
IMPLEMENTATION OF A TCAD FRAMEWORK

B. Stippel, F. Fasching, C. Fischer, S. Halama, B. Pimingstorfer,
W. Tuppa, K. Wimmer and S. Selberherr

Institute for Microelectronics, Technical University of Vienna,
GuBhausstraSe 27-29, A-1040 Vienna, Austria

ABSTRACT

Tb.e integ.ration of p.rocess and device simula­
to.rs into mode.rn Tecb..nology CAD (TCAD) systems
bas become a necessity because of tbe inberent com­
munication, data transfu and maint&inance advan­
tages. Modern simulation programs and increasingly
available computer resources turn complex tasks such
as optimization loops into an aifordable development
tool. For the consecutive invocation and combina­
tion of different simulators a unique data fo1mat as
well as a common control language is 1equ.ited. Mo­
reover, integration opens up a variety of possibilities
for the design of future simulators. We shall demons­
trate how to male a stand-alone simulator work in a
TCAD environment. After a short description of the
basic components, the paper will focus on simulator
integration; linaJly, some novel insights derived from
the design of the whole uameworl will be highligltted.

GENERAL OVERVIEW

The main·parts o!the VISTA system (Viennese
Integrated System for Technology CAD Applications
[1]) are shown in Fig. 1.

VISTA consists of a. P IF Databcue, which is an
enhanced intertool version of the well-known profile
interchange format proposed in [2). To accomodate
for the needs of existing TCAD a.pplications, the ori­
ginal PIF syntax was restructured by reducing the
number of different constructs, adding a few new con­
structs such as tensor product grid definition, and
by defining additional semantical rules for the use of
standardized attributes. Our PIF implementation is
able to handle arbitrary LISP expressions for process
fiow representation; even whole TCAD shell programs
can be stored consistently along with the core simu­
lation data.

131

V lennese

I ntegrated

S y~emfor
T echnology CAD

ppllcaUons

Figure 1: VISTA system overview

Simulators and other tools access the PIF da.ta­
base using the PIF Application Interface (PAI), which
supports several languages including C, FORTRAN
and LISP. The PAI is a. procedural interface for acces­
sing the binary PIF database. It provides an object­
oriented functionality for creating, reading and mo­
difying PIF objects. In this way the application pro­
grammer does not need to know too much about the
PIF syntax to be able to use the PIF database. The
PAI was designed as a strictly layered product to gua·
rantee the necessary functionality, performance and
extensibility.

A system layer hides all system dependencies
concerning communication with the operating system
from the rest of the PAI. On top of the system layer,
the file layer deals with physical files and objects. The
compression and the caching layer take care of per­
formance and space requirements. The basic layer
handles the structure of the information stored in the
PIF file dealing with primitive objects, such as bytes,
integeu or reals. The interface layer allows access
to the PIF objects suited for advanced Candis the

standardhed interface ~o the PIF database. The ap­
plication layer provides a more comfortable access to
PIF objects for applications written in C, FORTRAN
or LISP.

For the conversion from the binary intcrtool
form to the intcrsitc ASCll format the PIF binary
file manager (PBFM) has been developed. In this
way the intcrsite exchange of PIF files between dll­
ferent hardware and software platforms, for instance
via electronic mail, is supported. :

The TCAD ah.ell is responsible for sta:rting up
the simulations. Time-consuming tasks are perfor­
med in the background or in batch mode. Additio­
nally, an interpretive language must be used as the
shell language to provide interactive control. Moreo­
ver, the TCAD shell is highly custoµillable and easily
extensible to allow simple additiohs of new functiona­
lities. We have chosen a LISP di&iect as the exten­
sion language because of its fiexibility and its inde­
pendence from the operating system. XLISP [3) is
written in portable C. For TCAI). purposes, it has
been extended by some functioni .Xe.g. for the gra­
phical user interface), which can be used in the same
manner as built-in functions.

If the TCAD shell had been the front-end, the
user would have had to learn LISP .to perform simple
simulations. To free the user from the constraint of
learning LISP - like the PAI docs" 'for the simulation
tool programmer who writes PIF:access routines -,
the Uaer Interface Agent (UIA) has been designed.
It provides dialog boxes, menus and various other ob­
jects based OD so-called widgets for input deck .as­
sembly for various simulation tools. In this manner
the user gets a comfortable point-and-click interface
to his simulator and does not need to edit the input
deck manually [4].

Considerable work in this field has also been
done by other groups. A possible realliation of a
database can be seen in [5]. Aspects ofnser interfaces
a?e discussed in e.g. [6], [7]. Approaches to general
TCAD frameworks are presented in [8] and [9].

TOOL INTEGRATION

The integration of simulators into VISTA [10]
can be achieved in two stages, namely the data level

132

and the task level integration. This is illustrated in
Fig. 2. The implementation of these stages is discus­
sed in the following two sections.

TCADShell

PIF Oalabase

Figure 2: Tool Integration

Data Level

For the data level integration (sec Fig. 3) the
data input and output of a conventional simulator arc
replaced by access to the PIF database. This can be
done in different ways, depending OD the effort which
one wishes to invest. One possibility is the direct re­
placement of the 1/0 functions by PAI functions in
the simulator code. The other possibility is the ge­
neration of a wrapper, which converts the PIF input
file to a conventional input deck, and the simulator
output back to a PIF file. In any case the PAI is
used as the standard access interface to t.hc binary
PIF data.base. For all simulator-independent data
a physically motivated, predefined 1tanda:rd must be
strictly obeyed. In this manner, common simulator
tasks such as input parsing or normaliJation need not
be executed by the simulator itself.

One would expect that the use of a Procedural
Interface to an object oriented binary database would
lead to an increased simulator 1/0 burden. We will
see that this is not the case.

Another advantage of the use of the PIF data
format is that a site using this data format standard
does not need to write a data translation :routine for
the coupling of different simulators. Every tool using
the PIF format as the underlying data structure can
be coupled to other ones using only a PIF in- and
output part to be able to communicate with other
modules. Without a unique data format, n simulators
would require n · (n - 1) translators in the worst case!

Figure 3: Data Level Integration

Task Level

In VISTA, the task level integration was desi­
gned to yield an even greater level of fie.xibility and
functionality (see Fig. 4). For integration on this le­
vel, the simulator should be ·divided up into functional
units, such as grid generators, discreti.zers, physical
models or solvers. Since these units transform the
PIF data from one well-defined state into another,
they can be combined, for example via the TOAD
shell. Every unit only needs to possess a standardi­
zed interface in order to be callable from LISP. This is
the task level integration of the simulator. n has the
advantage that a.fter performing the necessary modu­
larization, every functional unit can easily be maintai­
ned or replaced by a new one. Tools can then be di­
rectly linked to the TCAD shell, and, consequently,
be true LISP functions. Alternatively, they can be
separate executables which are only invoked by the
TOAD shell.

Some of the modules which are derived from
modularized simulators, as well as some lower level
{unctions (for example interpolate, add profilea, com­
pute gradient, ...), form the PIF ToolBox. This re­
sults in a collection of various functions ranging from
simple initialization or arithmetic operations - such
as adding two profiles defined over the same grid - to
more complex modules like grid generators.

Building a new simulator from scratch usually
requires a tremendous eft'ort, whereas combining mo-

133

Figure 4: Task Level Integration

dules to create a new simulation instrument is a sim­
ple and straightforward task. The designer of a new
simulator can focus on the physical problema, because
one can combine new models with alre&dy existing
tools of the toolbox.

The dift'erent options for integrating tools into
the VISTA system shall now be exemplified using the
in-house developed simulators, namely the process
simulator PROMIS and the device simulator MINI­
MOS. At the moment there are several other simu­
lators being integrated, i.e. the interconnect capa­
citance simulator VLSICAP [11] and the topography
simulator SAMPLE [12].

PRO MIS

The process simulator PROMIS [13] was inte­
grated on the data level into VISTA. Before integra­
tion, the source code of PROMIS consisted of 251
routines which were partly independent from a se­
mantic point of view, but not from the viewpoint of
software architecture. During the integration into the
VISTA environment, PROMIS was separated into se­
veral independent modules and all of them were tur­
ned into autonomous executables. This partitioning
was physically motivated. Each part is now capable
of simulating one specific process step (see Fig. 5}.

Currently, modules exist for grid generation,
analytical and Monte Carlo ion implantation into ar­
bitrary structures, and for dift'usion under inert and
oxidizing conditions. After the partitioning of the si-

mulator1 every executable was integrated on the data
level into the VISTA system.

TCAD-Shell

I USP!Wtol-- l

Figure 5: PROMIS in the VISTA system
~··_.'.~~:

The modules are linked to the TCAD shell by
a small LISP part, which is responsible for prepuing
the PIF input file, for checling the input data for its
integrity and finally for the invocation of the simu­
lator modules. In this way, all the new executables
may be seen u TCAD shell fun~tions. Moreovel'1 the
communication between different -PROMIS modules
is now entirely based on the PIF database. Thus,
it is very easy to replace and mailitain the resulting
parts of the process simulator independently.

Regarding only one sepuate executable, PRO­
MIS can be seen as an example for the data level inte­
gration of a simulator. Exchanging one module with
another one only implies invoking a new executable.

This new modularized concept, together with
the pzogramming capabilities of LISP, facilitate the
definition of process flows without requiring any re­
compilation. Moreover, this shell implementation is
highly suitable for customization, which is an indis­
pensable prerequisite the rapidly changing demands
of modezn process simulation.

Contrary to what might be expected, code size
was not increased by the use of the PAI. The code size
of the resulting modules is about 1.4 MB instead of
1.5 MB. The code size needed for I/O could be decrea­
sed from 190 kB for the old PRO MIS to 130 kB for the

134

new PIF version. Additionally, the pass 1 of PROMIS
which was responsible for checling ceztain semantical
relationships was shifted to the TCAD shell which is
much better suited for this task.

MINIM OS

The device simulator MINIMOS [14] serves u
an example for the task level integration into the VI­
STA system. It has been totally separated into tools
which perform elementary tasks, such as grid genera­
tion, equation solving, or the computation of physical
parametezs and coefficients (see Fig. 6). The consecu­
tive invocation of these tools can be controlled by the
TCAD shell, by a FORTRAN sequencing program,
or otherwise.

TCAD-Shell
TCAO-Tool

Ml NIMOS Conll'OI Program

- -n PIF
a.,.

Figure 6: MINIMOS in the VISTA system

Every module of MINIM OS communicates with
the othez ones by accessing the PIF database. They
read the required data from the PIF file and write
the results back to it. This causes a very high data
tzansfer rate. The results showed that this extensive
use of the PAI did not reduce the efficiency of the
simulator too much, because the total computation
time was only increased by about 20 percent. The
control program is currently implemented as a stack
machine written in FORTRAN.

CONCLUSION

VISTA provides a set of simple basic functio­
nalities as well as some high level tools. It gives the

user the possibility to get the very best out of his
comp11ter facilities through. the use of its widely open
concept.

The unique, highly standardized PIF data for­
mat serves as the base of the whole system, simplify­
ing the data exchange. Using PIF as the underlying
data format allows a simple coupling of dift'erent si­
mulation tools.

Dift'erent integration levels can be achieved. Si­
mulators can be incorporated into VISTA on the data
or on the task level, depending on the amount of man­
power invested in this coupling. Di1f'erent tools sup­
port this integration optimally, resulting in an ab­
stract tool description for an automatic binding to
the TCAD shell.

ACKNOWLEDGEMENT

This project is supported by the laboratories
of: AUSTRIAN INDUSTRIES -AMS at Unterprem­
stitten, Austria; DIGITAL EQUIPMENT Corpora­
tion at Hudson, USA; SIEMENS Corporation at Mu­
nich, Germany; and SONY Corporation at Atsugi,
Japan.

REFERENCES

[l] F. Fasching, C. Fischer, S. Halama, B. Pi­
mingstorfer, B. Read, S. Selberherr, H. Stip­
pel, P. Verhas, K. Wimmer, An Integrated Tech­
nology CAD En11ironment, Proc. Int. Symp. on
VLSI Technology, Systems and Applications,
Taipei, Taiwan, pp. 147-151, 1991.

[2] S. Duvall, An Interchange Format for Procell
and De11ice Simulation, IEEE Trans. CAD, Vol.
7, No.7, pp. 489-500, July 1988.

[3) D. M. Betz, XLISP, An Object-oriented Lisp,
Version 2.1, Peterboro1ugh, NH, Feb. 1988.

[4] S. Halama, F. Fasching, H. Pimingstorfer,
W. Tuppa and S. Selberherr, Conaistent Uaer In­
terface and Tad: Level Architecture of a TOAD
Sy.tern, to be published in Proceedings to NU­
PAD IV, June 1992.

135

[5] C.H. Corbex, A. F. Gerodolle, S. P. Martin and
A. R. Poncet Data Stn1cturing for Procell anti
Device Simulationa, IEEE Trans. CAD, Vol. 7,
No. 4, pp. 489-500, April 1988.

[6] E.W. Scheckler, A Utility-Baaed Integrated Pro­
cea1 Simulation Sy.tern, Symp. on VLSI Techno­
logy, pp. 97-98, 1990.

[7] P. A. Gough, M. K. Johnson, P. Walker and
H. Hermans an Integra1:ed Device Delign, Envi­
ronment for Semiconductor•, IEEE Trans. CAD,
Vol. 10, No. 6, pp. 808-821, June 1991.

[8] P. Lloyd, H. K. Dirks, E. J. Prendergast a.nd
K. Singhal, Technology CAD for Competitive
Product1, IEEE Trans. CAD, Vol. 9, No. 11, pp.
1209-1216, November 1990.

(9] A. Wong, W. Dietrich, and M. Karasick (Edi­
tors), The SWR Architecture Document Veraion
O.f, CAD Framework Initiative #162, Austin,
TX, Mar 1991.

[10] S. Selberherr and F. Fasching, C. Fischer, S. Ha­
lama, H. Pimingstorfer, H. Read, H. Stippel,
P. Verhas, K. Wimmer, The Vienneae TOAD Sy­
atem, Proc. VPAD, Oiso, Japan, 1991.

(11] F. Straker, S. Selberherr, Capacitance Compu­
tation for VLSI Structure•, Proc. EUROCON,
pp. 602-608, 1986.

[12] A. R Neureuther, IC Proceaa Modeling and Topo­
graphy Deaign, IEEE Proceedings, special Issue
on VLSI Design: Problems and Tools, Vol. 71,
No. 1, pp. 121-128, January 1983.

[13] G. Hobler, S. Halama, K. Wimmer, S. Selber­
herr, B. Potzl RTA-Simulation with the ~D Pro­
ceu Simulator PROMIS, Proc. NUPAD m, pp.
13-14, 1990.

[14] S. Selberherr, Three Dimenaional Device Mode­
ling with MINIMOS 5, Proc. VLSI Workshop,
pp. 40-41, 1989.

