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An advanced model for self-heating effects in power semiconductor devices 
is presented. Based on irreversible thermodynamics it is valid in both 
the stationary and transient regimes. Numerical methods to solve the 
governing equations for the coupled transport of charge carriers and heat 
are described. Finally results obtained in simulating thermal runaway in 
a GTO-thyristor and latch-up in an IGT are discussed. 

1. INTRODUCTION 

Device simulators are widely used to optimize semiconductor devices and 
to develope new technologies. To allow accurate computation of device 
characteristics and analysis of parasitic effects in modern power semi­
conductor devices new simulation tools are needed. In order to account 
properly for the electrotherma.l nature of such phenomena as thermal run­
away, current crowding, avalanche injection, secondary breakdown and 
latch-up, they must be based on transport models for the simultaneous 
:O.ow of charge carriers and heat. From a numerical point of view the sim­
ulation of transient self-heating effects in semiconductor devices requires 
the self-consistent solution of Poisson's equation, the continuity equations 
for electrons and holes and the heat flow equation in space and time. 

2. THE MATHEMATICAL MODEL 

To derive a closed set of equations for the simultaneous flow of charge 
carriers and heat in a semiconductor device, principles of irreversible hy­
drothermodynamics are utilized [2], [5], [SJ. The idea is to explicitly set up 
the entropy balance equation for the semiconductor, to identify thermody-
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namic currents and conjugated forces and to formulate the phenomenolog­
ical equations. To obtain governing equations describing mutually coupled 
transport phenomena, transport parameters have to be defined and spe­
cific state functions have to be evaluated [2], [5], [8]. 

Provided that the concept of local equilibrium is valid, the Gibbs funda­
mental equation for the semiconductor takes the form: 

au 8s 8n ap 
at = T· at - q· "'". at + q· <pp· at (l) 

u denotes the internal energy per unit volume, s the entropy density. n 
means the electron, p the hole concentration. T is the temperature, 'Pn, 

<pp are the quasi-Fermi levels for electrons and holes, respectively. 

The Gibbs equation (1) interrelates balances of electrodynamic and ther­
modynamic quantities. Continuity equations for charge carriers together 
with Poisson's equations have to be derived irom Maxwell's equations [9]. 
The conservation equation for the energy density u represents the first ax­
iom of thermodynamics in terms of vector analysis for continuous systems. 
Momentum balance equations are not considered for reasons of simplicity. 
The actual form of the entropy balance equation is obtained by substi­
tution of continuity equations for the carrier concentrations n, p and the 
energy density u into the Gibbs fundamental equation (1), 

~; + div ( ~ · J~) = 1: · ( -;2 ·grad T) + 1: · (-~·grad 'Pn) + 

1~ : (-~·grad<pp) +R· (~·q·(<pp-'Pn)) (2) 

where 
- - -

lu - 'Pn· ln - <pp· lp (3) 

is a definition of the heat :£iux 1:. 1: denotes the electron, 1: the hole 
current density, respectively. 

The right-hand side of (2) is the local production of entropy. Due to the 
first postulate of irreversible thermodynamics it can be interpreted as the 
sum of products of thermodynamic currents and conjugated forces. Fur­
thermore, exploiting the second postulate of irreversible thermodynamics, 
that each flux linearly depends on all thermodynamic forces [2], the so­
called phenomenological equations result: 

0) ( -~grad 'Pn ) 0 -~grad <pp 

0 · -i:zgradT 
1 ~· q· ('Pp - 'Pn) 

0 

(4) 
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Due to Onsager's symmetric reciprocal relations, known as the third pos­
tulate of irreversible thermodynamics, the number of independent kinetic 
coefficients in equation ( 4) can be reduced. Thus only conductivities u and 
thermoelectric powers P for electrons n and holes p, respectively, have to 
be defined, together with the thermal conductivity K.. The resulting cur­
rent relations (5) - (7) for the thermoelectric transport in a semiconductor 
include both limiting cases, (i) flow of electric charge due to the imposition 
of the quasi-Fermi potential, and (ii) flow of heat caused by a temperature 
gradient: 

J: Un· (-grad 'Pn + Pn ·grad T) (5) 

J: Up· (-grad 'Pp - Pp· grad T) (6) 
- - -Jq -T· Pn· Jn+ T· Pp· JP - K.· grad T (7) 

With the heat :flux (7) the entropy balance equation (2) can be transformed 
into the heat :flow equation (8): 

8s - -
T·-+div(-T·P. ·1 +T·P.·1 -K.·gradT)= 8t n n p p 

-J:. grad 'Pn - J:. grad C{)p + q· R· (cpp - 'Pn) (8) 

The expansion of the divergence operator and some algebraic operations 
yield: 

- -8s . Jn· Jn JP. JP 
T · - + div (-tt· grad T) = + -- + 

8t Un Up 

J:. (grad (T· Pn) - Pn· grad T) - J:. (grad (T· Pp) - Pp· grad T) + 
q· R( cpp - 'Pn) + 

T· Pn ·div J: - T· P11 • div J: (9) 

The right-hand side of equation (9) is the heat generation. It can be shown 
that (9) implies Thomson's laws. 

To proceed the entropy has to be regarded as a state function of the tem­
perature and the carrier concentrations s = s(T, n, p ). Furthermore, the 
quasi-Fermi levels are considered as state functions of the electrostatic 
potential .,P, the carrier concentrations n, p, the temperature T, and the 
effective intrinsic carrier concentration nie to fit heavy doping effects [9]. 
Using Maxwell's relations [2], [10] and Boltzmann statistics following sys­
tem of nonlinear, coupled, partial differential equations results: 

div grad 1/J = g_ (n - p- C) (10) 
E: 
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div q· µn· n· (e - kT grad (In nie) + kT .!.grad n + P~11 grad r) -
q q n 

8n 
q. at + q. R (11) 

div q· µ · p· (e + kT grad (In nie) - kT !gradp - pelf grad r) = 
p q q p p 

8p 
-q · at - q · R (12) 

8T J~ J; ( kT 1 8nie) C·-+div(-1egradT)=-+-+q·R 2·T·--- + 
8t Un Up q nie 8T 

- - eff · - eff · -JnTgrad Pn - J'PTgrad Pp+ T Pn div Jn - T PP div JP (13) 

(~ln _:_ - kT _2_ Onie) +Pr:= p;tt (14) 
q nie q nie 8T 

Equation (10) is the well known Poisson equation. 'ljJ denotes the electro­
static potential, C the total net concentration of all ionized impurities. 
q is the elementary charge, ~ the permittivity. Equations (11), (12) are 
continuity equations for electrons n and holes p including the so-called 
extended-drift extended-diffusion approximation of the current relations. 
That is, an effective electric field is introduced because of the possible 
dependence of the intrinsic concentration on position, and the diffusion 
not only accounts for concentration gradients but also for temperature 
gradients. µ denotes the mobility, k the Boltzmann constant. E is the 
electric field. P denotes the thermoelectric power, c means 'carrier' and 
may take the value n or p for· elec~rons and holes, respectively. Equation 
(13) is the heatfl.ow equation. The right-hand side represents the heat gen­
eration. Four contributions to the heat generation can be distinguished: 
Joule heat, recombination h.eat, Thomson heat and carrier source heat. 
Equation (14) is a definition: of the effective thermoelectric power P:ff. 

The governing equations depend non-linearly on the lattice temperature. 
If lattice heating is significant, the thermal system becomes tightly cou­
pled to the electrical system. Recombination, mobility, thermoelectric 
power and the effective intrinsic carrier density nie depend on tempera­
ture [9], while the temperature gradient acts as a driving force and the 
heat generation is a function of the electrical variables. 

Auger recombination and carrier-carrier scattering - known as limiting 
physical effects for high injection conditions in power semiconductor de­
vices [9] - have been taken into account. As heavy doping effects limit 
thyristor operation, the effective intrinsic carrier concentration is com-



puted using [9]. One obtains the relation: 

(
9.025· 10-5 ~ + 6.10· 10-7 ~- (~)) 

+nie" 2· k· T 

(
3 (l.4·10-4 k·m~+4.5·10-4 k·m;)) 

+nie" -·mo· 
4 m··m· n p 
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(15) 

Note also that the dependence of the bandgap and the effective masses 
on temperature is accounted for in equation (15). Following [3], [6] the 
effective thermoelectric powe.1.li P~ff, p;tt can be expressed as functions 
of contributions to the overal mobility: 

The index c denotes the carrier type. µL is the mobility due to lattice 
scattering, µ1 due to impurity scattering. 

For the electrical subsystem, either Dirichlet boundaries at ohmic contacts 
or N euma.nn boundaries a.re assumed. Mixed boundary conditions for the 
heat flow equation a.re mandatory in order to be able to model realistic 
imperfect cooling conditions. This is of special importance for transient 
electrothermal simulations, as the time constant for self-heating increases 
with increasing external thermal resistance. 

3. SOLUTION METHODS 

The simulation of the coupled transport of heat and charge carriers re­
quires the seH-consistent solution of Poisson's equation (10), the conti­
nuity equations for electrons n (11) and holes p (12) and the heat flow 
equation (13) in space and time. Spatial discretization is done using finite 
boxes [4], a. generalization of finite differences, while time is discretized 
with the backward Euler method. 
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The solution of the semiconductor equations typically exhibits a smooth 
behavior in neutral regions of the device domain whereas in space charge 
region! it varies rapidly. Thus an adaptive, strongly nonuniform mesh 
is mandatory. Using finite boxes the number of grid points is drastically 
reduced compared to classical finite differences since the grid can be refined 
in regions where the solution changes rapidly, e.g. in space charge regions. 
Furthermore non-rectangular device geometries can be resolved with finite 
boxes. During transient simulations the grid is adapted to the actual 
solution after every timestep. Thus the grid generator provides a 'moving 
grid'. 

In a mesh consisting of finite boxes meshlines may end within the simula­
tion area. At the termination point of a meshline a neighbour is missing. 
In order to obtain a difference equation of the same order as at a regular 
inner point the first derivatives have to be used for linear interpolation 
(4], (9), resulting in a 6-point instead of a 5-point scheme for the difference 
approximation of the Laplace operator. 

Specific difficulties are involved in the discretization of the current re­
lations. As the carrier concentrations exhibit in general an exponential 
behavior between neighbouring mesh points depending upon the electro­
static potential, the estimation of the current relations at half points is a 
tricky task. Straight forward discretization turns out to be numerically 
unstable. Usually the midinterval values of the quantities Jn:, Jny are 
computed by solving an ordinary differential equation which has to be 
modified for nonuniform temperature simulations: 

On :: ( tP - W• le;) 1 
~ - k ·T • n = lc ·T. Jnzli+!J {18) 
U:l - IL•- 2 

q r-n q 

w is a weighting factor implying the effective thermoelectric power. The 
potential t/J in equation (18) conta.ins the contribution due to bandgap 
narrowing. The solution to equation (18) can be calculated in a stra.ight­
forward manner and reads: 

Jn µn ~- (Ti+i,; -Ti,;) ( B( ) B( )) 
. 1 . = -· . n· .. - ZB - n ·+l .. ZB (19) 
i+2,J h· ln Ti+1.; '•' ' .J 

' Ti,; 

B denotes the Bernoulli function defined as follows: 

(20) 

ZB is the argument of the Bernoulli function: 

XB = ( ( 'r/Ji+l,j - tPi,;) - W· ;. (Ti+l,j - Ti,;)· ln Ti+l,j) (21) 
!!. {T•+1 · - T .. ·) T.· · 
q ' ,, '·' '·' 
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The electrotherma.l problem is solved selfconsistently following a decou­
pled approach. ·At each time step the electrical subsystem of equations 
is solved first, the lattice temperature being regarded as an independent 
variable. Then the temperature distribution is updated by solving the 
heat flow equation. Newton's method a.nd LU-decomposition are used to 
solve the electrical and thermal subsystems alternately until convergence 
is attained. 

. 
U sua.lly the characteristic time for the electrical and the thermal subsys-
tem differ by several orders of magnitude. Thus a device is in steady state 
from the electrical point of view, whereas thermally it is still in transi­
tion. Therefore the electrical transient can be neglected with respect to 
the thermal transient, an assumption which is well satisfied in practice. 

4. APPLICATIONS AND RESULTS 

The first relevant application investigated is thermal runaway in a GTO­
thyristor. Thermal runaway is a phenomenon of electrotherma.l interac­
tion where the dissipation of electrical energy causes a temperature rise 
over the entire area of the device, resulting in increased current flow and 
further dissipation, until unrecoverable device failure or burn out of the 
device occur. The heat sink temperature is 300 K. Double sided cooling 
is assumed. 

I 
I 

I 
I 

I 

I 
I 

---- ---------------

---- T :nax 
T=min 

Fig. 1: time evolution of maximum and minimum tempera­
ture when the beat sink thermal. conductance is 50 
W cm-2 K-1 and t.he heat sink temperature is 300 K 
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Geometry and doping data a.re taken from [7]. The heat sink thermal 
conductance is 50 W/cm2 K in the first simula.tion. Fig. 1 shows the 
evolution of the internal maximum and minimum temperatures in time. 
Thermoelectric equilibrium is reached after 3 milliseconds. The data agree 
very well to the analytical solution of a thermal network, consisting of a 
thermal capacitor and a thermal resistor. 
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Fig. 2: ti.me evolution of maximum and mrmmum temper­
ature when the heat sink thermal conductance is 5 
W cm- 2 x-1 and the heat sink temperature is 300 K 
(thermal runaway) 

In order to induce severe thermal runaway, bad cooling conditions a.re 
defined by choosing 5 W/cm2 K for the heat sink thermal conductance. 
Fig. 2 shows the exponential increase of the temperatur~. 

The onset of thermal runaway occurs when thermal generation of carriers 
takes place not only in the small p-base region nea.r the gate contact, but 
covers a considerable pa.rt of the whole device. Fig. 3 shows the thermal 
generation after 7.6 milliseconds. Carriers are already thermally generated 
across the whole base of the thyristor. Fig. 4 shows the corresponding 
exponential increase of the anode current. As current increases the Joule 
heating increases too, thus leading to a further increase of the device 
temperature. 
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Fig. 3: thermal generation of carriers per cubic centimeter 
and second in case of thermal runaway after 7.6 milli­
seconds 
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Fig. 4: time evolution of anode current in case of thermal run­
away 
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Another application is the simulation oflatch-up in an insulated-gate tran­
sistor (IGT). An IGT combines bipolar conduction with MOS gate control 
of the current. If, however, the parasitic thyristor in an IGT structure 
turns on, the control of the collector current by the applied gate voltage is 
lost. In DC circuits latch-up usually produces catastrophic failure of the 
device as a result of excessive heat dissipation. 

Static latch-up has been investigated in an IGT. Geometry and doping 
data were taken from [l]. 
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Fig. 5: increase of lattice temperature in Kelvin before latch­
up (50W cm-2 K-1

, Vg = 15V, Ve= 2.5V) 

Fig. 5 shows the increase of the temperature in the channel region before 
latch-up occurs. Fig. 6 is a snapshot of the electron concentration after 
onset of latch-up. The heat sink thermal conductance is 50 W/cm2 K. 

The IGT starts to latch up when the emitter injects electrons into the p­
hase during device operation. In silicon the critical value is exceeded when 
the n+ -emitter-i:rbase junction becomes forward-biased by more than 0. 7 
volt, usually because of lateral current flow within the i:rbase. Thus latch­
up limits the current handling capability of the IGT. It is found that the 
latching current is reduced with increasing temperature. 
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Fig. 6: snapshot of electron concentration during latch-up, 
(SOW cm- 2 K-1

, Vg = l5V, 'Vc = 2.903V) 

5. CONCLUSION 
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An advanced model for self-heating effects has been derived from principles 
of irreversible thermodynamics. It is valid in both the stationary and the 
transient regimes. 

Thermal stability problems of a GTO in the on-state have been analysed. 
The simulation results allow extraction of the thermal relaxation time and 
the value of the total thermal resistance and capacitance for the equivalent 
thermal circuit model of the device under investigation. 

The electrothermal nature of device behavior after onset of latch-up in 
an IGT has been simulated. It has been found that accurate analysis of 
latch-up phtnomena requires electrothermal simulation to account for the 
reduction of latching current due to self-heating. 

To summarize, a powerful tool to investigate electrothermal problems in 
power semiconductor devices based on a new model of coupled transport 
of heat and charge carriers is presented. 
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