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ABSTRACT 

Tb.e integ.ration of p.rocess and device simula­
to.rs into mode.rn Tecb..nology CAD (TCAD) systems 
bas become a necessity because of tbe inberent com­
munication, data transfu and maint&inance advan­
tages. Modern simulation programs and increasingly 
available computer resources turn complex tasks such 
as optimization loops into an aifordable development 
tool. For the consecutive invocation and combina­
tion of different simulators a unique data fo1mat as 
well as a common control language is 1equ.ited. Mo­
reover, integration opens up a variety of possibilities 
for the design of future simulators. We shall demons­
trate how to male a stand-alone simulator work in a 
TCAD environment. After a short description of the 
basic components, the paper will focus on simulator 
integration; linaJly, some novel insights derived from 
the design of the whole uameworl will be highligltted. 

GENERAL OVERVIEW 

The main·parts o!the VISTA system (Viennese 
Integrated System for Technology CAD Applications 
[1]) are shown in Fig. 1. 

VISTA consists of a. P IF Databcue, which is an 
enhanced intertool version of the well-known profile 
interchange format proposed in [2). To accomodate 
for the needs of existing TCAD a.pplications, the ori­
ginal PIF syntax was restructured by reducing the 
number of different constructs, adding a few new con­
structs such as tensor product grid definition, and 
by defining additional semantical rules for the use of 
standardized attributes. Our PIF implementation is 
able to handle arbitrary LISP expressions for process 
fiow representation; even whole TCAD shell programs 
can be stored consistently along with the core simu­
lation data. 
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Figure 1: VISTA system overview 

Simulators and other tools access the PIF da.ta­
base using the PIF Application Interface (PAI), which 
supports several languages including C, FORTRAN 
and LISP. The PAI is a. procedural interface for acces­
sing the binary PIF database. It provides an object­
oriented functionality for creating, reading and mo­
difying PIF objects. In this way the application pro­
grammer does not need to know too much about the 
PIF syntax to be able to use the PIF database. The 
PAI was designed as a strictly layered product to gua· 
rantee the necessary functionality, performance and 
extensibility. 

A system layer hides all system dependencies 
concerning communication with the operating system 
from the rest of the PAI. On top of the system layer, 
the file layer deals with physical files and objects. The 
compression and the caching layer take care of per­
formance and space requirements. The basic layer 
handles the structure of the information stored in the 
PIF file dealing with primitive objects, such as bytes, 
integeu or reals. The interface layer allows access 
to the PIF objects suited for advanced Candis the 



standardhed interface ~o the PIF database. The ap­
plication layer provides a more comfortable access to 
PIF objects for applications written in C, FORTRAN 
or LISP. 

For the conversion from the binary intcrtool 
form to the intcrsitc ASCll format the PIF binary 
file manager (PBFM) has been developed. In this 
way the intcrsite exchange of PIF files between dll­
ferent hardware and software platforms, for instance 
via electronic mail, is supported. : 

The TCAD ah.ell is responsible for sta:rting up 
the simulations. Time-consuming tasks are perfor­
med in the background or in batch mode. Additio­
nally, an interpretive language must be used as the 
shell language to provide interactive control. Moreo­
ver, the TCAD shell is highly custoµillable and easily 
extensible to allow simple additiohs of new functiona­
lities. We have chosen a LISP di&iect as the exten­
sion language because of its fiexibility and its inde­
pendence from the operating system. XLISP [3) is 
written in portable C. For TCAI). purposes, it has 
been extended by some functioni .Xe.g. for the gra­
phical user interface), which can be used in the same 
manner as built-in functions. 

If the TCAD shell had been the front-end, the 
user would have had to learn LISP .to perform simple 
simulations. To free the user from the constraint of 
learning LISP - like the PAI docs" 'for the simulation 
tool programmer who writes PIF:access routines -, 
the Uaer Interface Agent (UIA) has been designed. 
It provides dialog boxes, menus and various other ob­
jects based OD so-called widgets for input deck .as­
sembly for various simulation tools. In this manner 
the user gets a comfortable point-and-click interface 
to his simulator and does not need to edit the input 
deck manually [4]. 

Considerable work in this field has also been 
done by other groups. A possible realliation of a 
database can be seen in [5]. Aspects ofnser interfaces 
a?e discussed in e.g. [6], [7]. Approaches to general 
TCAD frameworks are presented in [8] and [9]. 

TOOL INTEGRATION 

The integration of simulators into VISTA [10] 
can be achieved in two stages, namely the data level 
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and the task level integration. This is illustrated in 
Fig. 2. The implementation of these stages is discus­
sed in the following two sections. 

TCADShell 

PIF Oalabase 

Figure 2: Tool Integration 

Data Level 

For the data level integration (sec Fig. 3) the 
data input and output of a conventional simulator arc 
replaced by access to the PIF database. This can be 
done in different ways, depending OD the effort which 
one wishes to invest. One possibility is the direct re­
placement of the 1/0 functions by PAI functions in 
the simulator code. The other possibility is the ge­
neration of a wrapper, which converts the PIF input 
file to a conventional input deck, and the simulator 
output back to a PIF file. In any case the PAI is 
used as the standard access interface to t.hc binary 
PIF data.base. For all simulator-independent data 
a physically motivated, predefined 1tanda:rd must be 
strictly obeyed. In this manner, common simulator 
tasks such as input parsing or normaliJation need not 
be executed by the simulator itself. 

One would expect that the use of a Procedural 
Interface to an object oriented binary database would 
lead to an increased simulator 1/0 burden. We will 
see that this is not the case. 

Another advantage of the use of the PIF data 
format is that a site using this data format standard 
does not need to write a data translation :routine for 
the coupling of different simulators. Every tool using 
the PIF format as the underlying data structure can 
be coupled to other ones using only a PIF in- and 
output part to be able to communicate with other 
modules. Without a unique data format, n simulators 
would require n · ( n - 1) translators in the worst case! 



Figure 3: Data Level Integration 

Task Level 

In VISTA, the task level integration was desi­
gned to yield an even greater level of fie.xibility and 
functionality (see Fig. 4). For integration on this le­
vel, the simulator should be ·divided up into functional 
units, such as grid generators, discreti.zers, physical 
models or solvers. Since these units transform the 
PIF data from one well-defined state into another, 
they can be combined, for example via the TOAD 
shell. Every unit only needs to possess a standardi­
zed interface in order to be callable from LISP. This is 
the task level integration of the simulator. n has the 
advantage that a.fter performing the necessary modu­
larization, every functional unit can easily be maintai­
ned or replaced by a new one. Tools can then be di­
rectly linked to the TCAD shell, and, consequently, 
be true LISP functions. Alternatively, they can be 
separate executables which are only invoked by the 
TOAD shell. 

Some of the modules which are derived from 
modularized simulators, as well as some lower level 
{unctions (for example interpolate, add profilea, com­
pute gradient, ... ), form the PIF ToolBox. This re­
sults in a collection of various functions ranging from 
simple initialization or arithmetic operations - such 
as adding two profiles defined over the same grid - to 
more complex modules like grid generators. 

Building a new simulator from scratch usually 
requires a tremendous eft'ort, whereas combining mo-
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Figure 4: Task Level Integration 

dules to create a new simulation instrument is a sim­
ple and straightforward task. The designer of a new 
simulator can focus on the physical problema, because 
one can combine new models with alre&dy existing 
tools of the toolbox. 

The dift'erent options for integrating tools into 
the VISTA system shall now be exemplified using the 
in-house developed simulators, namely the process 
simulator PROMIS and the device simulator MINI­
MOS. At the moment there are several other simu­
lators being integrated, i.e. the interconnect capa­
citance simulator VLSICAP [11] and the topography 
simulator SAMPLE [12]. 

PRO MIS 

The process simulator PROMIS [13] was inte­
grated on the data level into VISTA. Before integra­
tion, the source code of PROMIS consisted of 251 
routines which were partly independent from a se­
mantic point of view, but not from the viewpoint of 
software architecture. During the integration into the 
VISTA environment, PROMIS was separated into se­
veral independent modules and all of them were tur­
ned into autonomous executables. This partitioning 
was physically motivated. Each part is now capable 
of simulating one specific process step (see Fig. 5}. 

Currently, modules exist for grid generation, 
analytical and Monte Carlo ion implantation into ar­
bitrary structures, and for dift'usion under inert and 
oxidizing conditions. After the partitioning of the si-



mulator1 every executable was integrated on the data 
level into the VISTA system. 

TCAD-Shell 

I USP!Wtol-- l 

Figure 5: PROMIS in the VISTA system 
~··_.'.~~: 

The modules are linked to the TCAD shell by 
a small LISP part, which is responsible for prepuing 
the PIF input file, for checling the input data for its 
integrity and finally for the invocation of the simu­
lator modules. In this way, all the new executables 
may be seen u TCAD shell fun~tions. Moreovel'1 the 
communication between different -PROMIS modules 
is now entirely based on the PIF database. Thus, 
it is very easy to replace and mailitain the resulting 
parts of the process simulator independently. 

Regarding only one sepuate executable, PRO­
MIS can be seen as an example for the data level inte­
gration of a simulator. Exchanging one module with 
another one only implies invoking a new executable. 

This new modularized concept, together with 
the pzogramming capabilities of LISP, facilitate the 
definition of process flows without requiring any re­
compilation. Moreover, this shell implementation is 
highly suitable for customization, which is an indis­
pensable prerequisite the rapidly changing demands 
of modezn process simulation. 

Contrary to what might be expected, code size 
was not increased by the use of the PAI. The code size 
of the resulting modules is about 1.4 MB instead of 
1.5 MB. The code size needed for I/O could be decrea­
sed from 190 kB for the old PRO MIS to 130 kB for the 
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new PIF version. Additionally, the pass 1 of PROMIS 
which was responsible for checling ceztain semantical 
relationships was shifted to the TCAD shell which is 
much better suited for this task. 

MINIM OS 

The device simulator MINIMOS [14] serves u 
an example for the task level integration into the VI­
STA system. It has been totally separated into tools 
which perform elementary tasks, such as grid genera­
tion, equation solving, or the computation of physical 
parametezs and coefficients (see Fig. 6). The consecu­
tive invocation of these tools can be controlled by the 
TCAD shell, by a FORTRAN sequencing program, 
or otherwise. 

TCAD-Shell 
TCAO-Tool 

Ml NIMOS Conll'OI Program 

- -n PIF 
a.,. 

Figure 6: MINIMOS in the VISTA system 

Every module of MINIM OS communicates with 
the othez ones by accessing the PIF database. They 
read the required data from the PIF file and write 
the results back to it. This causes a very high data 
tzansfer rate. The results showed that this extensive 
use of the PAI did not reduce the efficiency of the 
simulator too much, because the total computation 
time was only increased by about 20 percent. The 
control program is currently implemented as a stack 
machine written in FORTRAN. 

CONCLUSION 

VISTA provides a set of simple basic functio­
nalities as well as some high level tools. It gives the 



user the possibility to get the very best out of his 
comp11ter facilities through. the use of its widely open 
concept. 

The unique, highly standardized PIF data for­
mat serves as the base of the whole system, simplify­
ing the data exchange. Using PIF as the underlying 
data format allows a simple coupling of dift'erent si­
mulation tools. 

Dift'erent integration levels can be achieved. Si­
mulators can be incorporated into VISTA on the data 
or on the task level, depending on the amount of man­
power invested in this coupling. Di1f'erent tools sup­
port this integration optimally, resulting in an ab­
stract tool description for an automatic binding to 
the TCAD shell. 
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