SIAM J. Sci. STAT. COMPUT. (© 1992 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 289-308, January 1992 ' 015

FAST ITERATIVE SOLUTION OF CARRIER CONTINUITY
EQUATIONS FOR THREE-DIMENSIONAL DEVICE SIMULATION*

O. HEINREICHSBERGER!', S. SELBERHERR!, M. STIFTINGER!, AND K.P. TRAAR?

Abstract. In this paper the use of iterative methods for the solution of the carrier continuity
equations in three-dimensional semiconductor device simulators is summarized. An overview of the
derivation of the linear systems from the basic stationary semiconductor device equations is given
and the algebraic properties of the nonsymmetric coefficient matrices are discussed. Results from
the following classes of iterative methods are presented: The classical conjugate gradient (CG),
the symmetrized conjugate gradient (SCG), the generalized minimum residual (GMRES), and the
conjugate gradient squared (CGS) method. Preconditioners of incomplete factorization type with
partial fill-in are considered. High performance implementations for these algorithms on vector,
concurrent, and vector-concurrent computers are presented.

Key words. semiconductor equations, nonsymmetric systems, preconditioned iterative meth-
ods, vector computers

AMS(MOS) subject classifications. 65L10, 65F10, 65F20, 35J65

1. Introduction. The three-dimensional numerical analysis of semiconductor
devices by device simulators is increasingly becoming an indispensable tool in design
and optimization of micro-miniaturized devices. Such simulators compute the discrete
self-consistent solution of the semiconductor device partial differential equations. We
restrict ourselves to the decoupled solution method of the three nonlinear device equa-
tions on a three-dimensional nonuniform tensor product grid [15]. In this case each
single nonlinear (outer) iteration consists of the solution of the Poisson equation for
the electrostatic potential 1) and of two carrier continuity equations for the electron
and hole concentrations, respectively. The coefficient matrices of the discrete con-
tinuity equations in the most practical variable set n (electrons) and p (holes) are
nonsymmetric. In this contribution we consider preconditioned iterative methods for
the solution of these nonsymmetric linear systems. Related work is found in [12], [19],
[21], [28], and [32]. .

Iterative methods applied to the discrete continuity equations have to cope with
high condition numbers of the coefficient matrices [1]. Another problem is the enor-
mous numerical range of the solution vector that has to be computed accurately both
in the depletion zones of the device under consideration as well as in high injection
regimes. Contrary to the Poisson equation, the discrete continuity equations have
to be evaluated much more accurately to guarantee the stability of the nonlinear
iteration. This results in substantially higher iteration counts compared to the Pois-
son equation, and therefore the linear nonsymmetric solvers dominate in the solution
process. ‘

‘We have performed a comparative study of various preconditioned conjugate gra-
dient type solvers of which the conjugate gradient squared (CGS) method [14], [26)
was identified as the fastest and most economical. The success of this method (and re-
lated ones) depends quite critically on robust preconditioning. We have concentrated
on incomplete factorizations of the coefficient matrix. Partial fill-in substantially
reduces the iteration count at the expense of more arithmetic work per iteration.

* Received by the editors April 5, 1990; accepted for publication (in revised form) February
26, 1991. This work was supported by Siemens AG, Munich, and Digital Equipment Corporation,
Hudson.

1 Institute for Microelectronics, Technical University of Vienna, Vienna, Austria.

t SIEMENS AG Austria, ETG 215, Vienna, Austria.

289

290 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

Multiple solutions of linear systems of rank O(10°) or even larger on vector or vector—
concurrent computers with large main memory requires vectorized and/or parallelized
iterative procedures. Our implementation has therefore been concentrated on an effi-
cient vectorizable ILU preconditioner. We show how high performance is achieved on
supercomputers such as the CRAY 2 (one vector unit), Fujitsu VP200, and on super-
minicomputers such as the Alliant FX40 (two vector CEs) and a Digital VAX 6260
(one to six scalar processors).

The outline of this paper is as follows. In §2 the semiconductor partial differen-
tial equations and the nonlinear expressions for the physical quantities within these
equations are summarized, the discretization of which is discussed in §3. The brief
consideration of the algebraic matrix properties in §4 provides the preliminaries for
the iterative procedures outlined in §5. Robust preconditioning is vital for the itera-
tive solution of the carrier continuity equations. We consider incomplete factorization
preconditioners in §6 and their implementation on vector and parallel computers in
§7. Numerical experiments and conclusive remarks are found in §8.

2, The semiconductor partial differential equations. We consider the time-
invariant case on a three-dimensional rectangular spatial domain using finite difference
discretization. The semiconductor equations for the variables (¢, n,p) consist of the
Poisson equation and the carrier continuity equations. Poisson’s equation for the
electrostatic potential 1 reads

1) div (¢ - grady) = —p

with the space charge p = ¢ (p — n+ C), where C denotes the net doping density,
n the hole, p the electron concentrations, and ¢ the elementary charge. The carrier
continuity equations for the electron and hole current densities J, , read

(2) divJ, = q-R,
(3) divJ, = —¢-R,
where R denotes the carrier generation and recombination rate.

The current densities Jy p,

-

(4) Jo = pi"F 0. B,

(5) Jp=N£ISF'P'Fp,

are assumed to be proportional to the driving forces F, .. An extended drift—diffusion
,p

approach allows the treatment of hot electron effects in one-band semiconductors such
as silicon. This approach for the driving forces reads [13]

— 1 k-T,
(6) Fn=fq(grad¢—;-grad(7 n))
) Fy=—qg (gradw+%-grad(’°’f" p))

where carrier heating is modeled by carrier temperatures T, ,. For the mobilities
pLISE the effect of carrier heating is modeled by a nonlinear dependence on the

magnitude of the driving forces F;, p:

LIS
® WLISF = iy

— a",P
14 (14 (2885 - Fipl/g-v) ")

1/anp

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 291

with o, = 2, ap = 1. uL25 denotes the zero-field mobility due to lattice (L), impurity
(I), and surface (S) scattering mechanisms and v3% the saturation velocity.
Approximations for the carrier temperatures T, , can be derived by a series ex-

pansion of the energy conservation equations

2 ¢ 02 1 1
9) Top=To+ 77 Tnp (Uns <—————)
n,p 3 Tmp (n,p) pLISF LIS
with the Boltzmann constant k, the ambient temperature Tp and the energy relaxation
times 77 .

The carrier generation and recombination rate R on the right-hand side of the
carrier continuity equations represents the sum of the impact ionization rate RI, the

Shockley-Read-Hall recombination rate RS®H | and the Auger recombination rate
RAU:

(10) ~ R =R + RSRH | RAU,

The impact ionization rate is modeled by the Chynoweth formulae
(11) RII=—an'_—ap'—,

in which the ay, , depend exponentially on the local electric field:

",Bn,p
(J_;z,p/u;u,p‘) - grady

(12) Qnp = Gnp - €Xp

The SRH recombination rate is expressed by

(13) poru _____(-p=m)
Tp(n+n1) + 70 (p+p1)

with positive constants n,p;,Tn . Last, the Auger recombination rate is given by
(14) RAU=(Cnvn+Cp-p)-(n-p—n?)
with Cp p > 0.

3. Discretization of the nonlinear system of equations. The nonlinear
system of equations can be solved either by a full Newton iteration or by decoupling
the three partial differential equations (Gummel’s algorithm [8]). We restrict ourselves
to the latter option. In that case, a nonlinear Gauss—Seidel block iterative scheme is
obtained neglecting the nonlinearities in the carrier mobilities and temperatures:

k
(15) divgadyt =2 (6—(?:;¢—w)— (944 — gF) + ok — b+ c) ,
(16) d.le;, (¢k+l,pk+1) =—q (R (,lpk-i'l,nk’pk) + % (pk+1 _ pk)) ,

(17) dlvj;, (¢k+1,nk+1) =q (R (,¢k+1,nk’pk+l) + %g (nk+1 _ ,nk)) .

292 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

The set of equations is now discretized on a three-dimensional domain. The boundary
value problem is of mixed Dirichlet~-Neumann type. For the idealized ohmic contacts,
Dirichlet boundary conditions hold. For the artificial interfaces in the deep semicon-
ductor bulk, homogenous Neumann boundary conditions have to be applied. Nonho-
mogenous Neumann boundary conditions for the electrostatic potential are valid in
case of interface charges, e.g., at semiconductor—oxide interfaces. Nonvanishing in-
terface recombination velocities at Schottky contacts yield nonhomogenous Neumann
boundary conditions for the carrier concentrations.

The nonlinearities in R have to be treated carefully. The derivatives of R!! with
respect to the carrier concentrations can be neglected if the carrier generation rate is
not updated at every nonlinear iteration but in a superimposed generation supercycle.
For the recombination rates RSEH however, the derivatives with respect to n or p
are computed, because these contributions increase the diagonal dominance in the
resulting linear system. Such a stabilizing effect is not necessarily true for RAU,
therefore, negative contributions of the derivatives of R4V to the main diagonal of
the coefficient matrix are discarded.

For the finite difference discretization of the carrier continuity equations an expo-
nential interpolation scheme for the carrier concentrations n and p must be used (3],
[24]. This is due to an exponential dependence of the carrier concentrations on the
electrostatic potential (Scharfetter~-Gummel interpolation). Herein the quantities 1,
pin,p, and Ty, , are interpolated linearly. For a one-dimensional nonuniform discretiza-
tion with mesh spacings h;, neglecting the derivatives of R and assuming constant
carrier temperatures T, 5, one obtains for the three-point stencil

ni_an,i_1/2B_(2%%i1—_1) +ni41Dp 4172 32(}?1.)
(18) -n; (Dn,i—1/2 32(2:1) + D, ¢+1/2B(h?)) Rz'h—i_—lﬁﬂt—i,
Pi-1D ,i—l/z%("%l')‘ + pi+1D ,t+1/28_(2h—zA2
(19) i (Dp,i—1/2§—(§%}_)- + Dp,i+1/2B_2(;1?:i")') = R‘&l;-_h_z

In these formulae the diffusivities obey the Einstein relation Dy p = pin,p - Ut, where
Ut = L‘%‘l denotes the thermal voltage. B is the Bernoulli function

T

The arguments of the Bernoulli function are A; = -%'p—
For nonconstant carrier temperatures T, ,,, the above expressions are generalized

as follows [27]. Let

k- T(n,p),i

(21) Ut(n’P)si = q

denote the so-called local “electronic voltages” at the meshpoint i. Assume further
that the electronic voltages Ut(y ;) ; vary linearly between the meshpoints as is the
assumption for the electrostatic potential. Then a local one-dimensional continuity
equation is solved for the current densities J,, between neighboring meshpoints.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 293

Assuming constant current densities, the following midpoint interpolation formula
replaces the diffusivities

Ut ; -
(22) Dng)iv1/2 = bnp)iti/z - (Utmp)itt = Uttnp)i) - [h (Y)]
Ut(n,p),i

The midpoint values for the mobilities (5 p),i1+1/2 are approximated by linear inter-
polation. The Bernoulli function argument evaluates to

@) Apgys = Pt =¥ = Ctnmin = Ubnpya) 1 (U bnp) b1)
o (Utenp)it1 = Utn).1) Ut(n,p),i

4. Algebraic properties of the coeflicient matrices. The exponential in-
terpolation scheme outlined in the last section produces a nonsymmetric, diagonally
dominant, two-cyclic, seven-band coefficient matrix A.

Nonsymmetry is caused by the inequality B(—z) # B(z). Diagonal dominance
is due to the fact that each negative column sum of the offdiagonal elements is less
than (for nonvanishing R) or equal (for vanishing R) to the main diagonal pivot.
This implies at least semidefiniteness of A. Consider the case of constant carrier
temperatures T = T, = T;,. The equality

(24) B(—z) = exp(z) - B(z)

and the fact that the exponentially scaled potential increments can be factored yields
that A can be transformed to a symmetric, positive definite matrix A,

(25) A=Wl AW,

by a diagonal similarity transformation. The diagonal matrix W is positive definite
and the elements wy, ;) ; are given by exp (+1;/2Ut) for electrons and exp (—;/2Ut)
for holes. Since a similarity transformation leaves the spectrum of the matrix A
unchanged, we have a nonsymmetric system of linear equations, in which A has a
positive real spectrum. For local carrier temperature we are not aware of such a
transformation, hence we cannot make statements of the spectrum of A in this case.

We note the enormous numerical range of the W matrices. For a maximum elec-
trostatic potential of 100 Volts and liquid nitrogen temperature (77 K) we may expect
exponents of the order log;y (Wi max) = 3275. These numbers make the explicit trans-
formation of the linear system undesirable on standard, double precision computer
arithmetics. The very large rank of A gives preference to iterative methods over sparse
Gaussian elimination.

5. Selected iterative methods for the linear systems. In this section we
discuss the iterative procedures that were used in our computations. In the case
of symmetrizability these are the classical conjugate gradient (CG) algorithm, then a
variant of CG that circumvents the explicit symmetrization (SCG), and the conjugate
gradient squared (CGS) procedure. For the nonsymmetrizable case we consider the
generalized minimum residual algorithm (GMRES) and again CGS.

The numerical condition of the discrete carrier continuity equations can be rather
poor [1], therefore efficient preconditioning is important. Incomplete (left or split) LU
factorizations are used for preconditioning together with (left or symmetric) scaling
by the main diagonal pivots D of the preconditioner, and the Eisenstat procedure [7]
is used to compute the preconditioned matrix-vector multiply. In §8, where various

294 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 1
ILU-SCG.
Choose zg
fo = Qp'QL" (b— Azo)
T_1=Tr1 =

Po=1
FOR n = 0 STEP 1 UNTIL convergence DO
i = W 2QLQRn

&n=(u1,rn1
= Qp QL Aty
~ _ On
T @) 1
s s 1 A\-
pn=[1-22In (if n >0, po = 1)

An—10n—1 Pn-1
Tny1 = Pn (Tn + Jnfn) + (1= pn) Tn-1
Frg1 = Pn (Frn = F00) + (1 = pn) Ta1
END FOR

numerical experiments will be presented, estimates for the extremal eigenvalues of
the preconditioned matrix, obtained by the conjugate gradient method, illustrate
that the preconditioned problem is well conditioned. We use the following notational
conventions: The index s denotes the scaled matrix A, and its strictly triangular
parts L, and U,. Angle brackets denote the dot-product. Quantities with a hat ()
refer to the preconditioned system.

In this section we shall make explicit use of the similarity property, which was
derived in the last section. In case of knowledge of the diagonal transformation
matrices W, an explicit transformation {e.g., during the sparse matrix assembly) of
the linear system into symmetric form is the most straightforward approach provided
that the computer arithmetic is sufficiently accurate for the numbers generated by the
similarity transformation. This transformation saves matrix storage and the classical
preconditioned conjugate gradient algorithm (CG) is the optimal iterative method.

The very large number range in the iterates can be circumvented by a variant
of the conjugate gradient algorithm, e.g., proposed in [11]. In this case the diagonal
transformation matrices are confined to the inner products in the variant of the CG
algorithm given in Table 1. An appropriate scaling can be employed for the inner
products, thus avoiding restrictions on computer arithmetics. A three-term recursion
is used with left preconditioning. The WTWQ~'A norm of the solution error is
minimized at each iteration step.

If the linear systems are not symmetrizable one must choose from a more general
class of iterative methods for nonsymmetric linear systems. We concentrate on two
methods: The generalized minimum residual method GMRES, an orthogonalization
method, and the conjugate gradient squared method CGS, which has no (known) min-
imization property. Algorithms that were not considered are methods that require
(e.g., dynamically computed) eigenvalue estimates, such as the Manteuffel algorithm,
and the more recent hybrid methods, which adaptively switch between different ac-
celeration schemes [6], [16].

The GMRES algorithm minimizes the two-norm of the residual at each iteration

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 295

TABLE 2
ILU-GMRES(m).

Qhoose %o
b= (I +L,)""b,
Choose m
FOR n = 0 STEP 1 UNTIL convergence DO
=T +U,) ',
=&+ (I + L,) " ((diag (4s) — 2I) + £,,)
b -4
= ||7x]
Tn
j B_
FOR j = 1 STEP 1 UNTIL j =m DO
t—U+U)
a=t+ I+ L,) ! (diag (As) — 21) £ + ;)
FOR i =1 STEP 1 UNTIL i = j DO

o m

-3

h.7+1 g = ”v.1+1”

END RO /s

Solve least squares problem |Bner — ﬁmgﬂ for §
with e; = [1,0,- 0] e R*t\, H, € R"”’lxm
(upper Hessenberg matrix consisting of the h; ihJER™
Zng1 = 2y 4: me
with V;, = [01, 72, -, 0m] € RVX™
END FOR
Tngr = D"V +U,) g

step. An orthonormal basis is built by an Arnoldi process, and the Hessenberg least
squares problem can be solved, e.g., by Householder transformations. See Table 2.
The monotonic convergence of GMRES has to be paid for. Full orthogonalization at
iteration step n, which yields optimum convergence speed, requires storage of n vec-
tors. This is prohibitive for large, three-dimensional problems and makes restarting of
the iteration necessary, thus abandoning optimality. Nevertheless, the convergence of
the restarted GMRES(m) is certainly monotonic. Values for the restarting frequency
m less than, say, 6 have been found acceptable. Although the solution vector is up-
dated every m iterations, the residual norm is available at each iteration step at no
extra cost. This is a by-product of the QR decomposition for the solution of the least
squares problem, if the Q and R matrices are updated at each iteration step.

A way of decreasing storage and arithmetic requirements is the use of Lanczos
methods, such as the biconjugate gradient (BiCQG) algorithm or the biconjugate gradi-
ent squared (CGS) algorithm [26] given in Table 3. Both algorithms construct approxi-
mations to the solution in the same Krylov subspace as GMRES, but a biorthogonality
condition to the transposed system is used rather than an orthogonality condition to

296 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 3
ILU-CGS

Choose zg

fo = (I+ L) (bs — Ay20)

&0 = (I + U,) DY2zq

Choose fjp such that (§p, 7o) # 0

Go=p-1=0

p-1=1

FOR n = 0 STEP 1 UNTIL convergence DO
pn = @Q’ fn)

= (! + UJ)_ Pn R
p=1+ (I +Ls)~ ((diag (As) — 21I) &+ pn)
a'n = (;l?o,'ﬁ)

i
t=I+U,) 4

d=1+ (I +L,)"" ((diag (4;) — 21 + i)
Zns1 = En + Gnl

END FOR

Tnt+l = D-l/z(I + Us)—1£n+1

construct the direction vectors. The residual does not decrease monotonically, hence
the stopping procedure is more difficult compared to GMRES. The initial vector go
may be chosen arbitrarily such that (g, 7o) # 0. We conform to the common practice
to set this vector equal to the initial residual vector #y. A well-known property of this
algorithm is the possibility of breakdown by vanishing of certain inner products. This
phenomenon, which cannot be excluded a priori, is certainly a reason for worry. It is
an experimental observation that effective preconditioning makes the event of (near)
breakdown unlikely. We have observed that a sufficiently high machine precision can
avoid breakdown occurring when the iteration is near the true solution.

Related squared Lanczos algorithms [10] (BIORES? and BIODIR?) exist due to
the analogy to the Lanczos-ORTHORES and Lanczos-ORTHODIR algorithms. These
algorithms can be implemented to generate the same iterates for the solution vector
(in exact arithmetic) if identical vectors zg and §jo are chosen. Though mathematically
equivalent, unavoidable roundoff errors cause the iterates of the three biorthogonal-
ization algorithms to drive apart in the course of the iteration. BIOMIN?, i.e., CGS,
not only proved to perform best under presence of roundoff, but could also be imple-
mented most economically concerning storage.

In Table 4 the arithmetic work of the iterative procedures is listed. These figures
refer to one linear iteration. For the restarted GMRES(m) method the iteration
counter is incremented after the computation of one new orthogonal basis vector.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 297

TABLE 4
Comparison of arithmetic work/iteration.

Solver | Az | (z,y) [z +y ar
CG 1 2 4 10
SCG 1 3 4 10
CGS 2 2 7 6

GMR | 1 | B+1 z Z+1

6. Efficient preconditioning. We start with a comparison of two precondi-
tioners that have been examined intensively: Block Jacobi preconditioning Py = D,
where D is the tridiagonal part of A, and incomplete factorization preconditioning [17],
where

(26) Py = (L + D) b1 (U + D)

with L the strictly lower and U the strictly upper triangular part of A and D computed
such that

(27 diag (PrLy) = diag (A).

It is trivial to see that for the matrices under consideration the nonzero pattern
of the LU factors of Py is a proper subset of the nonzero pattern of the factors of
Prry. It can be proven that in this case the ILU preconditioner is superior to the
Jacobi preconditioner in the sense that if A= P; — Ry and A = Prry — Rrrv, then

(28) ¢ (PrryRiv) < p(P7 R)

where p denotes the spectral radius. Thus, a stationary iterative method based on the
ILU splitting will converge at least as fast as a method based on a Jacobi splitting.
Accelerated methods (see §5) will be influenced in a similar way. On the other hand,
the arithmetic work for the Jacobi preconditioner compared with the ILU precondi-
tioner is smaller and involves only first order recurrences, which can be vectorized
more easily. Summarizing our experimental work, we state that the use of the Jacobi
preconditioner seems to be limited to low bias voltage applications, i.e., examples
where the diffusion term dominates in the current relations (4)—(6). For higher bias
voltages unpleasant numerical effects have been observed (especially with the Lanczos
methods), such as convergence stagnation or near breakdown in the Lanczos process
at the beginning of the iteration. Another disadvantage is the orientation sensitivity
due to the line elimination that forces the swapping of the matrix and vector elements
to the most favorable direction, thus causing inconvenient computational overhead.
A really clear relationship for both the minority and majority carrier continuity equa-
tions and the direction of the main current flow that would facilitate a detection of
a favorable preconditioning orientation, however, could not be established. Therefore
we cannot recommend this type of preconditioner for general use.

An incomplete factorization preconditioner of alternating direction type, Pr, with
tridiagonal matrix factors, has been proposed in [5]. The basic idea is to use tridi-
agonal factors that lend themselves more to parallelization, rather than triangular
factors as with ILU, at the same time maintaining the ILU sparsity pattern. For a
seven-point stencil such a factorization would read

(29) Pr =T\D7'T,D7'T3,

298 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

where D is the main diagonal of A, and the T;, i = 1,2, 3, are tridiagonal matrices
such that

(30) Ti+T+T3=A+2D.

The elements in the factors of Pr are altogether equal to the corresponding el-
ements in A, hence there is no need to compute diagonal pivots D as with ILU.
However, there are more error terms outside the nonzero pattern in Pr; therefore
it is no surprise that the iteration count in the iterative solver is higher compared
with the ILU preconditioner. Computing y = Pr ¢ involves the backsolves of the LU
factors of three tridiagonal matrices. Since each tridiagonal matrix consists itself of
many independent tridiagonal systems this work can be parallelized easily (e.g., by
the partitioning method, cyclic reduction, etc.).

Let NX, NY, and NZ denote the number of gridlines in the respective directions.
The inversion of T}, which is assumed to contain the innermost diagonals of A, consists
of NY - NZ independent tasks and has stride NX. T3, which is assumed to contain
the outermost diagonals of A, has NX - NY independent tasks and stride 1. For T
the situation is different because the stride is constant for NZ data sets only. The
authors in [5] have reported that one preconditioning step with Pr can be performed
up to three times as fast as one step in the hyperplane-ILU preconditioner on vector-
supercomputers. Our numerical experiments, however, indicate that the convergence
decrease with respect to ILU(0) is often larger than three even for simple examples.
We refrained from an implementation on a supercomputer.

The most commonly used and probably most efficient preconditioner, at least
on scalar computers, is incomplete LU factorization with allowable fill-in denoted by
ILU(k), see, e.g., [2], [4], {12]. The index k denotes a controllable sparsity pattern along
the matrix diagonals, k = 0 denoting no fill-in, k = 1 denoting fill-in caused by the
original nonzero pattern but no further, and so on. As expected, a higher degree of fill-
in reduces the iteration count. However, the number of operations for the factorization
and for each iteration as well as the memory requirements increase considerably. For
example, the ILU(1) preconditioner needs four extra diagonals within the original
seven-diagonal nonzero pattern. For the fill-in ILU preconditioners we are not aware
of a comparably efficient implementation to compute the preconditioned matrix vector
multiply as proposed by Eisenstat for the ILU(0) [7], [29].

The two ILU(0) factorization variants under consideration are split ILU

(1) Ae=DV2(D+ L) a(b+ v) " Da =DV (D + L) b=b
@ s=b~(D+ v)
and left ILU

~

(33) Asz(D+U)_1D(I~)+L)—1Aa:=(D+U) D(D—i—L)_leb.

The preconditioned matrix-vector multiply Al,zﬁ can be simplified in the following
manner. For the split ILU(0) one obtains, after having scaled the matrix symmetri-
cally by D,

(34) A, = D™V2AD~Y? = diag (As) + Ls + U,

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS

TABLE 5

Hyperplane-ILU(k) on vectorcomputers.

299

VP-200 Cray-2 Alliant FX40
k[B | Speedup | MFlop | B | Speedup | MFlop [[B | Speedup MFlop
04 13.75 096 14 4.30 27 212 1.34 1.8
118 12.12 96 26 4.76 30 327 1.51 2.3
28 12.62 128 30 5.93 34 410 1.64 2.5
(35) Ap= [t‘ +(I+ L) (p— (21 — diag (As)) t‘)]
with
(36) t=T+U)""p,

and for the left ILU(0) together with left scaling

(37) Aop= (I +U) " [p+ (I + L) (diag (A) ~ I +U)5|
In our implementation the split ILU(0) requires two additional scratch vectors and
N square-roots, whereas the left ILU(0) requires no extra storage but a triangular
matrix vector multiply.

Computing the diagonal pivots of the incomplete factorization such that Py — A

‘has zero column sums (or row sums in the symmetric case) leads to modified incom-
plete factorization-type preconditioners (MILU) originated by [9]. A modification
factor a in the interval [0,1] is usually introduced to smoothly sweep between pure
ILU and full MILU factorization. Our results concerning the choice of such a modifi-
cation factor do not admit a clear statement. It seems that o = 1 always decreases the
performance with respect to o = 0 slightly. We found a number of device examples
where a choice of a = 0.5 yields a performance enhancement of about 10 percent to
30 percent concerning the iteration count. However, this gain is partly compensated
by the higher arithmetic work for the factorization.

Parallelizable variants of ILU such as the Neumann polynomial preconditioner [31]
were investigated as well. Numerical experiments carried out with the NSPCG (Non-
Symmetric Preconditioned Conjugate Gradient) code [18] identified none of them
competitive with ILU.

7. Implementation notes for parallel and vector computers. Vectorizing
and parallelizing the backsolves of triangular or tridiagonal systems is a good exercise
to explore computer architecture. We concentrate on vectorization techniques that are
unlikely to degrade the performance of the incomplete factorization preconditioners;
hence we do not consider multicolor orderings [20]. We further exclude computers
that permit only unity-stride vector operations such as the CYBER 205 and disregard
optimization measurements possibly required by memory bank and related conflicts.
We aim at a production code that is as generally applicable as possible. This can
be achieved by a reordering technique that does not change the preconditioner and
produces long vector lengths. The hyperplane method, which is a plane-diagonalwise
reordering, excellently reported in [2], [29], achieves this goal. The price for the rather
general implementation we are aiming at is indirect addressing by list vectors.

If the unknowns as well as the matrix elements are indexed by (i1,2,43) in the
three spatial directions, then hyperplanes Hy, (or “computational wavefronts”) are

300 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

defined by the set of all mesh points in the simulation domain that satisfy the equation
(38) i1+ (k+1) (12 +143) =m,

where m is constant. k denotes the level of fill-in. Obviously the computation of the
unknowns in Hy, can be carried out in parallel (and hence is a vector operation) since
they depend only on the unknowns in H,,_1 for the lower triangular or H,,; for the
upper triangular system, respectively.

For an implementation of the hyperplane method it is desirable to form a unique
vector of the unknowns in a particular H,,. This is achieved by initially computing
the addresses of the unknowns to be processed in an integer list vector LIST and
marking the beginning of each hyperplane by an additional list vector LPTR. The
vectorlengths increase from 1 to O(NX - NY - N2Z)?/3.

Special attention has to be paid to the meshpoints at the simulation boundary.
Addressing (nonexisting) elements at the boundary points can be prevented by proper
IF statements in the code or by computing the unknowns at the boundary outside
the loop. We decided to extend the array of the unknowns such that unallowed
addressing at the boundaries cannot happen. This is done by allocating an array of
size NX - NY - (NZ + 2) for the vector of the unknowns X (I) and filling the front
and back plane of this vector with zeros. Then the code for the solution of the lower
triangular system for k = 0 is surprisingly simple:

DO 1 L=2,NX+NY+NZ-2
DO 1 M=LPTR(L-1)+1,LPTR(L)
I=LIST(M)

1 X(I)=R(I)-B(I)*X(I-1)-D(I)*X(I-NX)-F(I)*X(I-NX*NY).

R denotes the right-hand side and B, D, F the strictly lower triangular part of A,.
The inner loop is vectorizable. The implementation for the upper triangular system
and the higher order recurrences (k = 1, 2) is straightforward. The approach sketched
above is used in a similar manner to vectorize the ILU factorization at the beginning
of the iteration.

Using the computational front approach, additional parallelism can be achieved
by twisting the incomplete factorization in one specific direction [29], [30]. Then the
factorization and the backsubstitutions can be performed concurrently from both ends
to the center and from the center to both ends. Since such a twisting splits the domains
into two equal halves, the mean hyperplane vectorlength in each half is decreased
unless the number of meshpoints in the direction of splitting is significantly larger
than the number of meshpoints in the remaining directions. It has been reported
in [29] that the twisted hyperplane approach tends to decrease the iteration count
in the linear solver, however, such an effect could not be verified with our type of
equations. We think that the twisted hyperplane method is not advantageous, at
least on a two-processor machine. To qualify the performance of the hyperplane-
ILU(k) implementation, tests have been carried out on a Fujitsu VP200, a Cray-2, an
Alliant FX40, and a Digital VAX 6260 computer. In Table 5 the CPU time for one
triangular backsubstitution (B) in milliseconds (ms), the overall achieved speedup
over the autovectorized code megaflop (MFlop) rate for this operation is given. This
test example uses a 40 x 40 x 40 grid and the measured numbers are mean values for
100 solves. For a larger number of meshpoints the values are even more favorable.

The values in Table 6 show the convergence speed improvement factors the level
1, 2 preconditioners must reach to beat the ILU(0) preconditioner. As can be seen,

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 301

TABLE 6
ILU-level 1,2 preconditioner break-even points.

k || VP-200 | Cray-2 | Alliant FX-40

1.56 1.4 1.44
2 2.15 2.0 1.08
TABLE 7

Parallel hyperplane ILU(0) on the VAX 6260.

Processors 1 2 3 4 5 6
MFlop 0.58 | 1.15 | 1.64 | 2.06 | 2.41 | 2.65
Speedup 1.00 | 1.98 | 2.82 | 3.54 | 4.14 | 4.56

these values tend to favour ILU(1), since practical values for the convergence speedups
against ILU(0) are about 2. Thus, if memory usage is not too restrictive, ILU(1) is
to be preferred to ILU(0).

In Table 7 the performance of ILU(0) on a Digital VAX 6260 with six scalar
processors is presented. The megaflop rates and the speedup over one processor for
the above test example are shown.

8. Numerical results. In this section the effectiveness of the preconditioned
iterative methods outlined in the previous chapters will be demonstrated. We chose
two simulations of silicon MOS-transistors. The finite-difference grids of both simu-
lations are comparatively small, thus the “true” solution Z of the linear systems were
obtained by a sparse direct solver and the 2-norm of the relative solution error

(39) en = 11z — Zail

was evaluated. A (heuristic) error threshold of (= 107 for e, was found satisfactory
in practical simulations. The computations with the CG and the SCG were performed
with quad precision, the CGS and GMRES(5) iterations in double precision. These
tests were carried out on a Digital VAX 8800, the precision of 1.0 is 1.387 - 1017
for double precision and 9.629 - 1073% for quad precision arithmetic. All data pre-
sented in the following have been extracted from version 5 of the device simulator
MINIMOS [25].

Example 1 is a moderately nonplanar N-channel MOSFET with a channel length
of 1.5 microns. The gate voltage is U, = 0.5 Volts, the drain voltage is Uy = 1.0
Volt, all other terminal voltages are zero. The finite-difference grid is built self-
adaptively and is small due to the low biasing: 23 x 27 X 16 in z- (channel length), y-
(pointing into the substrate), and 2- (channel width) direction. Gummel’s decoupling
algorithm converges in five iterations. The terminal currents are small: 5.30 - 10~°
Amperes for the drain current (Ip), and —1.20 - 10723 Amperes for the bulk current
(Ig). Carrier temperatures are judiciously neglected in this simulation, hence the
nonsymmetric linear equations can conveniently be symmetrized and solved by the
classical CG algorithm. The convergence of CG is compared with the symmetrized
variant of the CG algorithm (SCG) and the (CGS) method. ILU(0) and ILU(1) are
used as preconditioners. The CG algorithm provides cheap estimates of the extremal
eigenvalues of the preconditioned matrix and hence for the spectral condition number
K= Amax/ Amin-

302 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 8
Ezample 1 : Majority carrier continuity equation.

ILU(0) k=35 ILU(1) k=10
N || I-CG | I.SCG T I-CGS || I-CG T I-SCG T I-CGS
1 17 32 25 9 22 12
2 34 29 24 20 22 11
3 29 29 22 13 21 11
4 33 29 24 20 21 11
b 21 41 21 15 26 11
TABLE 9

Ezample 1 : Minorily carrier continuity equation.

ILU(0) « = 102 ILU(1) k=170
N [[T-CG | I-5CG [I-CGS [-CG] I-SCG T I-CGS
T 50 84 a8 a1 25 35
T 54 78 13 23 0 32
353 78 39 2 39 30
2 54 | o8)) 37 77
5 51 86 27 40 6 35

In Table 8 the iteration history of the majority carriers (holes) are listed, in
Table 9 the minorities (electrons) are listed. The spectral condition number estimate
& varies only marginally during the nonlinear iterations.

As can be seen from the tables, the iteration counts of the CG algorithm corre-
spond nicely to the bounds suggested by the spectral condition number. The CGS
algorithm converges twice as fast as the CG method for the best conditioned problem
(majorities with ILU(1)).

Convergence curves for the three iterative methods with the matrices from the
first nonlinear iteration are given in Figs. 1 and 2.

The second example is a P-channel MOSFET with bias voltages of U; = 0.0
Volt, U, = —4.0 Volts, Uy = —1.0 Volt, and U, = 2.0 Volts. The drain current is
I; = —6.3- 1075 Amperes and the bulk current is I, = —1.7 - 10~ Amperes. This
time electron and hole carrier temperatures are simulated self-consistently. First an
initial solution is computed, which satisfies the classical semiconductor equations for
constant carrier (i.e., ambient) temperature. This requires ten Gummel iterations.
Subsequently the solution of the semiconductor equations with the extended drift-
diffusion transport equations (see §2) is found by relaxation with respect to the local
carrier temperatures. This requires seven further nonlinear iterations.

Within this second relaxation scheme, the linear systems are no longer diagonally
similar to a symmetric matrix, hence CG and SCG are no longer applicable, but
CGS and GMRES are. The restarting frequency m for GMRES is chosen to be
5 and the results are in columns GMR(5). In Table 10 the iteration counts for
the carrier relaxation cycles are given. Convergence curves for the three iterative
methods with the matrices from the first nonlinear iteration (for locally varying carrier
temperatures) are given in Figs. 3 and 4, respectively.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 303

We report some timing results using ILU(0)-CGS. Both small examples execute
quickly on supercomputers: Less than 30 seconds on the Fujitsu VP and slightly
more than a minute on the Cray-2. This timing ratio is in good accordance with
the megaflop counts (see §7) of the forward and backsolves of the triangular systems

TABLE 10
FEzxzample 2 : Carrier temperature relaxation.

Majorities (electrons) Minorities (holes)
ILU(0) ILU(1) ILU(0) ILU(1)
N [T CGS T GMR(5) || CGS [GMR(5) || CGS | GMR(5) [[CGS [GMR(5).
1 45 375 34 90 87 250 40 175
2 37 315 15 105 87 270 42 170
3 34 460 16 160 81 235 41 195
4 30 350 15 120 79 290 35 195
0 39 370 15 135 81 270 38 150
6 33 405 15 65 77 285 37 160
7 41 330 25 125 81 270 36 175
llenll2

1.0e+00
1.0e-01
1.0e-02
1.0e-03
1.0e-04
1.0e-05
1.0e-06
1.0e-07

1.0e-08 -

35 40 n

F1G. 1. Convergence curves for the discrete majority continuity equation of Example 1.

on these machines. A computationally complex example requires substantially more
time, e.g., on the Fujitsu VP computer: A nonplanar N-channel MOSFET with U; =
5.0 Volts, Uy = 1.0 Volt, requires a grid of 55 x 48 x 30 points. The grid loop and the
computation of the initial solution requires 150 seconds. The subsequent nonlinear
solution pass takes 80 Gummel iterations and a total of 1500 CPU seconds. The linear
systems derived from the majority carrier continuity equation converge in roughly 70,
from the minority carrier continuity equation 140 iterations (mean values). The same
example computed on a fast scalar computer (NAS XL/80) takes approximately ten
times more CPU time. The total time, however, is then increased substantially by
references to secondary storage.

9. Conclusions. In this paper preconditioned iterative methods for the carrier
continuity equations in three-dimensional device simulators have been studied and
the performance of these algorithms on various high performance computing systems
has been evaluated.

304 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

lleqllz

1.0e+00
1.0e-01
1.0e-02
1.0e-03
1.0e-04
1.0e-05
1.0e-06
1.0e-07

1.0e-08 +— — A—tt—t—}
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 N

1\ CG(0)

FI1G. 2. Convergence curves for the discrete minority continuity equation of Example 1.

lleqllz

1.0e-01
1.0e-02
1.0e-03
1.0e-04 .
1.0e-05
1.0e-06

1.0e-07

1.08-08 +——+———+—+—+—+—4—+——+—+—+—+——+—+—3
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 n

F1G. 3. Convergence curves for the discrete majority continuity equation of Example 2.

||en||z

1.06-05 ‘
\
1.06-06 CGS(0) \ GMRES(1)

1.0e-07
CGSs(1)

25 50 75 100 125 150 175

1.0e-08 +
o

F1G. 4. Convergence curves for the discrete minority continuity equation of Ezample 2.

- ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 305

Among the iterative procedures we feel that the CGS method is the most ver-
satile. It avoids possible numerical problems with the symmetrization matrices and
is applicable to “real” nonsymmetric problems. Regarding convergence speed the
GMRES(5) algorithm is clearly exceeded.

More decisive than the iterative (acceleration) procedures is the choice of a robust
parallelizable preconditioner. We have investigated incomplete LU factorization of
levels 0-2 and we have shown that quite a high performance (exceeding 100 megaflops
on the Fujitsu VP200 computer) is reachable for the preconditioned matrix-vector
multiply.

Acknowledgments. The authors are indebted to Martin Schubert and Hans-
Peter Falkenburger from the Institute of Microelectronics, Stuttgart; Dr. Martin
Thurner from the Campus-based Engineering Center Vienna; and H. Dietrich, G.
Koessl, and H. Wiktorin from the Computer Services of Cooperate Research and De-
velopment, Siemens, Munich. The authors wish to thank the anonymous referees for
valuable suggestions.

REFERENCES

[1] U. AscHER, P. MARKOVICH, C. SCHMEISER, H. STEINRUCK, AND R. WEISS, Conditioning of the

steady state semiconductor device problem, SIAM J. Appl. Math., 49 (1989), pp. 165-185.

[2] C. C. AsHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization and SSOR pre-
conditioners, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 122-151.

[3] R. E. Bank, D. J. RosE, AND W. FICHTNER, Numerical methods for semiconductor device
simulation, IEEE ED-30 (1983), pp. 1031-1041.

[4] P. Concus, G. H. GOLUB, AND G. MEURANT, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220-252.

[5] S. Dot AND N. HARADA, Tridiagonal factorization algorithm: A preconditioner for nonsym-
metric system solving on vectorcomputers, J. Inform. Process., 11 (1987), pp. 38—-46.

[6] H. C. ELMAN, Y. SaaD, AND P. E. SAYLOR, A hybrid Chebyshev Krylov subspace algorithm
for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 7
(1986), pp. 840-855.

[7] S. C. EisENSTAT, Efficient implementation of a class of preconditioned conjugate gradient
methods, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 1-4.

[8] H. K. GUMMEL, A selfconsistent iterative scheme for one-dimensional steady state transistor
calculations, IEEE ED-11 (1964), pp. 455-465.

[9] I. GUSTAFSSON, A class of first order factorization methods, BIT, 18 (1978), pp. 142-156.

[10] M. H. GUTKNECHT, The unsymmetric Lanczos algorithms and their relations to Padé approz-
imations, continued fractions and the QD algorithm, in Proceedings of the Second Copper
Mountain Conference on Iterative Methods, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1990.

[11] L. H. HaGEMAN, F. T. LUk, AND D. M. YOUNG, On the equivalence of certain iterative methods,
SIAM J. Numer. Anal., 17 (1980), pp. 852-873.

[12] K. HANE, Supercomputing for process/device simulations, in Proc. Sixth Internat. NASECODE
Conference, J. J. H. Miller ed., Trinity College, Boole Press, Ltd., Dublin, Ireland, 1989,
pp. 11-21.

[13] W. HANSCH AND S. SELBERHERR, MINIMOS 3: A MOSFET simulator that includes energy
balance, IEEE ED-34 (1978), pp. 1074-1078.

[14] C. DEN HEUER, Preconditioned iterative methods for nonsymmetric linear systems, in Proc. Int.
Conf. on Simulation of Semiconductor Devices and Processes, Pineridge Press, Swansea,
U.K., 1984, pp. 267-285.

[15] T. KERKHOVEN, On the effectiveness of Gummel’s method, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 48-60.

[16] T. A. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307-327.

[17] H. MEUERINK AND H. VORST, An iterative solution method for linear systems of which the
coefficient matriz is a symmetric M-matriz, Math. Comp., 31 (1977), pp. 148-162.

306 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

18] T. C. OpPE, W. D. JOUBERT, AND D. R. KINCAID, NSPCG User’s Guide, Center of Numerical
Analysis, University of Texas, Austin, TX, 1984.

{19] S. J. PoLak, C. DEN HEIJER, W. H. SCHILDERS, AND P. MARKOVICH, Semiconductor device
modelling from the numerical point of view, Internat. J. Numer. Methods Engrg., 24 (1987),
pp. 763-838.

[20] E. L. POOLE AND J. M. ORTEGA, Multicolor ICCG methods for vector computers, SIAM J.
Numer. Anal., 24 (1987), pp. 1394-1418.

[21] C. S. RAFFERTY, M. R. PINTO, AND R. W. DUTTON, [terative Methods in Semiconductor
Device Simulation, IEEE ED-32 (1985), pp. 2018-2027.

[22] Y. SaaDp anD M. H. ScHuLTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856—-869.

{23] Y. SaaD, Krylov subspace methods on supercomputers, SIAM J. Sci. Stat. Comput., 10 (1989),
pp. 1200-1232.

[24] D. L. SCHARFETTER AND H. K. GUMMEL, Large-signal analysis of a silicon read diode oscilla-
tor., IEEE ED-16 (1969), pp. 64-77.

[25] S. SELBERHERR, MINIMOS 5 Users’s Guide, Institute for Microelectronics, Technical Univer-
sity of Vienna, Vienna, Austria, 1990.

[26] P. SONNEVELD, CGS, A fast Lanczos-type solver for nonsymmetric systems, SIAM J. Sci.
Statist. Comput., 10 (1989}, pp. 36-52.

[27] M. THURNER P. LINDORFER AND S. SELBERHERR, Numerical treatment of nonrectangular field-
ozide for 3D MOSFET simulation, IEEE CAD-9 (1990), pp. 1189-1197.

{28] T. ToYABE, H. Masupa, Y. Aokl, H. SHUkURI, T. HAGIWARA, Three-dimensional device
simulator CADDETH with highly convergent matriz solution algorithms, IEEE ED-32
(1985), pp. 2038-2044.

[29] H. VorsT, High performance preconditioning, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1174-1185.

[30] , Large tridiagonal and block tridiagonal linear systems on vector and parallel computers,
Paraliel Comput., 5 (1987), pp. 45-54.
[31] , A vectorizable variant of some ICCG methods, SIAM J. Sci. Statist. Comput., 3 (1982),

pp. 350-356.
[32] A. YosHi, M. ToMIZAWA, AND K. YOKOYAMA, Investigation of numerical algorithms in semi-
conductor device simulation, Solid-State Electronics, 30 (1987), pp. 913-820.

