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1 Introduction 

Long fabrication times in a wafer fab make the simulation of 
semiconductor fabrication processes and device behaviour an 
indispensable aid for experimenting with device designs and 
process parameters. vVhen a first prototype device leaves the 
fabrication facility, it is likely to be rejected due to a cou­
ple of possible flaws. Any deviation of the device parameters 
from the desired device specification causes modifications to 
be made to the device design and starts a new iteration of 
the outer design fabrication loop (ref. Fig. 1). Any difference 
exceeding the specified tolerances between the device design 
and the device actually produced or simulated calls for a mo­
dification of the process design and triggers the inner design 
loop anew. 
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Figure 1: VLSI Design-Fabrication Loop 
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The time spent on the fabrication of the device plays a 
key role in timing consideration as manufacturing resides at 
the heart of both loops. Technology CAD (TCAD) has suc­
cessfully used process simulation tools to replace production 
process steps during the design stages of a device. A wide va­
riety of such tools exist, each being more or less specialized to 
perform a specific task. In order to integrate simulation tools 
and to present them to the user in a uniform way, a number of 
TCAD frameworks have been developed, e.g., [4], [5], [6], [7], 
[11], [12). Drawing on experience gained from these underta­
kings, we took on devising and implementing a simulation ffow 
control module for the Vienna. Integrated System for TCAD 
Applications (VISTA) [9], [10], putting special emphasis on an 
open concept which allows for the integration of arbitrary si­
mulators, on supporting multi-platform environments, and on 
a simple, extendible representation of simulation sequences, 
enabling the process engineer to quickly apply changes to the 
process design, investigate the results, and optimize device 
performance. 

The following section deals with the simulation of semi­
conductor fabrication processes, concentrating on the integra­
tion of simulation tools. Section 3 presents the simulation fl.ow 
control module. 

2 Semiconductor Process 
Simulation 

Consider a set of process simulation tools such as PROMIS 
[3) or SAMPLE [1), each capable of performing the numerical 
simulation of one or more VLSI fabrication processes, e.g. an 
ion implantation process, an etch process, etc. Typically, the 
user invokes a simulation step by specifying the values of the 
tool's input parameters via an input deck, i.e., a text file con­
taining directives for setting these parameters, which is read 
by the tool upon execution, or a user interface of any kind 
(graphical or text-based, e.g.). Additionally, it has to be ta­
ken care of providing initial geometry and dopant distribution 
data in a. format readable by the tool. After the successful 
completion of a simulation run, the output data. are written 
to a file. 

Should the user intend to simulate a series of process 
steps, such as the fabrication of a complete MOS transistor, 
the appropriate simulation tools have to be called sequentially, 
with the output data of a tool run being used as the input data 
for the next one. Therefore, a. tool must be able to underst.ancl 
the data generated by its predecessor in the process sequence,_ 
i.e. the tools have to share a common data format or be able 
to translate from a foreign format to their own. Calling the 
tools one after the other in a UNIX environment is usually 
accomplished by writing a shell script which generates an input 
deck and calls a simulator for each simulation step. As the 
number of input parameters for a single tool is of the order of 
ten to hundred, modifying the script in the case of a change of 
a parameter value or of the process sequence is a tedious and 
error-prone task. 

If we look at a process simulation sequence from diffe­
rent levels of abstraction we are able to identify a number of 
problem domains. At the data level, we have to ensure that 
the results generated by a tool are understood by the next one, 
e.g. the diffusion tool has to be able to read the boron concen­
tration written by an ion implantation module, and the device 
simulator has to understand the doping profile generated by a 
diffusion module. 

At the tool control level, the simulator has to be provided 
with a set of key values encoding the parameters for a particu­
lar process step. Before starting the execution of a simulation 
program, we have to check for any invalid parameter combi­
nations which might lead to invalid results or to the abortion 
of the computation. 

At the task level, the user wants to specify her simulation 
intent as intuitively as possible, concentrating on design para­
meters rather than on tool invocation subtleties. For instance, 
if we wish to examine the variation of the threshhold voltage 
of a MOS transistor with the length of the gate , we have to 
apply the same process sequence to a set of varied initial geo­
metries. The series of intermediate calculation steps appears 



as a black box delivering the result sought. Furthermore, if 
we a.re not satisfied with the final outcome of a. simulation 
sequence a.ncl want to modify our design, it should not be ne­
cessary to completely rewrite the process :flow description, but 
we should be able to specify the changes we want to make 
to certain parameter values, i.e., predefined process sequences 
should remain unchanged even if minor alterations are to be 
ma.de. Using process modules previously written to build up 
larger process flows greatly simplifies the process flow design. 

Providing the user with a comfortable means for automa­
tically executing a. large series of simulation steps helps with 
reducing the cycle time in the design iteration loop. The follo­
wing section presents our approach t owards this goal , concen­
trating on the aspects of a generic tool integration concept. 

3 Tool Integration in the VISTA 
Framework 

The Vienna Integrated System for TCAD Applications 
(VISTA) represents a framework for the integration of semi­
conductor process and devi ce simulation. Integration at the 
data level is achieved by using the P rofile Interchange Format 
(PIF) [2] , [8], coupling of the simulation tools to the TCAD 
shell is accomplished by using XLISP as an extension language. 

Integration and control issues mentioned in the previ­
ous section are subsumed under the simulation ffow control 
module, which is described in the follwing. 

3.1 The Simulation Flow Control Module 

Intended to liberate the user from a. couple of tedious tasks 
when attempting to investigate the design domain by reitera­
ting VLSI process, device, and circuit simulation sequences, 
the simulation flow control module represents a hands-on ap­
proach to tool integration. At present , an intermediate stage 
of development has been reached , which will be followed by 
a consolidation phase to draw from gained experience and to 
update specifications. Essentially, the simulation flow control 
module consist of three parts , the XLISP bindings of the simu­
lator modules, the tool control module, and the task control 
module . This subdivision may sometimes not be reflected in 
the actual implementation. 

3.1.1 XLISP Bindings of Simulator Modules 

In order to make arbitrary executable modules available to 
the calling context (TCAD shell), these modules or programs 
have to be wrapped in XLISP functions representing the con­
trol level interface between tools and framework. Therefore, a 
LISP function is defined for each simulator to be integrated , 
so the user can call the tool like any other XLISP function . 
All parameter values and file names are passed as key parame­
ters to avoid errors due to a wrong argument order. The main 
action performed by such a function is to start the respective 
simulator as a background job and to notify the calling shell 
upon completion. For this purpose a callback concept is used, 
i.e . a LISP function is called upon return from a system job 
to resume execution of LISP code (ref. Fig. 2). 
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Figure 3: XLISP Binding of simulation tools 

Furthermore, it is taken care for providing the simulator 
with all required input files and command line arguments. In 
our case, simulators are assumed to read initial wafer <lat.a 
from a PIF file generated by the preceding tool and to writ.e 
their results to a PIF file . Accepting PIF input and writing 
PIF output is considered prerequisite for an integration into 
VISTA, thus tools which don 't adhere to this regulations should 
get a wrapping function establishing a PIF interface (ref. Fig. 
3). 

While the PIF defines a syntax for wafer description, it 
does not enforce a semantically strict representation of wafer 
data. In generating an input fil e for a simulator, ambiguities 
brought about by this semantic liberty are resolved by the 
binding function. To begin with , a simulator might recognize 
the material silicon, e.g., by the material name Si, whereas 
another tool might exclusively accept SILICON. The binding 
function checks the PIF input file for all occurrences of ma­
terial names and replaces them as appropriate. In the second 
place, simulators do not agree upon geometry orientation when 
reading or writing PIF data. Therefore, the XLISP binding 
has to transform the geometry to the correct orientation ( clo­
ckwise or counter clockwise) for the tool in question. Thirdly, 
some simulators require the presence of certain PIF objects in 



their input file which a preceding simulator might have dis­
carded due to utter ignorance of its fellow tool's needs. The 
binding functions check for the presence of required objects, 
try to restore missing items, and solicit user interaction if they 
fail to do so. 

In order t.o establish a standard interface for plugging 
in simulation tools, the XLISP binding combines wafer data 
from before and after a. simulation run to generate the current 
wafer state, i.e. a complete description of wafer geometry and 
impurity concentration data. reflecting the current. state of the 
wafer after each sirn ulation step. 

3 .1.2 Tool Control 

With the simulation tools being properly wrapped in the XLISP 
binding functions , the execution of a simulator can be initia.t.e<l 
by calling Lhe re. peC'tive function. While exi. t ing simula ion 
tool often r qu ir a large number of input. pm-amet rs onJy (I 

few are of ai.1y concern t.o the user, the rema,ining ones I ing 
set once to t uu th Lool 's performance. Therefore. the user 
should only be obliged to supply those parameters she expli­
citlv wants to assume values other than the default. To achieve 
thi;, user-defined values and default values a.re merged upon 
invocation of a tool to from a complete list of arguments. As 
ven default value. mi ··ht vary with different. cla se. of ta k 

aJl default. value are stored iu file · residin& in a. def<mlt val-u 
direct01·y. By switching between such directoriei at run- im.e 
simula.lior hehav.iour ma ' be mociified wi bout a.ffectiug user 
etting . 

3.1.3 Task Control 

In this context, we call a. task any sequence of computations 
carried out on related <la.ta., e.g. a series of process simulation 
steps working on a common wafer, or an iteration loop which 
performs the sa.me sequence of calculations on a. set of initial 
geometries which might be automatically generated from a 
prototype geometry description, and the like. 

The task control module is the only one interacting di­
rectly with the user. A task is defined by writing a. simulation 
flow description in LISP syntax. Each line consists of a lea­
ding symbolic name, followed by a list of arguments. If a line 
defines a tool call, the symbolic na.me references the XLISP 
binding function for the respective tool. In this case, the user­
set parameters are passed as arguments. All available tool 
call functions and their symbolic names are contained in a. 
list which is generated by registering the XLISP tool binding 
functions at load-time. 

In addition to tool calls, a couple of control commands 
and keywords (ref. Table 1) may appear in the simulation flow 
description. They are used to reference predefined process se­
quences, to switch between directories for the default values 
files, to enable or disable keeping of intermediate simulation 
results , to save a particular intermediate result for later retrie­
val, to set the host where subsequent computations are to be 
performed, to start simulation with a. initial file , and to call 
for user interaction. 

If the user wants to call a predefined process sequence, 
the process reference keyword PROCESS followed by the name 
of the file containig the process sequence is used. An optional 

Table 1: Control Commands and Keywords 

I\eyword 
start-with 

use-machine 

save-state 
dont-save-state 
copy-file 
PROCESS 

PROCESS-DIR 

DEFAULT 

Description 
Loads a PIF file t.o st.art subsequeilt 
calculations 
Defo1es the host for subsequent 
com pu ta.t.ions 
Ena.bles saving of intermediate results 
Disable saving of int.errnedia.t.e results 
vVrit.es current wafer state to a file 
References a predefined process 
sequence 
Sets the direct.my with predefined prn­
cess sequences 
Sets the directory with default values 
files 

override mechanism allows any parameter in any subprocess 
t.o be modified. The process reference and parameter override 
mechanisms work recursively. 

As simulation tools are executed in the background. se­
veral tasks can be performed simultaneously. The simulat.ion 
flovv· control module keeps track of sta.rt.e<l system processes 
and switches to the task the process did originate from to 
continue with the next command of this task when a system 
process returns. To avoid conflicts due to fixed file names used 
by certain tools , a. locking mechanism prevents the user from 
starting more than one task at a time in a given directory. 

3.1.4 A Short Example 

The following example shows a small part of a wafer fab run 
traveller as it appears in the simulation flow description. 

( start-with :phys-pif-infile "lnitGeom.pbf") 
(monte-carlo-implant :elem "BORON" 

:dose 1e13 :energy 30.) 
(anneal : temp 900 :time (35 "min")) 
(isotropic-deposition :time 225. 

:material ("Si02" 0.0015)) 
(anisotropic-etch :time 68. 

:material-default (0. 0.0001 ) 
:material ("Si02" 0 0.005)) 

(monte-carlo-implant :elem "BORON" 
:dose 1e15 :energy 45 . ) 

(anneal :temp 900 :time (20 "min")) 

The sequence shown above defines the process steps ne­
cessary to simulate the fabrication of an LDD (lightly-doped 
drain) structure of a p-channel MOS transistor. The PIF file 
Ini t Geom. pbf contain a. PIF model of the wafer to be procer-;­
sed, has]cally a chunk of silicon partially covered by a nitride 
layer defining the gat. location. If this sequence resides in a 
file spacer, it can be referenced by using the PROCESS key­
word. The following example shows how the user can define 
an override value for any parameter value of a referenced pro­
cess module. In the following case, the temperature for both 
annealing steps is set to 875. 



(start-with :phys-pif-infile "InitGeom.pbf") 

(PROCESS spacer :setvalue (anneal (temp 875))) 

If we create two short process modules spacer _implant 1 
and spacer _implant2 containing the two implan tation-a.n­
nea.Jing pairs from the first example, and a third process mo­
dule make_spacer containing the deposition and etch steps, 
we can rewrite the process module spacer as follows. 

( 
(PROCESS spacer_implant1) 
(PROCESS make_spacer) 
(PROCESS spacer_implant2) 

Now we can override the two annealing temperature pa­
ra.meters in the implantation modules independently from ea.ch 
other: 

(start-with :phys-pif-infile "InitGeom.pbf" ) 
(PROCESS spacer :setvalue 

(PROCESS spacer_implant1 
:setvalue (anneal (temp 890)) 

(PROCESS spacer_implant2 
: setvalue (anneal (temp 875)))) 

The mechanism shown above is used to automatically 
iterate over any number of values for a parameter in a process 
sequence. It can be applied, e.g., to the optimization of the 
behaviour at high drain-to-source voltages to minimize hot­
carrier effects. 

The executing of a. process sequence produces a PIF file 
which contains a complete description of all wafer state tran­
sitions in terms of the resulting logical PIF files after each 
simulation step. If the save-state mode is selected, the PIF 
file resulting from the spacer process sequence contains seven 
wafer states reflecting the effects of the respective treatments. 
If the dont-save-state mode is active, only the final result 
is kept. 

4 Conclusions 

The simulation flow control module provides a comfortable 
means for defining, executing and modifying multistep simu­
lation tasks. Existing process sequences can be easily modified 
to optimize device characteristics, large process flows can be 
built up from process modules. The XLISP tool binding func­
tions establish an interface which allows for the integration of 
a large class of simulation tools . These tools are available to 
the user as plug-in modules for his simulation tasks. If the user 
chooses so, all intermediate calculation results remain availa­
ble for analysis at a later time, simplifying error recovery as 
well as a detailed examination of process steps. 
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