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ABSTRACT 

This contribution is intended to review the state-of­
the-art in numerical simulation of particular transis­
tor devices within our institute. Much emphasis is 
laid on the discussion of recent refinements to the car­
rier transport model which primarily is based on the 
so-called enhanced drift-diffusion equations with two 
essential extensions: On the one hand, carrier heating 
properly is taken into account using the Monte Carlo 
method {hybrid model), and on the other hand the 
one dimensional Schrodinger equation is introduced 
for the simulation of the charge-control in order to ob­
tain satisfactory results for strained-layer Si/Ge het­
erostructure devices. The presented procedure leads to 
the self-consistent inclusion of quantum-mechanical 
effects in the simulation. Simulation results of minia­
turized MOS transistors are discussed which have been 
obtained by our simulator MIN/MOS. 

1. INTRODUCTION 

Since 1960 when the demonstration of the practically 
usable MOS transistor took place [24] its development 
has shown to evolve dramatically. Today, about thirty 
years later, integrated circuits with millions of devices 
per single chip are manufactured. In order to mini­
mize the number of cycles of trial and error in de­
vice fabrication improved understanding of basic de­
vice operation has attained crucial importance. Thus, 
numerical modeling of MOS transistors has become a 
basic requirement for the development of prototype 
devices. 
The numerical simulation of semiconductor devices 
represents a very large field. Since the probably first 
publication concerning a two-dimensional solution of 
the Poisson equation with application to a MOS struc­
ture by Loeb et al. [32] and Schroeder and Muller 
[41] in 1968 a lot of work has been contributed with 
basically two different aims: On the one hand, the nu­
merical tools have been extended in order to obtain 
globally more detailed information (transient simula­
tion, e.g.: [12], [18), [25) as well as extension to three 
spatial dimensions, e.g.: [8), [31), [44]). On the other 

hand, either the models of physical parameters have 
been improved, e.g.: (29), (43), (45), [46), [49), or spe­
cial physical effects have been investigated, e.g.: [15), 
[20), [36), [37], or the mathematical model of the car­
rier transport in semiconductors has been refined, e.g.: 
[27], [40]. This paper mainly deals with the latter. A 
transport model suitable for MOSFET's, MODFET's 
and HEMT's ~ill be presented. 

2. EXTENDED HYBRID TRANSPORT MODEL 

The state-of-the-art in semiconductor technology en­
ables the fabrication of semiconductor devices with 
characteristic lengths smaller than 1 µm in an indus­
trial environment. Such devices are characterized by 
very large electric fields and rapid spatial variations 
of the electric field and carrier concentrations. These 
variations occur over a distance comparable with the 
characteristic lengths of carrier transport, i.e. the av­
erage momentum relaxation length and the energy re­
laxation length. Owing to the very large electric fields 
the assumption of small perturbations around equi­
librium breaks down which the drift-diffusion trans­
port model is based on. It was realized long ago that 
a straightforward extension of the classical semicon­
ductor equations would have to include the energy 
balance of field-driven carriers [9). One way for this 
purpose is an enhanced drift-diffusion model which 
accounts for the energy balance. The obvious benefit 
of this approach is that it can be implemented without 
great efforts in an existing simulation program based 
on the basic semiconductor equations. Another prac­
ticable way to include hot carrier effects is the usage 
of the hydrodynamic model [39] which implies the en­
ergy conservation equation. Last not least, there is to 
mention the Monte Carlo method whose most impor­
tant drawback is - as usual - the enormous amount 
of required computing resources. 

2.1. Enhanced Drift--Diffusion Equations 

Starting point for our refinement of the transport 
model are the so-called "Enhanced drift-diffusion 
equations" consisting of Poisson's equation (1), con-



tinuity equations for electrons and holes (2), (3), and 
the current relations for both carrier types (4), (5) . 

div(c- ·grad¢)= -p (1) 

... 8n 
div Jn - q · t)t = q · R (2) 

div! + q · Bp = -q · R (3) 
p 8t 

.. ( ... 1 ( kB · Tn)) Jn = q · µn · n · E + ;; · grad n · -q-· - ( 4) 

J; = q · µP · p · ( E - ~ ·grad (P · kB~ Tp)) (5) 

At the first glance these equations look like the funda­
mental semiconductor equations which have already 
beeri used in the famous work of Gummel in 1964 
[13] . The enhancement lies in the existence of differ­
ent temperatures Tn and Tp within the diffusion terms 
of the current relations (4), (5) as well as in the ap­
propriate models for the carrier mobilities µn and µp 
which will be shown in the next section. The solution 
of the enhanced drift-diffusion equations accounts for 
hot-carrier transport in semiconductors [16]. An ade­
quate model for already existing simulation programs 
has been implemented first in MINIMOS [17], our tool 
for the two and three dimensional analysis of minia­
turized MOS transistors. 

2.2. Hybrid Transport Model 

Since the very first beginning of Monte Carlo simula­
tions in the field of carrier transport in semiconduc­
tor devices [34] the most important drawback up to 
now is the enormous amount of computing resources 
required by this method for the solution of the Boltz­
mann transport equation (6) where f = f(x;, u;, t) 
is the distribution function, x;, u; (j = 1, 2, 3) are 
the components of the vector position i and group 
velocity ii, q is the electron charge, m denotes the ef­
fective mass of the carriers under investigation, E is 
the electric field, and C denotes the collision integral. 

~ + i1 · gradz: f ± ! · E · gradu f = C (6) 

The main benefits of this method are the facts that 
it is simple to implement, that sophisticated physical 
models can be used, and that any desired physical 
information can easily be extracted [22]. 
A very promising way is the coupling of the Monte 
Carlo method and the drift-diffusion equations [27) 
which is based on the following considerations: The 
Monte Carlo method is well suited to describe the 
non-equilibrium transport occurring under conditions 
appearing in ultra small MOS transistors (i.e. very 
high electric field in the active region with rapid chan­
ges over distances comparable to the mean free path of 

the carriers) . On the other hand, for the description of 
low field transport the drift-diffusion model with lo­
cal transport coefficients provides sufficient accuracy. 
Moreover, the drift-diffusion model has turned out 
to be even superior to the Monte Carlo method in 
regions with retarded fields. Therefore, several at­
tempts were published to combine the drift-diffusion 
and Monte Carlo technique in order to benefit from 
the different capabilities of both methods [38), [4 7). In 
the following, a recently performed implementation of 
the hybrid transport model in the existing simulation 
tool MINIMOS shall be discussed. 
Three-dimensional scattering rates in the entire de­
vice are 8B8umed, thus neglecting quantization effects 
eventually occurring in an inversion layer. Multiplica­
tion of the Boltzmann transport equation with wave 
vector component ki and integration of k leads to a 
momentum balance equation, which reads for elec­
trons 

_ ( . g + 1. '\""'~ 8(n·(li ·k•·vj))) = 
q , I n L....J:l 8Z:j 

(f(h · ki - h · ki) · S(k, k')- d3 k'), i = 1, 2 (7) 

where v denotes the group velocity. (It should be 
mentioned that in the following the index n for indi­
cating the electrons is omitted as this carrier type is 
discussed in this section only.) The average operator 
(A) is the mean value of A(k) weighted by the local 
distribution function f (i, k). The left hand side can 
be interpreted as driving force that acts on the elec­
tron ensemble, consisting of the electric field plus dif­
fusion term, whereas the right hand side describes the 
rate of momentum loss due to scatterings. This equa­
tion can be expressed in a form similar to the drift­
diffusion current relation. The parameters needed in 
this current relation a.re derived in the following way. 
For oand structures with spheric and ellipsoidal en­
ergy surfaces the vector valued momentum loss inte­
gral is colinear with the momentum h k 

j (h · k - h · k') · S(k, k') · d3k' = h · k · ,\m(E). (8) 

Here the proportionality factor >.m(E) is the momen­
tum scattering rate. With the local average velocity 
the local momentum loss mobility can be defined as 

11(011 
µ=q· ll(h·k·>.m(E))ll 

(9) 

where llBll denotes the maximum norm of B. This 
definition does not rely on the relaxation time ap­
proximation and, since no effective mass occurs in 
this formula, extension to general bands is straight­
forward . . In the latter case µ would have tensor 
property. The definition of the thermal voltage ten­
sor (which is proportional to the temperature tensor: 
Vi;= (kB/q)Ti;) results directly from the momentum 



conservation equation (7) 

(10) 

This definition is independent of the underlying band 
structure model. Inserting these definitions in {7) one 
obtains a general current relation 

( 
1 ~ 8( n · Ui;)) Ji = q · n · µ · Ei + - · L.J ~-
n j=l 8~; 

(11) 

The differences between this current relation and the 
classical one are twofold. Firstly, the diffusion term 
is more complicated owing to the tensor property of 
the thermal voltage. Secondly, the parameters µ and 
Ui; can no longer be treated simply as parameters de­
pending on electric field or other local quantities -
as it is usually done in the conventional drift-diffusion 
model - because they carry information of the local 
distribution function. By means of the Monte Carlo 
method these parameters are evaluated. The conven­
tional simulator using the Monte Carlo parameters 
µ(i) and Ui;(i) in the current relation (11) is then 
capable of recovering the Monte Carlo results for n( i) 
and fn(i). In this way hot electron effects, such as 
velocity overshoot and hot carrier diffusion, are con­
sistently included in the conventional simulator. The 
solution is performed globally in the whole device, but 
only in the high field region mobility and temperature 
profiles have to be extracted from the Monte Carlo 
procedure. In regions with low fields and low spatial 
inhomogeneities local models can be used thus saving 
computation time. 
The continuity equation in conjunction with a drift­
diffusion current relation employing a scalar temper­
ature yields an elliptic partial differential equation 
which has diagonal form. If an anisotropic temper­
ature is taken into account cross derivatives appear 
in the elliptic operator. Conventional device simula­
tors solve elliptic systems which are in diagonal form, 
therefore a scalar temperature is desirable. Neglecting 
the off diagonal elements in (10) a scalar temperature 
is used which is the arithmetic mean value of the main 
diagonal elements. 
For the first conduction band of silicon we use a model 
consisting of six anisotropic valleys with a first order 
correction for nonparabolicity [23]. Acoustic intraval­
ley scattering in the elastic approximation, intervalley 
phonon scattering, surface roughness scattering, and 
coulomb scattering are taken into account. Except of 
the latter one all mechanisms are isotropic. In the 
case of surface scattering in the inversion layer the 
wave vector is redistributed randomly in a plane par­
allel to the Si-Si02 interface. For isotropic scattering 
mechanisms the momentum scattering rate does not 
differ from the total scattering rate. The following 
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Figure 1: Total and momentum scattering rates used 
for mobility calculation. 

superposition implies independence of all scattering 
processes 

,\m(E) = ,\~~t + ,\~~tt + ,\!~~ + >.~n · (12) 

Coulomb interaction is the only one to be treated sep­
arately. The momentum loss integral (8) is evaluated 
by the Brooks-Herring formulation for the transition 
rate S(k, f') and 

(13) 

is obtained. The subtraction corresponds to the dif­
ference of initial and final wave vector in (8). 
Fig. 1 depicts the energy dependencies of total (.>.fg~) 
and momentum (.>.~n) scattering rate for ionized im­
purities, and additionally the total scattering rates for 
acoustic intravalley phonons (.>.ac) and one represen­
tative intervalley phonon mode (emission and absorp­
tion). 

2.3. Actually performed improvements 

Actually our transport model is refined to extend 
its simulation capability to strained-layer Si/Ge het­
erostructure devices such as the MODFET [10] or the 
quantum well MOSFET [35]. The improved trans­
port model is also applicable to AlGaAs/GaAs het­
erostructure devices such as the high electron mobility 
transistor (HEMT) [14]. 
For this purpose we proceed in three steps: 

• The appropriate geometrical constructs together 
with strain- and composition-dependent models 
for electrical permittivities, band offsets and het­
erodiscontinuities, as well as carrier mobilities [33] 
are implemented in MINIMOS. At this step, the 
hybrid transport model is already enabled. 



• The simulation of the charge-control of the de­
vice involves the simultaneous solution of the 
one-dimensional Schrodinger and Poisson equa­
tion over the structure. The level of sophistication 
of the physical model employed in this part follows 
closely the approach in [21]. 

• The two previous steps are merged, thus lead­
ing to the self-consistent inclusion of quantum­
mechanical effects in the simulation [50]. 
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Figure 2: Conduction band edges of an n-MODFET 

The one-dimensional Schrodinger equation reads 

( 
-n2 d2 ) 

- 2mi dz2 + V(z) t/;(z) = Ent/J(z) (14) 

where z is the coordinate perpendicular to the hetero­
junction, t/J means the wave function, En is the n-th 
eigen energy, V the potential energy, and m~ is the 
effective mass perpendicular to the hetero-junction. 
In order to perform an adequate discretization the 
wave equation is rewritten according to 

t/J"(z) = ( 2~" (V(z)- En))· t/J(z) (15) 

As a first result, we present the calculated conduction 
band edge (Fig. 2) and quantum mechanical charge 
density (Fig. 3) for an n-MODFET similar to that 
described in [10]. It should be noted that the phys­
ical model used for the calculation of the envelope 
function accounts for the strain-split X valleys in the 
conduction band as well as for the strain dependence 
of the valence band lineups. These are assigned fol­
lowing the ab initio calculations in [48) and using de­
formation potential theory. Hole statistics is treated 
classically while dopant ionization is handled using 
Fermi-Dirac occupation statistics, ·whose neglect we 
believe can lead to significant differences. The graded 
layer is approximated in a step-wise fashion, leading 
to the spiked conduction band profile of Fig. 2. The 
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Figure 3: Free electron concentration in the same de­
vice 

size of the par~itic channel near the doping spike is 
larger than in [21), probably due to the choice of a 
smaller value for the band offset in the longitudinal 
valleys and a larger value in the transversal ones. 

3. MODELS FOR PARAMETERS 

The fundamental semiconductor equations include a 
set of parameters which have to be appropriately 
modeled in order to describe the various transport 
phenomena qualitatively and quantitatively correctly. 
The basic requirement for an estimation of most of 
these physical parameters is independent more or less 
of the underlying transport model as the Poisson 
equation (1) and both continuity equations (2), (3) 
have to be solved self-consistently in any case. The 
physical parameters to be regarded are: the space 
charge p within the Poisson equation (1), the car­
rier generation/recombination term R which repre­
sents the right hand side of the continuity equations 
(2), (3), the carrier mobilities µn, µp, and the car­
rier temperatures Tn, Tp. Owing to lack of space, 
only the both latter will be discussed in the follow­
ing as they are directly related to the enhanced drift­
diffusion equations. Adequate models for the other 
physical parameters can be found in [28]. 

3.1. Modeling Carrier Mobilities 

The models for the carrier mobilities have to take into 
account a great variety of scattering mechanisms the 
most basic one of which is lattice scattering. The lat­
tice mobility in pure silicon can be fitted with simple 
power laws 

µ~ = ( )

-2 
cm2 T 

1430 
Vs . 300K 



cm T 2 ( )-2.18 
= 460 Vs . 300K (16) 

The expressions (16) fit well experimental data of [1], 
[5], and [30]. 
The next effect to be considered is ionized impurity 
scattering. The best established procedure for this 
task is to take the functional form (17) of the fit pro­
vided by Caughey and Thomas [7] and use tempera­
ture dependent coefficients. 

L min 
µ~~ = µ~~n + _µ;....;n:.:.J('"-P-~-:-...;.n),...,~,....,.-,, 

1 + cr:..e/ 
n,p 

(17) 

µmin = 80 cm2 . (_!__) -0.45 
n Vs 300K 

µ;;';. = 45 ';.' . ( 30~K) _,., 

(18) 

( )

8.2 
ere/ - 112. 1011cm-3 . _!___ 

n - · 300K 

( )

3.2 

ere/ - 2 23 · 1017cm-3 • _!.____ 
P - • 300K 

(19) 

on~= 0.72. ( 30~K) o.066 (20) 

The fits (18)-(20) are from [19]. Similar data have 
been provided in [3] and [11]. 
In view of partial ionization one should consider neu­
tral impurity scattering. However, in view of the un­
certainty of the quantitative values for ionized impu­
rity scattering it seems not to be worthwhile to intro­
duce another scattering mechanism with additional 
fitting parameters. 
Particular emphasis has to be put on surface scatter­
ing which is modeled with an expression suggested by 
Seavey [42] 

,,re/ +(µLI _µref ) , (1 _ F(y)) (
2
l) LIS _ r n,p n,p n,p 

µn,p - ( S ) 'Yn ,p 

1 + F(y) · 8;~~ 
n,p 

with 

2 ( )-1.19 cm T 
µref= 638-. --

n Vs 300K 

2 ( )-1.09 cm T 
µre/= 160- · --

p Vs 300K 

2·exp (-(f,Y )') 
F(y) = ( 2) 

1 +exp -2 · ( y~I) 

s~e/ is assumed to be 7•105 C~ I s;e/ is 2.7•105 C~ 1 "In 

is 1.69, "Ip is 1.0, and yre/ is 10 nm. The formulae for 
surface scattering are definitely not the ultimate ex­
pressions. They just fit quite reasonably experimental 
observations. 
Velocity saturation can be modeled with formulae 
(22). The expression for the electron mobility comes 
directly from the derivation of the enhanced drift­
diffusion model [17]. For the hole mobility the same 
functional form has been assumed and has been fitted 
to experimental data.. 

µLIS 
µLISF _i 

P - µ;s.pP 
l+ aat 

VP 

(22) 

Fn and Fp are the effective driving forces proposed 
firstly in [17] 

Fn = jgrad 1/J - ~ · grad(n · UT,.)j 

Fp = I grad 1jJ +} · grad(p ·UT,), . 

The used saturation velocities are given by 

7 cm 
v~at = 1.45 · 10 - · 

S 

6 cm 
v;at = 9.05 · 10 -;- · 

(
155K) tanb ---;y-

(23) 

(24) 

The functional form of these fits is after [1], and the 
experimental data matched are [1], [6], and [5]. An 
eventual dependence on the crystallographic orienta­
tion which one would deduce from [2], [26] is presently 
not taken into account. 

3.2. Modeling Carrier Temperatures 

To describe carrier heating properly one has to ac­
count for local carrier temperatures Tn,p in the cur­
rent relations. This can be achieved by either solving 
the hydrodynamic equations [39], or by using a model 
obtained by series expansions of the solution to the 
energy conservation equations, e.g. by using the en­
hanced drift-diffusion model which yields for the car­
rier temperatures 

2 q f ( aat)2 (-1- __ 1_) Tn,p=To+-3·-k ·Tn,p' vn,p . µLISF µLIS • 
B n,p n,p 

(25) 



The energy relaxation times r~,p are in the order of 
0.5 picoseconds. They should be modeled as func­
tions of the local doping concentration as motivated 
by the following reasoning: The product of carrier 
mobility times electronic voltage (kB/q · Tn,p) which 
symbolizes a diffusion coefficient must be a decreasing 
function with increasing carrier voltage [4]. Its max­
imum is attained at thermal equilibrium. Therefore, 
the relation 

µLISF. kB 'Tn ,p <µLIS • () · ( 26) 
n,p q - n,p To 

must hold. Substituting (25) into (26) and rearrang­
ing terms one obtains for the energy relaxation times 

f < 3 rr µ~~S 
Tn,p - 2 . VTo . (v•at)2 • 

n,p 

(27) 

In MINIM OS the energy relaxation times are modeled 
on this basis with a fudge factor r in the range [O, l] 
and a default value of 0.8 

3 µLIS 
T~,p = r . - . UTo . n,p . (28) 

2 (vaat) 
2 

n,p 

For vanishing doping one obtains the maximum en­
ergy relaxation times which are at room temperature 
T~ = 4.44 · 10-13 s, r; = 2.24 • 10-13 S. 

4. SIMULATION RESULTS 

The coupling of Monte Carlo method and enhanced 
drift- diffusion model briefly described in section 2.2 
has been implemented in MINIMOS in order to jus­
tify the efficiency and accuracy of that compound 
model with respect to ultra small MOS transistors 
[27]. An n-channel MOSFET with Lgate = 0.25 µm, 
t 0 x = 5 nm was simulated at room temperature using 
the combined technique. 
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Figure 4: Lateral and transversal temperatures in a 
quarter micron MOSFET (units [1000 K]). 

The device has a metallurgical channel length of 
Letr = 0.15µm and exhibits a threshold voltage Ut = 

0.23 V. For practical simulation of a MOSFET, elec­
trons are injected in source, where they fully ther­
malize before entering the channel [40]. In the region 
of interest, usually near the drain, a sufficient large 
number of particles is supplied by a particle split al­
gorithm, thus reducing the statistical uncertainty of 
the results. The bias conditions for the following re­
sults are Uos = Uos = 2.5 V and Uas = 0 V. 
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Figure 5: Electric field (upper drawing) and driving 
force (lower drawing) calculated by Monte Carlo in 
the same device. 

The two-dimensional distribution of the main diago­
nal temperatures in the area near the drain are de­
picted in Fig. 4. The lateral temperature Tu has a 
maximum value at the surface, while the maximum of 
Tvv is shifted away from the surface. Degradation due 
to hot electron injection into the oxide can be more 
accurately modeled by using the spatial distribution 
of Tvv than by using the scalar temperature obtained 
from average energy. In the performed simulations 



the off-diagonal temperatures never exceeded 15% of 
the main-diagonal elements. 

Comparing the upper and the lower part of Fig. 5 
we see that the large normal field within the inver­
sion layer does not appear in the driving force. This 
is obvious since the normal field is compensated by 
diffusion. The electric field in the source junction is 
compensated by diffusion as well, since in this area 
the driving force calculated by Monte Carlo vanishes. 
The field peak near the drain edge however appears 
almost unchange~ in the driving force, thus acceler­
ating and heating up the electron gas in this area. 

Velocity of electrons in the channel is plotted in Fig. 6. 
The effective channel extends from 0.05 µm to 0.2 µm, 
the positions of the junctions of source and drain sub­
diffusion, respectively. In the first half of this range 
the surface velocity (curve A) is lower than the veloc­
ities within the inversion layer since the electrons are 
pressed towards the surface. Near drain the pressing 
force has opposite direction and the electron velocity 
is maximum at the surface. The field peak near drain 
induces a velocity overshoot of 90% related to the bulk 
saturation velocity. A comparison of the two parts of 
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Figure 6: Electron average velocity along the channel. 
Curve A: at the Si-Si02 interface. Curves B and C: 
5nm and lOnm away from interface. 

Fig. 5 has shown that in the overshoot region diffu­
sion is not important. Therefore, velocity overshoot 
is treated in this model more like a drift phenomenon. 
It is reproduced by the drift-diffusion current relation 
(11) by incorporating the nonlocal mobility which will 
also be increased compared to a local mobility, which 
cannot produce velocities larger than the bulk satu­
ration velocity. 
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