for-
malism. In addition, MC-DD coupling allows to tackle equilibrium- and non-equilibrium
transport, both of them occurring in different device regions, by one and the same trans-
port equation, while using transport coeflicients of different origin. An implementation
in MINIMOS {3] has been performed and simulation results are shown.

1 Introduction

MC simulation of a submicron MOSFET employing the potential distribution obtained by a
selfconsistent DD simulation leads to unrealistic results. Due to non-local transport effects,
which are not included in the DD model but are properly treated by the MC method, a
change in the distribution of mobile charge may occur, which in turn has strong impact on
the electrostatic potential distribution in the device. Therefore a selfconsistent treatment of
Boltzmann’s transport equation (BTE), solved by the MC method, and Poisson’s equation
is mandatory for such small devices.

Previously published algorithms couple the BTE with either the linear [4] or the nonlin-
ear [7] Poisson equation. In [6] we have presented a one-dimensional implementation of an
algorithm, which adds to the BTE and the Poisson equation a redundant continuity equa-
tion. At first glance the solution of an additional unrequired equation may seem somewhat
strange, however, this treatment is formally correct within the Boltzmann picture and, as a
practical consequence, leads to a new algorithm requiring significantly less iterations than
conventional techniques do. The reason why this method works is that the additional con-
tinuity equation together with a drift-diffusion-like current relation exactly reproduces the
MC transport phenomena, provided that the mobility and the temperature voltage stem
from a correct solution of the BTE.

In MINIMOS [3] a two-dimensional version of the new algorithm has been implemented.
Simulation results for a quarter micron MOSFET performed with MINIMOS/MC are dis-
cussed in detail.
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2 The MC-DD Coupling Scheme

The momentum balance equation which can be derived directly from the BTE can be
written as

Jo= gonep (<ot L V(i) (1)

Here fi and Uz denote the mobility tensor and the thermal voltage tensor, respectively.
Both quantities depend on the distribution function, and are evaluated by means of the
MC method according to their correct definitions

(UT)U = %<hki-vj> : (2)

For the definition of the mobility two different expressions, which are formally equivalent,
are possible. Neglecting the tensor property one gets
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The first expression (3) defines the mobility by using as the denominator the LHS of the
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momentum balance equation, which can be interpreted as the driving force acting on the
electrons. A quite similar definition has been proposed in the original work of Bandy-
opadhyay [1]. However difficulties arise when this non-local mobility is evaluated by the
MC-method. In particular the evaluation of both the diffusion term Vn and the energy
gradient field VUr requires differentiation of MC quantities, which leads to inaccurate
results.

In the latter expression (4) the RHS of the momentum balance equation, namely the
averaged momentum loss rate is used. Since this term can accurately be evaluated without
any differentiation, this mobility definition is well suited for implementation. The denomi-
nator in (4) can be expressed by the energy dependent momentum relaxation time

dp -
(&), = <1 moley> ®
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The momentum relaxation time is the superposition of the individual scattering mecha-
nisms.
-1 tot tot tot -1
Tm(E) - )\ac (E) + Aopt(EJ,) + Ast‘ll’f(‘l;]) + Tion,m(E) (7)
In the present model we have taken into account acoustic and optical phonons, surface
roughness scattering and ionized impurity scattering.

In conclusion of this section we note that by knowledge of the correct distribution
function insertion of the coefficients (2) and (4) exactly recovers the the non-local current
density j, = —qn <> . Especially in low field regions y and Uz can be related analytically
to the electric field and (1) simplifies to the conventional DD-relation.
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3 The MC-DD—-Poisson Coupling Scheme

In the semiclassical theory transport of charged carriers is determined by the following set
of equations:

¢ Poisson’s equation
e BTE (MC)

This problem can be solved selfconsistently within real devices [2][4][7]. In the algorithm
we propose, the continuity equation and the current relation (1) are added.

¢ Poisson’s equation
¢ continuity equation
e current relation

e BTE (MC)

The additional equations are the zeroth and first moment equations of the BTE and there-
fore neither any information is added nor any approximation is introduced. This extended
set allows a new solution strategy to be applied.

At first an initial guess for the electrostatic potential is calculated by a conventional
DD-simulator. In the second step the resulting potential serves as input for the BTE,
which is solved by the MC method. Mobility and thermal voltage profiles are recorded in
the critical device regions according to (4) and (2), respectively. These profiles are then
extended over the remaining regions, which are near equilibrium.

In the third step the DD-simulator solves the Poisson equation and the continuity equa-
tion together with the extended current relation (1) in the entire device. During this step
the profiles (p, Ur) remain unchanged. The algorithm continues with the solution of the
BTE until the change of the potential is sufficiently small. A flow chart of this algorithm
is shown in Fig.1.

4 Results

The MC-code is based on the physical model of silicon as it is described in [5]. The
algorithm has been implemented in the two-dimensional device simulator MINIMOS (3],
which both serves as front end and controls the simulation. As an example, an n-MOSFET
at room temperature with a gate mask length of L = 0.25um has been simulated at Ug =
Up = 2.5V. Fig. 2 (a) shows the relative updates of carrier concentration and electrostatic
potential as a function of the number of iterations. The norms first decrease rapidly but then
are limited by the statistical noise inherent in the MC-method. The drastically increased
drain current (Fig. 2 (b)) occurring after the first iteration can be attributed to velocity
overshoot. However in the subsequent iterations the Poisson coupling reduces the impact
of velocity overshoot on the drain current. The final drain current is obtained after just
five iterations. Compared to the data reported in [7] that means a reduction of the costly
MC-iterations by a factor of two.

Fig.3 (a)—(d) compares DD (dashed lines) and MC (solid lines) results. The DD result
served as initial solution, and the MC results have been taken after five MC-DD-Poisson
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iterations. The lateral effective velocity shown in Fig. 3 (a) is defined as the average

Vet = [ Va(y) n(y)-dy / [n(y) - dy. The initial DD-solution for the velocity is clearly
bounded by the bulk saturation velocity (1 -107em/s). In the pinch-off area MC leads to
velocity overshoot, and one should keep in mind that this velocity profile was reproduced
by the DD-like current relation (1) by including the MC-generated coefficients (2) and
(4). In Fig.3 (b) the corresponding electron concentrations at the Si-Si0, interface are
shown. The impact of velocity overshoot on the drain current is compensated by a reduced
carrier concentration. This difference in MC- and DD-carrier concentration has significant
influence on the potential within the device (Fig.3 (¢)). In the MC case the potential profile
in the high field region becomes smoother, because the lower carrier concentration results
in a lower space charge in that area. As a consequence MC predicts a lower lateral electric

field (Fig.3 (d)) than DD.

5 Conclusion

A MC-Poisson coupling method, which is based on MC-DD coupling, has been implemented
in a two-dimensional device sirnulator for the first time. The expectation of a high conver-
gence rate has been confirmed. Application to a quarter micron MOSFET has demonstrated
the applicability of the new algorithm as well as the necessity of selfconsistent simulation
for such small devices.

Acknowledgements

This work is supported by: AUSTRIAN INDUSTRIES - AMS International Unterprem-
stdtten, Austria; DIGITAL EQUIPMENT Corporation Hudson, USA; STEMENS Corpo-
ration Munich, FRG; and SONY Corporation Atsugi, Japan.

References

[1] S. Bandyopadhyay, M.E. Klausmeier-Brown, C.M. Maziar, S. Datta, and M. Lundstrom,
“A rigorous technique to couple Monte Carlo and drift-diffusion models for computation-
ally eflicient device simulation,” IEEE Trans. Electron Devices, vol. ED-34, pp.392-399,
February 1987.

[2] M.V. Fischetti and S.E. Laux, “Monte Carlo analysis of electron transport in small semi-
conductor devices including band-structure and space-charge effects,” Physical Review
B, vol. 38, pp.9721-9745, November 1988.

(3] W. Hénsch and S. Selberherr, “MINIMOS 3: A MOSFET simulator that includes energy
balance,” IEEE Trans. Electron Devices, vol. ED-34, pp.1074-1078, May 1987.

[4] R.W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles,” Adam
Hilger, Bristol and Philadelphia, 1988.

[6] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys.,
vol. 55, pp.645-705, July 1983.

120 NUPAD IV



[6] H. Kosina, Ph. Lindorfer, and S. Selberherr, “Monte-Carlo — Poisson coupling using
transport coefficients,” Proceedings of the 21st European Solid State Device Research
Conference (Montreux, Switzerland), September 1991, pp.53-56.

[7] F. Venturi, R.K. Smith, E.C. Sangiorgi, M.R. Pinto, and B. Ricco, “A general purpose
device simulator coupling Poisson and Monte Carlo transport with applications to deep
submicron MOSFETs,” IEEE Trans. Computer-Aided Design, vol. 8, pp.360-369, April
1989.

Continuity- and 2
o]
Poisson Equation <
o
L
(V)]
b 4
= 104 | 1 ! I | 1 i i | | 1 A
: Monte Carlo 1 2 3 45 6 7 8 9 10111213 14
Iteration Count
® 1.00e-02 71717 7T 7T 7T T-T T T T ]
¥ H,Up I (b) |
Continuity- and 5 -
> 9.00e-03
Poisson Equation - I
l 5
O
l 1 C 8008—03
£ 5
¥ n (p S ]
]
7.00e-03 L | L1 L | 11 | S | 1 1
0123 4567 891011121314

Iteratlion Count

Figure 1: Flow chart of the selfconsis- Figure 2: (a) relative norm of carrier concen-
tent MC-Poisson algorithm. tration updates ||Ang||/|lnk|| (dashed line)
and potential updates ||Avgl|/||%w| (solid
line) versus the number of iterations.
(b) evolution of the drain current with the
iteration number.
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Figure 3:

Comparison of different quantities in a
0.25um MOSFET at Ug = Up = 2.5V
obtained by selfconsistent DD- (dashed
line) and selfconsistent MC- (solid line)
simulation.

(a) effective velocity in lateral direction
(b) surface electron concentration

(c) surface potential

(d) lateral surface field.



