
RAPID SEMICONDUCTOR PROCESS DESIGN WITHIN THE VISTA FRAMEWORK:
INTEGRATION OF SIMULATION TOOLS

CH. PICHLER AND S. SELBERHERR

Institute for Microelectronics, Technical University of Vienna
GuBhausstraBe 27-29. A-1040 Vienna, Austria

1 Introduction

Long fabrication times in a wafer fab make the simulation of
semiconductor fabrication processes and device behaviour an
indispensable aid for experimenting with device designs and
process parameters. vVhen a first prototype device leaves the
fabrication facility, it is likely to be rejected due to a cou­
ple of possible flaws. Any deviation of the device parameters
from the desired device specification causes modifications to
be made to the device design and starts a new iteration of
the outer design fabrication loop (ref. Fig. 1). Any difference
exceeding the specified tolerances between the device design
and the device actually produced or simulated calls for a mo­
dification of the process design and triggers the inner design
loop anew.

Device
Parameters

Generate

Design

Evaluate
Device Device

Generate

Process

Fabricate

Device

Figure 1: VLSI Design-Fabrication Loop

roces.s
Design

The time spent on the fabrication of the device plays a
key role in timing consideration as manufacturing resides at
the heart of both loops. Technology CAD (TCAD) has suc­
cessfully used process simulation tools to replace production
process steps during the design stages of a device. A wide va­
riety of such tools exist, each being more or less specialized to
perform a specific task. In order to integrate simulation tools
and to present them to the user in a uniform way, a number of
TCAD frameworks have been developed, e.g., [4], [5], [6], [7],
[11], [12). Drawing on experience gained from these underta­
kings, we took on devising and implementing a simulation ffow
control module for the Vienna. Integrated System for TCAD
Applications (VISTA) [9], [10], putting special emphasis on an
open concept which allows for the integration of arbitrary si­
mulators, on supporting multi-platform environments, and on
a simple, extendible representation of simulation sequences,
enabling the process engineer to quickly apply changes to the
process design, investigate the results, and optimize device
performance.

The following section deals with the simulation of semi­
conductor fabrication processes, concentrating on the integra­
tion of simulation tools. Section 3 presents the simulation fl.ow
control module.

2 Semiconductor Process
Simulation

Consider a set of process simulation tools such as PROMIS
[3) or SAMPLE [1), each capable of performing the numerical
simulation of one or more VLSI fabrication processes, e.g. an
ion implantation process, an etch process, etc. Typically, the
user invokes a simulation step by specifying the values of the
tool's input parameters via an input deck, i.e., a text file con­
taining directives for setting these parameters, which is read
by the tool upon execution, or a user interface of any kind
(graphical or text-based, e.g.). Additionally, it has to be ta­
ken care of providing initial geometry and dopant distribution
data in a. format readable by the tool. After the successful
completion of a simulation run, the output data. are written
to a file.

Should the user intend to simulate a series of process
steps, such as the fabrication of a complete MOS transistor,
the appropriate simulation tools have to be called sequentially,
with the output data of a tool run being used as the input data
for the next one. Therefore, a. tool must be able to underst.ancl
the data generated by its predecessor in the process sequence,_
i.e. the tools have to share a common data format or be able
to translate from a foreign format to their own. Calling the
tools one after the other in a UNIX environment is usually
accomplished by writing a shell script which generates an input
deck and calls a simulator for each simulation step. As the
number of input parameters for a single tool is of the order of
ten to hundred, modifying the script in the case of a change of
a parameter value or of the process sequence is a tedious and
error-prone task.

If we look at a process simulation sequence from diffe­
rent levels of abstraction we are able to identify a number of
problem domains. At the data level, we have to ensure that
the results generated by a tool are understood by the next one,
e.g. the diffusion tool has to be able to read the boron concen­
tration written by an ion implantation module, and the device
simulator has to understand the doping profile generated by a
diffusion module.

At the tool control level, the simulator has to be provided
with a set of key values encoding the parameters for a particu­
lar process step. Before starting the execution of a simulation
program, we have to check for any invalid parameter combi­
nations which might lead to invalid results or to the abortion
of the computation.

At the task level, the user wants to specify her simulation
intent as intuitively as possible, concentrating on design para­
meters rather than on tool invocation subtleties. For instance,
if we wish to examine the variation of the threshhold voltage
of a MOS transistor with the length of the gate , we have to
apply the same process sequence to a set of varied initial geo­
metries. The series of intermediate calculation steps appears

as a black box delivering the result sought. Furthermore, if
we a.re not satisfied with the final outcome of a. simulation
sequence a.ncl want to modify our design, it should not be ne­
cessary to completely rewrite the process :flow description, but
we should be able to specify the changes we want to make
to certain parameter values, i.e., predefined process sequences
should remain unchanged even if minor alterations are to be
ma.de. Using process modules previously written to build up
larger process flows greatly simplifies the process flow design.

Providing the user with a comfortable means for automa­
tically executing a. large series of simulation steps helps with
reducing the cycle time in the design iteration loop. The follo­
wing section presents our approach t owards this goal , concen­
trating on the aspects of a generic tool integration concept.

3 Tool Integration in the VISTA
Framework

The Vienna Integrated System for TCAD Applications
(VISTA) represents a framework for the integration of semi­
conductor process and devi ce simulation. Integration at the
data level is achieved by using the P rofile Interchange Format
(PIF) [2] , [8], coupling of the simulation tools to the TCAD
shell is accomplished by using XLISP as an extension language.

Integration and control issues mentioned in the previ­
ous section are subsumed under the simulation ffow control
module, which is described in the follwing.

3.1 The Simulation Flow Control Module

Intended to liberate the user from a. couple of tedious tasks
when attempting to investigate the design domain by reitera­
ting VLSI process, device, and circuit simulation sequences,
the simulation flow control module represents a hands-on ap­
proach to tool integration. At present , an intermediate stage
of development has been reached , which will be followed by
a consolidation phase to draw from gained experience and to
update specifications. Essentially, the simulation flow control
module consist of three parts , the XLISP bindings of the simu­
lator modules, the tool control module, and the task control
module . This subdivision may sometimes not be reflected in
the actual implementation.

3.1.1 XLISP Bindings of Simulator Modules

In order to make arbitrary executable modules available to
the calling context (TCAD shell), these modules or programs
have to be wrapped in XLISP functions representing the con­
trol level interface between tools and framework. Therefore, a
LISP function is defined for each simulator to be integrated ,
so the user can call the tool like any other XLISP function .
All parameter values and file names are passed as key parame­
ters to avoid errors due to a wrong argument order. The main
action performed by such a function is to start the respective
simulator as a background job and to notify the calling shell
upon completion. For this purpose a callback concept is used,
i.e . a LISP function is called upon return from a system job
to resume execution of LISP code (ref. Fig. 2).

USER "Start

Simulator"

Submit
XLISP Pn>am A

System

Submit

ProcessB -IDLE-

CaUbackA CaUbackB

"""'
Figure 2: The Callback Mechanism

XLISP Binding XLISP Binding

l
register

callback function

prepare PIF file
execute tool

Wrapper

i lnp••-

Tool2

Tooll

Outpllt Flies

/ -....,

"- __,,

PIF PIF

Figure 3: XLISP Binding of simulation tools

Furthermore, it is taken care for providing the simulator
with all required input files and command line arguments. In
our case, simulators are assumed to read initial wafer <lat.a
from a PIF file generated by the preceding tool and to writ.e
their results to a PIF file . Accepting PIF input and writing
PIF output is considered prerequisite for an integration into
VISTA, thus tools which don 't adhere to this regulations should
get a wrapping function establishing a PIF interface (ref. Fig.
3).

While the PIF defines a syntax for wafer description, it
does not enforce a semantically strict representation of wafer
data. In generating an input fil e for a simulator, ambiguities
brought about by this semantic liberty are resolved by the
binding function. To begin with , a simulator might recognize
the material silicon, e.g., by the material name Si, whereas
another tool might exclusively accept SILICON. The binding
function checks the PIF input file for all occurrences of ma­
terial names and replaces them as appropriate. In the second
place, simulators do not agree upon geometry orientation when
reading or writing PIF data. Therefore, the XLISP binding
has to transform the geometry to the correct orientation (clo­
ckwise or counter clockwise) for the tool in question. Thirdly,
some simulators require the presence of certain PIF objects in

their input file which a preceding simulator might have dis­
carded due to utter ignorance of its fellow tool's needs. The
binding functions check for the presence of required objects,
try to restore missing items, and solicit user interaction if they
fail to do so.

In order t.o establish a standard interface for plugging
in simulation tools, the XLISP binding combines wafer data
from before and after a. simulation run to generate the current
wafer state, i.e. a complete description of wafer geometry and
impurity concentration data. reflecting the current. state of the
wafer after each sirn ulation step.

3 .1.2 Tool Control

With the simulation tools being properly wrapped in the XLISP
binding functions , the execution of a simulator can be initia.t.e<l
by calling Lhe re. peC'tive function. While exi. t ing simula ion
tool often r qu ir a large number of input. pm-amet rs onJy (I

few are of ai.1y concern t.o the user, the rema,ining ones I ing
set once to t uu th Lool 's performance. Therefore. the user
should only be obliged to supply those parameters she expli­
citlv wants to assume values other than the default. To achieve
thi;, user-defined values and default values a.re merged upon
invocation of a tool to from a complete list of arguments. As
ven default value. mi ··ht vary with different. cla se. of ta k

aJl default. value are stored iu file · residin& in a. def<mlt val-u
direct01·y. By switching between such directoriei at run- im.e
simula.lior hehav.iour ma ' be mociified wi bout a.ffectiug user
etting .

3.1.3 Task Control

In this context, we call a. task any sequence of computations
carried out on related <la.ta., e.g. a series of process simulation
steps working on a common wafer, or an iteration loop which
performs the sa.me sequence of calculations on a. set of initial
geometries which might be automatically generated from a
prototype geometry description, and the like.

The task control module is the only one interacting di­
rectly with the user. A task is defined by writing a. simulation
flow description in LISP syntax. Each line consists of a lea­
ding symbolic name, followed by a list of arguments. If a line
defines a tool call, the symbolic na.me references the XLISP
binding function for the respective tool. In this case, the user­
set parameters are passed as arguments. All available tool
call functions and their symbolic names are contained in a.
list which is generated by registering the XLISP tool binding
functions at load-time.

In addition to tool calls, a couple of control commands
and keywords (ref. Table 1) may appear in the simulation flow
description. They are used to reference predefined process se­
quences, to switch between directories for the default values
files, to enable or disable keeping of intermediate simulation
results , to save a particular intermediate result for later retrie­
val, to set the host where subsequent computations are to be
performed, to start simulation with a. initial file , and to call
for user interaction.

If the user wants to call a predefined process sequence,
the process reference keyword PROCESS followed by the name
of the file containig the process sequence is used. An optional

Table 1: Control Commands and Keywords

I\eyword
start-with

use-machine

save-state
dont-save-state
copy-file
PROCESS

PROCESS-DIR

DEFAULT

Description
Loads a PIF file t.o st.art subsequeilt
calculations
Defo1es the host for subsequent
com pu ta.t.ions
Ena.bles saving of intermediate results
Disable saving of int.errnedia.t.e results
vVrit.es current wafer state to a file
References a predefined process
sequence
Sets the direct.my with predefined prn­
cess sequences
Sets the directory with default values
files

override mechanism allows any parameter in any subprocess
t.o be modified. The process reference and parameter override
mechanisms work recursively.

As simulation tools are executed in the background. se­
veral tasks can be performed simultaneously. The simulat.ion
flovv· control module keeps track of sta.rt.e<l system processes
and switches to the task the process did originate from to
continue with the next command of this task when a system
process returns. To avoid conflicts due to fixed file names used
by certain tools , a. locking mechanism prevents the user from
starting more than one task at a time in a given directory.

3.1.4 A Short Example

The following example shows a small part of a wafer fab run
traveller as it appears in the simulation flow description.

(start-with :phys-pif-infile "lnitGeom.pbf")
(monte-carlo-implant :elem "BORON"

:dose 1e13 :energy 30.)
(anneal : temp 900 :time (35 "min"))
(isotropic-deposition :time 225.

:material ("Si02" 0.0015))
(anisotropic-etch :time 68.

:material-default (0. 0.0001)
:material ("Si02" 0 0.005))

(monte-carlo-implant :elem "BORON"
:dose 1e15 :energy 45 .)

(anneal :temp 900 :time (20 "min"))

The sequence shown above defines the process steps ne­
cessary to simulate the fabrication of an LDD (lightly-doped
drain) structure of a p-channel MOS transistor. The PIF file
Ini t Geom. pbf contain a. PIF model of the wafer to be procer-;­
sed, has]cally a chunk of silicon partially covered by a nitride
layer defining the gat. location. If this sequence resides in a
file spacer, it can be referenced by using the PROCESS key­
word. The following example shows how the user can define
an override value for any parameter value of a referenced pro­
cess module. In the following case, the temperature for both
annealing steps is set to 875.

(start-with :phys-pif-infile "InitGeom.pbf")

(PROCESS spacer :setvalue (anneal (temp 875)))

If we create two short process modules spacer _implant 1
and spacer _implant2 containing the two implan tation-a.n­
nea.Jing pairs from the first example, and a third process mo­
dule make_spacer containing the deposition and etch steps,
we can rewrite the process module spacer as follows.

(
(PROCESS spacer_implant1)
(PROCESS make_spacer)
(PROCESS spacer_implant2)

Now we can override the two annealing temperature pa­
ra.meters in the implantation modules independently from ea.ch
other:

(start-with :phys-pif-infile "InitGeom.pbf")
(PROCESS spacer :setvalue

(PROCESS spacer_implant1
:setvalue (anneal (temp 890))

(PROCESS spacer_implant2
: setvalue (anneal (temp 875))))

The mechanism shown above is used to automatically
iterate over any number of values for a parameter in a process
sequence. It can be applied, e.g., to the optimization of the
behaviour at high drain-to-source voltages to minimize hot­
carrier effects.

The executing of a. process sequence produces a PIF file
which contains a complete description of all wafer state tran­
sitions in terms of the resulting logical PIF files after each
simulation step. If the save-state mode is selected, the PIF
file resulting from the spacer process sequence contains seven
wafer states reflecting the effects of the respective treatments.
If the dont-save-state mode is active, only the final result
is kept.

4 Conclusions

The simulation flow control module provides a comfortable
means for defining, executing and modifying multistep simu­
lation tasks. Existing process sequences can be easily modified
to optimize device characteristics, large process flows can be
built up from process modules. The XLISP tool binding func­
tions establish an interface which allows for the integration of
a large class of simulation tools . These tools are available to
the user as plug-in modules for his simulation tasks. If the user
chooses so, all intermediate calculation results remain availa­
ble for analysis at a later time, simplifying error recovery as
well as a detailed examination of process steps.

REFERENCES

[1] W. G. Oldham et al. , A General Simula.tor for '' LSI Litho­
graphy and Etching Processes: Part II-Applica.tio11 to De­
position a11d Et.ching, IEEE TI:ans. Electron Devices . Vol.
ED-27, No. 8, pp. 1455-1459, August 1980.

[2] St. G. Duvall , A11 Interchange Format for Process a11d Dt­
vice Simulation, IEEE Trans. Comp. Aided Design, Vol. I
No. 7 pp. 741-754 , July 1988.

[3] G. Hobler et al., RTA-Sim1llatio11 with the 2D Process Si­
m.ulator PROMIS, NUPAD III, pp. 13-14 , 1990

[4] D. S. Boning , Semicondi1cto1· Process Design: Representa­
tions, Tools, and Methodologies, PhD Thesis, Massachu­
setts Institute of Technology, J a.nuary 1991.

[5] J. St. Wenstrand, A11 Object-Oriented Mode/ for Spec(fi.ca­
tion, Simulation , and Design of Semiconduct.or Fabr-ica.t.ion
Processes, PhD Thesis, Stanford University, March 1991.

[6] Ch. J. Hegarty, Process-Flow Specificat.ion and Dynamic
Run Modifica.tio11 for Semiconductor Manufacturing, PhD
Thesis, University of California, Berkeley, April 1991.

[7] J. Daniell a.nd St. W. Director, An Object-Oriented Ap­
proach to CAD Tool Control, IEEE Trans. Comp. Aided
Design, Vol. 10, No. 6, pp. 698-713, June 1991.

[8) F. Fasching et al. , A PIF Implem.enta.tion for TCAD Pur­
poses, SISDEP IV , pp. 471-482, September 1991.

[9] H. Pimingstol'fer et a.I., A Technology CAD Shell, SISDEP
IV, pp. 409-416, September 1991.

[10] S. Ha.lama. et al., Consistent. User Interface and Task Le­
vel Architeciitre of a TCAD System, NUPAD IV, pp. 231-
242, 1992.

[11] A. S. Wong, Technology Computer-Aided Design Frnmf­
works and the PROSE Implernentahon, PhD Thesis, Uni­
versity of California., Berkeley, 1992.

[12] E. W . Scheckler et al., A Utility-Based Integrated System
for Process Simulation, IEEE Trans. Comp. Aided Design,
Vol. 11, No. 7, pp. 911-920, July 1992.

