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‘Calculation of Contact Currents in Device Simulation

Gerd Nanz, Peter Dickinger, and Siegfried Selberherr, Senior Member, IEEE

Abstract—We present an accurate new method for the cal-
culation of the contact currents in a device simulation program
which is applicable to arbitrarily shaped device geometries. The
method is based on the evaluation of a volume integral of the
calculated current densities over the whole device area with a
suitably chosen weight function. Different types of weight func-
tions are discussed and compared with the commonly used line
integral along the contact. The results are illustrated by three
examples: an I’L memory cell, an MOS transistor, and a resis-
tor with a reverse-biased diode.

I. INTRODUCTION

ERMINAL current calculation is a difficult postpro-

cessing step in device simulation because the results
are very sensitive to small changes in the solution and the
space grid. The conventional method of integrating the
current densities along the contact or a closed line around
the contact often gives wrong values because there are not
enough grid points to guarantee an accurate calculation of
the contact currents. Furthermore the singularities of the
derivatives of the basic variables at the ends of the contact
with the change of the boundary conditions can introduce
significant cancellation errors [1]. The numerical conser-
vation of terminal currents indicates the accuracy of the
solution obtained from the simulation [2]. For some ap-
plications the leading digits of the results obtained by the
evaluation of the line integral are more or less random and
the results indicate only the order of magnitude of the cur-
rents. We have derived a new method, which is more ac-
curate. The line integral has been transformed into a
weighted volume integral, thus taking into account the
current densities at all grid points. By this method the
quality of the current conservation in the device is a mea-
sure for the accuracy of the solution over the whole device
area.

In Section II our method will be explained for station-
ary simulations, and the reason why some types of weight
functions will not work will be pointed out. The results
are illustrated by an MOS transistor and a resistor with a
reverse-biased diode. In Section III the weights for the
displacement current are briefly discussed, showing the
results for a transient simulation of a dynamic RAM cell.
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II. CaLcuLATION OF CURRENTS

In this Section various types of weight functions for our
method are discussed: the line integral as a special case
of our method; weight functions based on the solution of
a set of Laplace equations; and weight functions based on
the solution of a set of continuity-equation-like partial dif-
ferential equations with different boundary conditions.

A. Method

-

The total current density, J,,, in a device consists of
three parts:

Joo=Jd,+ T, + I
Here J, . and J » denote the particle current densities of
electrons and holes, respectively, and

K]
€ grad ¢
is the displacement current density ( being the electro-
static potential, e the permittivity constant and 7 the time
variable). The terminal current, /;, at the ith contact is
calculated by

‘_iD:_

Ii = § w; - '7[01 dS, (1)
a0

where dQ denotes the outer boundary of the semiconduc-
tor area, 2. This means that a line integral around the ith
contact has to be evaluated with a suitably chosen weight
function, w;.

Transforming (1) from a line integral along 0Q into a
volume integral over Q and inserting the right-hand side
of the continuity equations, we obtain, by using different
weight functions for each type of current,

I, = (§ L 7totd5
a0

= L [(grad) w,) « J, + (grad wy) - 7p

+ (grad wp) - 7D] dA

on ap
. . —V—g-w -(R+=X
* Sn [q Wn <R * ar> 4" Yo < az>

— € wp, * div <% grad \//)} dA. )

0278-0070/92$03.00 © 1992 IEEE



NANZ et al.: CALCULATION OF CONTACT CURRENTS

129

X
log (C
Contact 0V Contact 1V © 6.5 . 1.5 18 g ( )
0pm R | /
y S—
] N
N
- ‘\
T,
10pm 1
Opm Contact 0V 20pm

Fig. 1. Geometry and doping of resistor with diode.

Here R denotes the net generation/recombination and g
the elementary charge. Note that in the stationary case (2)
shrinks to the simple formula

I = S [(grad w,) - *_in + (grad w[li)
Q
. '_ip +qg-R-(w, — Wp[.)] dA.

B. Choice of the Weight Functions

A problem arises in the choice of the smooth weight
function, w;, as required e.g., by Mock [2]. For the line
integral the weight functions must only be specified on
99. Usually w; is assumed to be 1 at the ith contact, O at
all other contacts, and arbitrary otherwise. This means
that the line integral is only a special case of the volume
integral with a special type of weight function.

The weight functions for the volume integral have to
be chosen more subtly because the method must be ap-
plicable to arbitrarily shaped device geometries. First, it
is straightforward to define the w; independent of the so-
lution (Y, n, p). Then the w; have to be calculated only
once for each space grid, thus saving a significant amount
of CPU time. Taking w; as the solution of

div grad w; = 0 3)

with the boundary conditions (cf. weight function for line
integral)

w; =1 at the ith contact
w; = 0 at all other contacts

aW,' . . .

? =0 otherwise (especially at interfaces)
n

shows that these weight functions do not provide satisfac-
tory results (8 /07 derivative with respect to the outer nor-
mal). The reason is shown by the following example of
the 20 um by 10 um resistor with a reverse-biased diode,
given in Fig. 1. ,

The line integral with an integration path parallel to the
x axis should give the current of the reverse-biased diode
independent of the y coordinate. But this is only true for
the p-doped region with small current densities. In the
other part of the device, the values of the line integral
increase with the same order of magnitude as the carrier
concentrations. Cross sections of the electron concen-
tration and the current density in the y direction at
x = 10 pm are given in Figs. 2 and 3, respectively. The
values of thé line integrals are given in Table I. This effect
is based on the round-off errors and the cancellation error
in the calculation of the current densities from the (ma-
jority) carrier concentrations, which usually vary over
more than 15 orders of magnitude [3]. Therefore a differ-
ent type of weight function has to be used for the calcu-
lation of terminal currents. This function must depend on
the physical properties of the device.

Again w; is the solution of a partial differential equa-
tion, because only by such a rigorous approach the appli-
cability to arbitrary device structures is guaranteed. The
partial differential equation is of the form

div (f(x, y) grad wp) = O,

where f(x, y) denotes a suitably chosen smooth function
which depends on certain physical properties of the de-
vice. The boundary conditions are the same as for (3). It
should be mentioned that formally (3) is a special case of
this approach with f(x, y) = 1, but from the numerical
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Fig. 2. Electron concentration in resistor with diode (x = 10 pm).
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Fig. 3. Current density in resistor with diode (x = 10 pm).

point of view the discretization schemes can be com-
pletely different.

First, f(x, y) = C(x, ¥)/niy, is chosen, which means
the active doping concentration, C(x, y), divided by the
intrinsic carrier concentration, n;,,,. This method fails be-
cause in cases of high current the current densities be-
come almost independent of the doping profile. Espe-
cially for the simulation of breakdown phenomena this
will result in wrong contact currents. For our reverse-
biased diode the currents are overestimated by a factor of
about 10°,

The choice f(x, ) = ey /nin for the electron current
and f (x, y) = pcq/ Niny for the hole current, where n, and

TABLE I
Electron Electron

y Coordinate Concentration Current Density Line Integral
[pm] [cm ] [A/cm’] [A/cm]
0.0000 8.0 - 10° 45 - 107"
0.3125 8.9 -107%
0.6250 4.0 - 10? 45-107"
0.9375 6.1-107"
1.2500 1.7 - 10! 45 - 107"
1.8750 6.1-107"
2.5000 4.6 - 10' 1.8 - 10°
3.7500 9.8-1072
5.0000 5.0 - 10% 7.7 - 107"
6.2500 3.0-107"
7.5000 5.0 - 10% 1.3-107"
8.1250 4.0-107"
8.7500 5.0 - 10'¢ 7.7 - 107!
9.0625 5.0-107"
9.3750 5.0 - 10'
9.6875 -57-107°
10.0000 5.0 - 10"

P.n denote the carrier concentrations in the device under
the assumption of space charge neutrality and thermal
equilibrium, is nearly equivalent to the previous choice
(doping profile). For our reverse-biased diode and cur-
rents are over estimated by a factor of about 10°.

The advantage of these two weight functions would
have been that they have to be calculated only once for
each grid. Because of the reported reasons they are not
applicable to a general device simulation program. There-
fore the weight functions must really depend on the ac-
tually calculated solution.

For the first approach, f (x, y) = (n + p) /n, has been
chosen (n the electron concentration, p the hole concen-
tration). The results again are not satisfactory because for
very large gradients of n + p, leading to sharp valleys,
the weight function has a “‘strange’’ shape. Furthermore
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the substrate currents in an MOS transistor may be over-
estimated by a factor of about 10°.

The analysis of the numerical effects shows that the
weight function must have the following property: In re-
gions with large carrier concentrations the gradient of the
weight function should be small. This means that the elec-
tron current and the hole current have to be treated sepa-
rately, in order to provide the best possible accuracy for
arbitrary types of devices. We solve for the electron cur-
rent:

div <i grad w,,,.> =0 @

intr

and for the hole current:

div <L grad w[,i>
Rintr

For the sake of simplicity the intrinsic carrier concentra-
tion, n;y,, is assumed to be constant over the whole device
area. The discretization of (4) and (5) can be done in an
analogous way as for the continuity equations [4].

This approach to contact current calculation provides a
priori numerical current conservation of the order of the
discretization error for the solution of the linear partial
differential equations (4) and (5), which in most cases is
of the order of the machine accuracy.

In order to make the numerical current conservation a
real criterion for the accuracy of the solution of the semi-
conductor equations we slightly change the boundary con-
ditions of (4) and (5), e.g.

1
e

®)

Wy, = 1.1 at the ith contact
Wy.p = —0.1  at all other contacts
awﬂf pi H
a_,‘ = 0.0  otherwise.
7

The solution of this system has values between —0.1 and
1.1. Cutting the solution at 0 and 1, we obtain a function,
w, which is steady but not differentiable, showing pla-
teaus around each contact. Since (2) requires a differen-
tiable weight function, we smooth w by a function, g,
with the following properties [5]:

g0) =0
g) =1
g'0) =0
g'(l) = 0.

For this the polynomial of third order,
g) = =2 - x* + 3 - &%,

provides very good results. A further advantage of these
‘“‘smoothened’” functions, g(W(x, y)), can be observed:
Because of the plateaus around each contact, the gradients
of the weight functions vanish close to contacts, thus

131

20
%

’9
z

1”2
H

LOGINET DORPING)
78

Fig. 4. Doping profile of MOS transistor.

avoiding evaluation of the current densities at the singular
endpoints of the contacts.

The weights for the displacement current are discussed
in Section III.

C. Example: MOS Transistor

In order to illustrate the results of our investigation, we
present the plots of the different weight functions for the
contacts of a conventional MOS transistor in the oN con-
dition (VDrain =5 Va VSubstrate =0 Vv, VSource =0 v,
Voae = 1V, Vineshoa = 0.4 V). The simulations have
been performed with our fully two-dimensional transient
device simulator BAMBI, which solves the basic semi-
conductor equations on a finite-boxes grid in a totally self-
consistent way.

In Fig. 4 the doping profile of our MOS transistor is
given. Figs. 5, 6, and 7 present the electron concentration
n, the hole concentration p, and the sum of electrons and
holes, n + p, respectively.

The following plots present the different types of weight
functions for the substrate contact of the MOS transistor.
The weight of Fig. 8 calculated for f(x, y) = 1 shows
high gradients. These gradients cause incorrect results of
the substrate current by a factor of about 107 because the
weight function does not account for the special operating
condition and the related cancellation errors. Fig. 9 is a
plot of the weight function for f(x, y) = C(x, y) /R
Again the weight function cannot account for the special
operation condition resulting in high gradients toward the
substrate contact.

In Fig. 10 the weight for f(x, y) = (n + p)/Ainy 18
given. The function w; has a ‘‘strange’’ shape which is
even grid-dependent, showing very sharp edges. Parts (a)
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(e .
122) . Fig. 8. Weight of substrate contact for f(x, y) = 1 (Laplace equation).
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Fig. 6. Hole concentration of MOS transistor (Vpuia = 5 V. Vsubsirae
=0V, Vsouree = OV, Vgue = 1 V).

to the singularities almost the same numerical conserva-

tion of currents can be achieved if the grid is sufficiently

“ and (b) of Fig. 11 provide the weights calculated from (4)  accurate. The results obtained by BAMBI agree with the

and (5) with the contact boundary conditions —0.1 and  results computed by MINIMOS, e.g. [6], where a heuris-

1.1. The plateaus around the contacts can be clearly seen.  tic approach is used to synthesize suitable weight func-
By avoiding the evaluation of the current densities close  tions for MOS devices.
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Weight Bulk

Fig. 9. Weight of substrate contact for f(x, y) = C(X, ¥)/Miy, (doping
profile).

Weight Bulk 4

Fig. 10. Weight of substrate contact for f(x, y) = (n + p)/ny, (solution).

III. TRANSIENT SIMULATIONS

For time-dependent simulations, the displacement cur-
rent must also be considered. Since this current depends
only on the electrostatic potential, which is assumed to
have a linear variation between two neighboring grid
points, it is sufficient to use a weight function calculated
from the Laplace equation (3). These weight functions

must be computed only once for each space grid on the
whole device area, including dielectric regions.

In order to illustrate the superiority of our method we
have performed a comparison of (1) and (2) for the be-
havior of a dynamic I°’L. memory cell [7]. In Fig. 12 the
geometry of our dynamic RAM cell can be seen. The word
line, W, is connected to the p-type injector; the row se-
lect line is the collector terminal of the npn transistor. The
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Hole Weight Bulk

Fig. 11. (a) Weight for electron current of substrate contact for f(x, y) = n/n, (solution, smooth). (b) Weight for hole
current of substrate contact for f(x, y) = p/n,, (solution, smooth).
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Fig. 12. Geometry and doping of I’L memory cell.

heavily doped buried n* region represents the column se-
lect line. The logic is determined by the presence or ab-
sence of charge stored in the emitter junction depletion
layer of the npn device. The following operations have
been performed: write 1/read (0 ns-60 ns), write O
(70 ns-120 ns), and read (140 ns-250 ns).

In Fig. 13 the transient contact currents computed ac-
cording to formula (1) (Fig. 13(a)) and according to our
new method with (4) and (5) (Fig. 13(b)), respectively,
are shown. There is not only a quantitative difference after
about 80 ns but also a qualitative. This results from an
insufficient number of grid points near the bulk contact

and the word line, W, for the evaluation of the line in-
tegral. Furthermore for formula (1) the numerical current
conservation is very poor, giving an algebraic sum of all
currents which is higher than the smallest contact current
in the device.

IV. CoNcLUsION

We have presented an accurate new method for calcu-
lating contact currents in a device simulation program.
Owing to the special choice of boundary conditions for
the weight function in the evaluation of a volume integral,
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Fig. 13. (a) Time/current diagram evaluating line integral (1). (b) Time/current diagram evaluating volume integral (2) with

weight functions calculated from (4), (5), and (3) (for displacement current)..

numerical trouble caused by singularities is avoided. Var-
ious types of weight functions have been discussed,
showing the advantages and the disadvantages of each.
With our new method, the current densities over the whole
device area are taken into account, thus making the result

independent of the definition of an integration path in the
space grid. In this way, round-off errors are avoided as
far as possible and the quality of the conservation of cur-
rents in the device becomes a real measure of the accuracy
of the solution.
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