
TECHNOLOGY CAD SYSTEMS
Edited by F. Fasching, S. Halama, S. Selberherr - September 1993

The Viennese Integrated System for
Technology CAD Applications

S. Halama, F. Fasching, C. Fischer, H. Kosina, E. Leitner, Ch. Pichler,
H. Pimingstorfer, H. Puchner, G. Rieger, G. Schrom, T. Simlinger, M. Stiftinger,

H. Stippel, E. Strasser, W. Tuppa, K. Wimmer, and S. Selberherr

Institute for Microelectronics, TU Vienna,
GuflhausstraBe 27-29, A-1040 Wien, AUSTRIA

Abstract

In order to meet the requirements of advanced process and device design, a
new generation of TCAD frameworks is emerging. These are based on a data
level providing a common data interchange format. Such a format must be
suitable for building simulation databases, and needs to be accompanied by
supporting tools and by a procedural interface with multi-language bindings
for data storage and retrieval by application programs. The complexity and
scope of a rigorous TCAD framework requires special efforts to create a system
which is both transparent to the user and comprehensible to the programmer.
A consistent architecture and strict adherence to general software engineering
guidelines can contribute significantly to the solution of this problem. We
discuss general requirements and architectural issues of the data level, the user
interface and the task level environment, and present their implementation in
VISTA, the Viennese Integrated System for Technology CAD Applications.

1. Introduction

The Viennese Integrated System for Technology CAD Applications is an integration
and develo~ment framework for vrocess and device simulation tools. VISTA consists
of a data level part which provides a common library for accessing and manipulating
simulation data[l], a set of utilities for visualization and high-level data manipulation,
and user interface and interactive shell[2] which integrate all services (including the
simulation tools) on the "task level".

In the following sections, we will investigate the role of the data level, the user in-
terface and the task level environment within a TCAD scenario first from a general
perspective, and then present the VISTA implementation.

General requirements for the data representation, user interface, task level environ-
ment, and related services will be discussed in Section 2. Then, after a review of
existing implementations and general software architecture guidelines, we will mo-
tivate the major ideas and choices for data level, user interface, and task level of
VISTA. The structure and implementation details of data level, user interface, and
task level will be described in Sections 4, 5, and 6, respectively.

198 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

2. Requirements

2.1 The TCAD Scenario

The term "user interface" suggests to start with a closer look at the human aspects
of engineering. With the introduction of frameworks into the TCAD field, the simple
"programmer creates application for users'' model of the TCAD software situation is
no longer sufficient. The modern TCAD scenario looks more like the model depicted
in Fig. 1, which will be used in the remainder of this paper (Fig. 1 already implies the
most often used framework architecture, where applications are controlled by some
sort of integrating task level shell and share common libraries).

Device / process ,uses edits

engineer A

Task control shell

Application

Data level and
other libraries

Figure 1: Process, application, and framework engineers interact with the TCAD
system by both using (arrows pointing left) and modifying (arrows pointing right)
the components of the system.

The process or device engineer uses simulation tools, or, more generally speaking,
TCAD applications, to simulate a given process or device. For this purpose the
engineer edits task level information (like manufacturing parameters, the process flow,
or optimization goals) and explicitely or implicitely uses applications (simulators)
which are provided and edited by application engineers. The application engineers,
in turn, make use of the framework's global libraries and similar facilities to add new
process and device simulation functionality and to maintain existing simulators. The
process/device engineers make use of framework services (like data level access or the
task level environment), too, but in contrast to the application egineers, they do not
know about the libraries and details of "programming" with the framework.

The framework is edited and extended by framework engineers who also take care of
generic (framework-related) applications.

2.2 The Engineers' Perspective

All three categories of engineers interact in some way with the user interface and task
level part of the framework, either in a "user role" or in a "programmer role". Hence,
one of the major difficulties in choosing a strategy for a user interface and task level
implementation (in contrast to the data level or other internal libraries which are
"just" visible from the programmer's point of view) is the vast variety of interests
and perspectives which must be considered. Depending on the lLengineering role" and
the user's technical background and needs, different demands may arise:

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 199

r For casual users who seldomly need to use simulation tools (for instance to track
down bugs in manufacturing), ease of use, robustness, and continuity of the user
interface properties are the most important features. The user interface should
employ familiar visual elements where they are available.

r For device or process engineers who use TCAD tools more often, flexibility on
the task level is the most crucial issue. It should be easy to define new, complex
simulation tasks without having to bother with the internal workings of the
TCAD system. Within the task level environment, the details of simulation
sequences should not be too simulator-dependent and should not, as is often
the case in UNIX-shell based solutions, depend on the operating system at all.

r For specialists in physical modeling or numerical techniques, the most important
features are openness of the system as well as good aid for making modifications
and extensions. The user interface should support full access to the simulation
tools and models. Furthermore, it should be possible to integrate existing tools
into a homogeneous user interface without having to redesign the tools.

r From the framework and application engineer's point of view, the use of a high
level of abstraction is desirable, as it usually reduces the effort for using and
maintaining the system.

For software support groups, besides the points listed above, maintainability
and portability are very important. This includes the use of open portable
subsystems since the entire system will be less portable than its least portable
subsystem.

2.3 The Applications' Perspective

Seen from the applications' point of view, there are numerous requirements which
the data level of a TCAD system must satisfy. Firstly, there has to be a persis-
tent simulation database where simulation ~roblem descri~tions. histories and results
are stored. A clear, procedural interface provides access to the simulation data and
conveys all physical and nonphysical information used hy the application. The in-
terface must contain language bindings for those programming languages which are
commonly used to develop TCAD tools. Moreover, the interface must be sufficiently
operating system- and machine-independent to achieve easy portability to different
platforms. Integrability with external TCAD tools must be ensured by providing
access to simulation data on different levels of functionality and abstraction (this
includes well-defined low-level interfaces).
The procedural interface must be characterized by its ease of use, and an orthogonality
to minimize the effort involved in the creation of new tools. The interface should
be able to automatically perform conversions of coordinate systems, physical units,
simulation grids, etc., so that the application engineer can concentrate on the actual
task of the application. Fast random access to simulation data and compact database
sizes are crucial for three-dimensional simulation, so these issues cannot be neglected
when designing a procedural interface and data representation. Since some TCAD
applications may want to use their own internal data structures, the interface has to
adapt easily to application-specific data structures.
Once these demands are satisfied, simulators may be run as standalone applications
coupled by a common data format. However, a full TCAD integration imposes further
requirements upon the data level, under the assumption, that simply "wrapping" the
simulator is not a desirable integration method.

200 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Since many different tools with a highly complex sematical background have to in-
teract in a TCAD framework, it is indispensable that the data level has to express
semantic rules to ensure the "understandability" of common simulation data for all
tools integrated in the environment. Whether all of this semantics can and should
be implemented in software and hence be reflected by framework services is a tough
question, both technically and economically.

2.4 Maintenance and Comprehensibility

The size of a typical "classical" single process or device simulation program lies in
the range of one to two megabytes of source code. Fig. 2 compares a few prominent
examples of single simulation tools with VISTA (as an exampleof a TCAD framework)
which currently requires nine megabytes of code in different implementation languages
(predominantly C), not including simulators.

FORTRAN

C

FORTRAN

1.3 FORTRAN

MINIMOS 5.2 L 1.3 FORTRAN
8.8
I C, LISP,
1 FORTRAN

coded manually generated automatically

Figure 2: Comparison of source code sizes

Because of the remarkable size of the code. it is obvious that s~ecial care is reauired
to ensure the consistency and maintainability of the framework, and that pure soft-
ware issues become much more relevant than in the case of single simulation tools. "
regardless of their sophistication. In fact, in the case of a single simulation tool, un-
derestimating or neglecting software issues might lead to an improper and unflexible
implementation, although the tool will probably still work. In the case of a whole
TCAD framework however, the resulting implementation (if ever achieved) would be
completely unusable.

Additionally, it is indispensable that the basic structure and the details of the system
can be learned and understood with only a moderate expenditure of time and effort.
Therefore, a major demand is that the design and implementation of all components
adhere to a few, simple, and mutually consistent basic concepts. We will see that this
demand has a severe impact on the potential use of existing solutions from which the
framework can be built.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

3. Architecture

3.1 Existing Approaches

Several workstation-based systems can be found which address the issue of multi-
tool integration into a unified user interface, mostly based on the X Window system.
PRIDE[3], based on SunView, exhibits a user interface and task level architecture
which is strongly influenced by the preprocessing - computation - postprocessing
task model of TCAD. SIMPL-IPX[4], based directly on Xlib, features a central in-
teractive graphical editor which has menu-oriented facilities for running simulators.
In both cases, implicit or explicit assumptions about the design cycle have an im-
pact on the (top-down) design of the software and restrict design tasks which can
be performed or implemented. A more flexible and extension-oriented user interface
architecture has been accomplished in PROSE[5], which is mainly due to the use of
the generic Tcl interpreter[b] and Tk toolkit[7].

Other well-known simulation frameworks are an integrated system for statistical VLSI
design from Hitachi[8], the MECCA system from AT&T[9], or the SATURN system
from SIEMENS[lO].

However, only few of these frameworks feature a data level for simulation data access.
Most of the existing TCAD environments use data converters to couple simulators
using different data formats. Doing this not only causes the number of converters
needed to rise quadratically with the number of simulators present, it also prevents
the user from taking advantage of the services provided by a TCAD-oriented data
level. Using a data level, simulators can be split up into separate tools of well-defined
functionality, allowing tool developers to concentrate on their particular task.

Early implementations of data levels, like the DAMSEL system from CNSJCNET
[Il l , feature two-dimensional geometries and simple data structures for easy usage by
existing simulators. Among data levels designed for TCAD environments there are
the CDBJHCDB from CMU [12], and the BPIF implementation from UC Berkeley
[13]. Another data level built on PIF featuring object-orientedness is the PIFJGestalt
system from MIT [14].

A recent approach is the SWR 1.0 specification[15][16] (issued by the Semiconduc-
tor Wafer Representation technical subcommittee of the CAD Framework Initiative
(CFI), an international standardization committee for electronic CAD) which defines
an object-oriented application interface for TCAD data access and suggests the use of
a client-server framework architecture. The intriguing idea of this standard definition
is to separate the physical modeling completely from tedious tasks such as grid genera-
tion, interpolation, or geometry handling by providing these functions as a black-box
server which is accessed by the simulation clients via a procedural interface. This
method is very well-suited for, e.g., the simulation of topography formation, however,
it can be detrimental to applications with high data throughput or applications which
exhibit performance advantages thanks to a tight coupling between physical models
and numerical techniques. Furthermore, the sole definition of a rather high-level in-
terface - which implicitely requires a very large amount of functionality - makes
it difficult to implement this standard in a rigorous way. This is due to the absence
of intermediate-functionality definitions and goals, there is no layering that would
provide natural milestones for implementation and verification.

3.2 General Guidelines

It seems that the inherent semantic complexity and diversity of information flow
between user and TCAD system, which is presumably related to the rich physical

202 S. Halarna et al.: The Viennese Integrated System for Technology CAD Applications

background inherent to process and device simulation, can only be represented by
corresponding specialized user interface elements. Furthermore, the rapid develop-
ment of advanced process and device simulation tools calls for a data level and user
interface which can easily accommodate new demands without necessarily having to
change the underlying concepts.

Unfortunately, there is no publicly available monolithic user interface toolkit which
is flexible enough to meet the changing requirements, while simultaneously providing
the specialized functionality to support TCAD information flow efficiently.

The requirements described in section 2 are not easy to fulfill within today's software
environments. However, some general rules for data level, user interface, and task
level can be derived:

Bottom-up - As the very top TCAD problem and application is hard to narrow
down (there is no "generic design task" in TCAD), a bottom-up design is favor-
able. This implies that the definition of higher-level functionality and behavior
is shifted towards the end of the development phase.

Layering - Where possible, implementation should be done in distinct layers
of increasing functionality and abstraction.

Separation and orthogonality - All of the framework code should be kept inde-
pendent from the (rapidly changing) TCAD tools themselves.

Consistency - Where possible, the generalization of existing concepts within
the framework should be favoured over the introduction of new ones.

Interprete design tasks - The need for defining and using design task macros
in a flexible (non-taxative) manner suggests to ask for full programming capa-
bilities, the task level programs being executed by an interpreter.

On the data level, a certain architectural transparency is desirable to be able to ac-
comodate and implement possible framework architectures, like client-server, master-
slave, parity, Although for some, especially geometry-oriented applications a
client-server architecture might be advantageous, it is highly questionable, if a true
client-server architecture using the network will exhibit the required performance for
more general simulation requirements, since large data amounts like grids, attributes
or solver stiffness matrices (especially in three-dimensional applications) have to be
communicated between client and server. Although mapping client memory into the
server substantially improves performance, this approach is neither portable, nor does
it work over the network.

A well-balanced and consequent layering of the functionality and semantics of the
data level implementation is most important as this is indispensable for re-using
the implementation, when, e.g. an RPC-based client-server interface is introduced
between two layers, or an object-oriented system is imposed (presumably on the top
layer).

An early confinement to a specific architecture would result in an inflexible data level
and thus lead to a framework that cannot be adapted to (unpredictable) environmen-
tal needs of a simulation site. A firm precondition, however, is the multiprocessing
ability of the application interface, to enable parallel simulator runs using the same
data set as well as ensuring clusterwide access to the data. The data level of a TCAD
environment must be able to manage and archive simulation sequences in order to

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 203

ensure the reproducability of the results and easy backtracking through the simula-
tion history. The environment has to provide facilities for intersite data exchange,
message passing between applications, and error reporting, handling and recovery,
which have to be consistent with the data-level implementation.

3.3 The VISTA Design

For t h e d a t a level, we have decided to start with the Profile Interchange Format
(PIF), as initially proposed by S. Duvall[l7] and to extend and modify it to meet
the requirements stated earlier. From the above considerations, it is clear that a bi-
nary implementation and a procedural interface with different levels of functionality
(described in Section 4) are required. Since there is no public and efficient implemen-
tation available, we had the opportunity to implement the application interface from
scratch.

For t h e user interface, the X Toolkit[l8] already offers an ideal method for achiev-
ing a very flexible and consistent architecture when the required specialized parts
of the user interface are implemented as so-called widgets. From this set of build-
ing blocks, all higher-level functions and applications can be built. This coincides
with the proposed bottom-up concept and, due to the object-orientedness of the X
Toolkit and widget set, is very well suited for future extensions. A widget set has
to be choosen from which the required specific widgets for TCAD purposes can be
subclassed.

For t h e t a sk level environment, a proper choice is in general non-trivial, but
becomes almost obvious, when the proposed architectural guidelines and requirements
are considered. A UNIX- (or any other operating system) shell based solution does not
fulfill the portability requirement, whereas the use of an integrating master application
(like an interactive device editor) alone does not offer programming language features.

A portable interpreter appears to be the only appropriate solution that meets all
demands. Hence we have chosen to build on XLISPI191. a ~ u b l i c domain LISP inter-

L ,, .
preter, which is available in source code. It is coded in highly portable and comprehen-
sible C code, fulfills all software-oriented requirements and provides full programming
capabilities. It can be extended for TCAD purposes by adding C-coded primitives or
by loading LISP code at run time.

There are some remarkable implementations of task level environments in related
fields, which confirm the feasibility of using LISP as extension language:

The well-known GNU Emacs[20] text editor features a LISP extension language which
is used to implement special editing modes and to provide text browser style interfaces
to a number of unix applications. The cornputationally expensive parts are still coded
in C, so that LISP mainly ties together high-level primitives.

The generic CAD system AutoCAD uses the Scheme-like extension language inter-
preter AutoLISP[21] which allows direct access to the data level. It is an invaluable
tool for customization and for implementation of a multitude of specific applications.

Winterp[22] (" W~dget Interpreter") is an application development environment, based
on the public-domain XLISP interpreter. It provides interfaces to the XI1 Toolkit
Intrinsics and to the OSF/Motif widget set and is distributed with the public-domain
MIT X11 distribution. Unfortunately, this potential candidate for building a TCAD
task level environment and user interface upon it lacks two requirements: It does
not readily accomodate additional C-code layers between the X Toolkit (OSF/Motif
widgets) and XLISP interpreter, which inhibits the introduction of higher-level user
interface layers which need to be shared among C applications, and the object-oriented

204 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

interface in LISP can not easily be extended to be used by C applications in a homo-
geneous way.

3.3.1 Interaction of Framework Components

The user interface has to allow easy access to all services provided with the framework,
such as the data level implementation (including high-level data manipulation and
interactive editing of device structures), visualization, or the error system.

Additionally, a good link between the TCAD extension language interpreter, which
integrates all system components on the task level and represents the 'Lmain program"
of the TCAD system, and the user interface is required in a way that the existing
interpreter is simultaneously used for all interpreted user interface parts.

But there are also other software components which need to be accessible from within
the extension language environment, so that a generic method for linking C-coded
functions to XLISP is highly desirable. External simulator executables need to be
started and provided with appropriate input and their termination needs to be rec-
ognized to trigger subsequent simulation steps.

4. Data Level Implementation

The data level is the backbone of the whole framework. The data level of the VISTA
system was designed to meet most of the above requirements. It features:

A layered procedural interface for applications to store and retrieve all TCAD
relevant data,

Language bindings to FORTRAN, C and LISP,

A common ASCII interchange format (Profile Interchange Format, PIF),

A compact binary inter-tool and storage format (P I F Logical Binaries, PLBs),

Parallel access to PLBs,

The ability to build databases of PLBs into PIF Binary Files (PBFs),

Database utilities to manage PBFs,

Networking capabilities.

The procedural interface to the database services is called P I F Application Interface
(PAI, [23]) and makes extensive use of automatic code generation to achieve plat-
form independence and generate the individual language interfaces. It is described in
subsection 4.2.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

4.1 VISTA'S PIF Implementation

The ASCII version of the PIF is used as an intersite data exchange format. The binary
form[23] is used as database storage format of the data level. Fig. 3 shows the logical
PIF structure with corresponding object relationships. Note that the majority of the
simulation information is carried in the grey shaded geometry, g r i d and a t t r i b u t e
constructs, while the objectGroup and meta objects are important extensions for
conveying TCAD-related data. Both the geometry and the g r i d constructs are built
out of primitive geometric objects (points, lines, faces and solids). The geometry
construct additionally holds a simulator's point of view of a simulation geometry
through segmentList and boundaryList constructs.

The a t t r i b u t e construct is used to attach any kind of information to an object. The
a t t r ibuteType subconstruct describes the meaning of an attribute. Thus the PIF at-
tribution mechanism is the most flexible means in attaching information to geometries
and grids, since they can express anything ranging from a simple descriptive string
to a vector field defined on a tensor product grid. With this unified concept there is
no separation between fields and attributes necessary, which is another milestone to
a clearly structured architecture allowing a simple implementation. Fig. 4 shows a
materialType attribute defined over a segment and Fig. 5 shows an e l e c t r i c F i e l d
attribute defined over a three-dimensional grid.

In contrast to other approaches, attributes types are semantically standardized to pre-
vent incompatibilities in tool communication (e.g. one tool writing a "Potent ia l"
attribute, and a second tool trying to read an 'LElectricPotential ' ' attribute), al-
though each tool is free to define its own local attribute types.

Due to its generality and flexibility, a PBF may .hold an unlimited number of PLBs,
and one PLB (conforming to one ASCII PIF) in turn may hold an infinite number of
objects. So, a PBF may contain anything from just one PLB with a few comments, to
hundreds of PLBs, each holding several geometries, attributes, grids and process flow
descriptions. The maximum size of a PBF is limited by the adressing capability of the
PAI, which in turn is affected by the machine word length. On a 32-bit machine the
PA1 can address one gigabyte (some bits are reserved) which is therefore the maximum
PBF size, supposed the operating systems file size limitation is higher. Since the PA1
is capable of opening up to 16 PLBs, an application has a maximum of 16 gigabyte of
data available. Typically, a single PBF holds one or two PLBs containing a geometry,
attributes and grids of a single tool run. Through the special l i n k construct objects
in other PLBs or even other PBFs may be referenced.

The binary format is closely related to the ASCII format inasmuch as the hierarchical
structure of the ASCII PIF is preserved in the binary form through the use of LISP-
like constructor nodes. However, to improve performance and data compactness,
several additional features have been implemented, such as a symbol hash table for
fast object access by name and a compressed array storage format for large arrays
which typically occur in TCAD applications for attributes on grids.

It is important to note that, although the structure of the PA1 is derived from the
PIF syntax, the PA1 itself is independent from the underlying database, and thus
could be interfaced (probably with losses in performance and compactness) to other
databases, since the TCAD application sees just the PA1 procedural interface and has
to know little about PIF. Thus, multiple different implementations of the low-level
application interface routines are possible, because the applications have just to rely
on the specification of the PIF application interface services.

The decision to use PIF was made in conjunction with the decision to adopt LISP as
the VISTA task level extension language: PIF uses a LISP-like syntax and LISP as the

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

PIF physical geometric objects J

PIF object groups

r >

... . .

Figure 3: The logical PIF structure.

i

:i::::: :..::::.i:i:i:!:I"::I"i: .,...,. :::.i:i:.'

f \

(attribute geometryattribute
(attributeType "MaterialTypel*)
(nameList (ref my-segments (valueList 1)))
(valueType asciistring)
(valueList "Silicon")

1

J

Figure 4: Attribute defined on a segment.

faceList

I \
\ \ \ I

\

PIF geometric objects

PIF primitive geometric objects

S. Halama et a].: The Viennese Integrated System for Technology CAD Applications 207

(attr ibute g r i d ~ t t r i b u t e
(attributeType "ElectricFieldW)
(nameList (ref mygrid))
(valueType (vector 3 r e a l))
(valueList 1.2 3 . 4 6 . 5

4.4 3 . 5 4.7
.)

)

Figure 5: Attribute defined on a grid.

task level language provides seamless and homogeneous fusion of data and task level
concepts. With this unique combination it is equally possible to modify simulation
data in the database directly as LISP data as well as store LISP expressions (e.g.
task level programs) in the PBF. Thus a process flow representation can be directly
embedded in the TCAD data level; there is no artificial separation, and homogeneous
data storage, retrieval and maintenance services are available for both semiconductor
wafer and process flow representations.

4.2 Implementation of the PIF Application Interface

The PA1 is split into seven layers with strict interfaces between each other. The
different layers are shown in Fig. 6.

PA1 Inkrf

PA1 Basic

User Interface

Task Level Shell (XLISP)

ace Layer

:Layer

Application

PA1 File I

PIF ToolBox

ing La ycr

PA1 Application Lay

-
-

PAI &ch~ - -
PA1 Netw

- -

ork Iayer

ayer

PA1 Sysk m Layer

Figure 6: Layout of the PIF application interface.

208 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Each layer calls only functions in the underlying layer. This mechanism leads to
separate modules with distinct functionality as used by individual tools. Each layer is
responsible for a unique storage concept of the whole PBF, with increasing complexity
towards the upper layers. The application interface works on PBFs (intertool format);
for data exchange with other hosts there is the PIF ASCII form (intersite format).
To convert PIF files between these two formats there is the PIF binary file manager
(see section 4.4), implemented as a separate PIF tool on top of the PAI.

The PA1 is able to handle simulation data in three geometric and infinite nongeometric
dimensions. Thus it is possible to read and write distributed attributes ranging from
scalar to N-order tensor values on one- to three-dimensional grids. All PIF objects can
be selectively and directly accessed with the PAI, either by handle or by name. The
PA1 will read only the necessary parts of a PBF into a cache avoiding performance
drawbacks of most file-based systems.

4.2.1 Error Handling

Errors detected in the PA1 are signaled to the global VISTA error handling system,
which allows the user to specify different error handlers for each type of error. In
addition to program-signaled errors, the error system handles system faults and pro-
gram exit too. The default error handler prints out the function, the line number and
source file name of the function, where the error occured.

New error handlers can be registered by each application to handle error conditions
in a program specific way. For example, the caching layer installs its own exit handler
on initialization to panic-close all open PBFs through the error system if a memory
fault or address violation occurs.

4.2.2 System Layer

This lowest layer of the PA1 is the link to the operating system and defines simple
access routines to the file input and output services. In ANSI C only the buffered
file I/O is defined and standarized, but buffering is not needed by the PA1 since this
is done in the caching layer above. If the unbuffered UNIX style file I/O exists in
a specific operating system, this is used instead. This is the only layer which has
system dependent functions and implements also basic functions for network access
(TCP/IP and DECnet).

4.2.3 File Layer

The standarized file I/O functions of the system layer are used by the file layer to
handle the physical 110 of PBFs. It guarantees that a PBF is only opened by one
application at a time for writing (file locking). Avoiding multiple write accesses to one
PBF allows an easier implementation of the data base, since the physical file cannot
change during access (unless it is closed); multiple read-only accesses are allowed. The
locking of a PBF is not implemented through system functions. It works through a
mark in the header of the PBF and a special lock status, where multiple accesses of
the same file at the same time are detected. The file layer also allows the creation
of temporary PBFs for intermediate storage of simulation data. Temporary files are
stored in PBFs without a physical name and deleted automatically upon closing.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

4.2.4 Network Layer

The functional interface exhibited by this optional layer is equivalent to the one of the
file layer for access to PBFs, but allows instead accesses to PBFs over the network.
In order to minimize network traffic, the functions of the file layer are used for local
and temporary PBFs. The network databases are accessed through a database server
as shown in Fig. 7, which opens, reads, writes and closes PBFs.

Application 1 L Application 2 I Application n I

database server r r l

Figure 7: Local and network storage.

The client uses the database server for all file 110 functions on the network PBFs,
but all database operations are done locally with the help of the basic and interface
layers. For fast access to the data, the server holds some data blocks of the files in a
local cache similar to the caching layer. This cache is shared by all clients and is not
cleared upon closing a PBF, so that a following reopen and usage of the same file,
even by a different application, is fast due to its remaining in the server cache. All
write operations are delayed and buffered through a cache to maximize performance.
The runtime option of unbuffered write operations ensures consistency of the PBF
during update operations, and allows to examine a PBF while a tool is running and
writing to it, which is an invaluable help in debugging simulators.

Another aspect of the network layer is the capability of message passing. It allows
the application to contact other programs (e.g. the XLISP interpreter on the task
level) over the network. Fig. 8 shows an example network configuration with tools
and database servers interacting over the network.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

: !m: Operating System

I ,
I

I 1
I TCAD Shell I
, YEA Operating System

6 Files

I I f Messages
I Messages j
I and
I

binary Data
---------------------A------- --------.

I

I
I I i binary

Data

Massages I:.-ry-
- - - - - - - - - - - - - - - - -

Messages ;

binary Data
' I- .

I

I
I I

Figure 8: Examples of PA1 networking capabilities.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 211

4.2.5 Caching Layer

This layer buffers I/O data to minimize disc and network accesses. Depending on the
application, the size of this buffer can vary from a few hundred kilobytes to several
megabytes. The advantage of the cache is that data requested by read operations
frequently can be found in the cache, while write operations can be delayed until
closing of the file, depending on the page size and total cache sizes and on the page
replacement algorithm. The caching layer is designed in such a way that the page-
replacement algorithm can be substituted with a different one like LRU or random
replacement of memory pages [24]. Currently, an algorithm implementing a combi-
nation of these two methods is used. The memory pages are usually as big as or
- for better performance - even bigger than operating system cache pages. This
layer also allocates file space for all types of objects. To optimize cache hits, all small
objects with a few allocation units in size are contiguously stored in one big chunk
whereas large data pieces are always appended at the current end of the file. Since
the above layers need the functionality to update data items, a free() operation is
also implemented so that no space on the physical file is permanently wasted. From
the above layers, the caching layer can be seen as a big malloc()/free() library
with access functions that perform cached file access.

4.2.6 Basic Layer

This layer is the lowest to implement structured data nodes. Fig. 9 shows the generid
structure of such a basic layer node. The header word of the node determines its type
and structure, i.e, the type and number of the generic and specific data slots. The
former are common to each node type whereas the latter carry the actual data visible
to upper layers. Thus the shaded fields in this figure are maintained and used by the
basic layer. For the unshaded fields the basic layer just reserves space and provides
access functions.

generic
slots

data values specific
slots

Figure 9: Implementation of a basic layer node.

The possible data types of the specific slots as determined by the tag field of the
header word are:

Car pointer to another node

Symbol unique symbol name in the logical PIF file

Symref reference to a symbol node

Char character node

Byte unsigned byte value (8 bit)

212 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Short short data value

Word unsigned short data value (16 bit)

Long long data value

LongWord unsigned long data value (32 bit)

Float real data value

Double double presision data value

LongDouble quad precision data value

All these types correspond to the C language types of the same size. To connect
nodes together into a list or to implement arrays like strings (consequently stored as
character arrays), the f l a g s in the header word are used. The possible values are
any combination of the following definitions, responsible for determining the generic
slots of the node:

Cdr the node has an implicit pointer to a successor node

Array the node is an array (its size is stored as a separate entry)

Compressed the data of the node is compressed

With the basic layer a functional interface to a LISP-like information storage concept
is implemented. The interface presents the notion of atoms (primitive data items
like a number, character or string value) and constructor nodes (CONS nodes for list
creation) to the upper layers, as described in [25]. One significant difference to a LISP
interpreter's memory structure is that every basic layer node is implicitly a CONS
node providing a CDR pointer as one slot in the data slots and carrying an atomic
data value, i.e. the C A R pointer is redundant and therefore removed. The actual
CONS node is implemented as a basic layer node with the atomic data value being a
CAR pointer.
It should be noted that in contrast to LISP storage concepts, all nodes of the basic
layer (and hence the PIF Application Interface) are originally kept on a file and are
just cached through the caching layer. This implies, that all reference pointers stored
in a basic layer node are file offset pointers and thus do not point to memory locations.
It is the caching layer's duty to resolve those references correctly.
To illustrate the different storage concepts, let us consider the simple PIF expression
(re f P (valueLis t 1 2)) .

This construct represents a reference to the first two points of a po in tL i s t P. Fig. 10
shows how this construct would be stored in the XLISP interpreter with separate
CONS nodes. The corresponding PBF structure, as it is handled in the basic layer, is
shown in Fig. 14. The CONS nodes are fused with the C A R data values, to compact
the data structures and minimize data access time, which is crucial on slower external
storage media. Furthermore, this concept retains the principle extension language
storage structures on the data level.
Using this concept of LISP-like information nodes the PLB is stored, whereas the
PBF is built as a linked list of PLBs, shown in Fig. 11. Since this list is only searched
when the file is opened, this is no performance drawback. The data area is shared by
all PLBs in the PBF, but on write operations it is checked that no crosspointers into
disjoint PLBs occur. To allow fast access to all symbols, these are stored in a hash
table which is unique for each PLB so that there are no conflicts between different
PLBs.

S. Halarna et al.: The Viennese Integrated System for Technology CAD Applications

I constructor I A constructor I A constructor I

constructor
cdr

constructor constructor
cdr f -f (dr m

car
I

Figure 10: Example of a LISP internal data structure.

file header 1
I PLB header 1

I data area

I data area I I

t data area

Figure 11: Layout of a PIF physical file with multiple logical files.

214 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

4.2.7 Interface Layer

This layer is the implementation of the PIF syntax, providing administration, access
and inquire functions. To improve performance, it uses a structure of the basic layer
array node to implement the interface layer nodes. A reserved field of the header
word of a basic layer node Fig. 9 is used to store the type information of the interface
layer node (labelled IL node type) as an integer value.

The t a g field of the basic layer node contains the CAR type identifier, stating that
this node contains CAR pointers to other nodes as data values. The f l a g s field of
the basic layer node has the Array and Cdr bits set, indicating that the interface layer
node may have successors (pointed to by the CDR pointer) and multiple CAR data
values (the number of which is stored in the Size field of the node).

The corresponding name of the object and all related information is stored in an
automatically generated syntax table. This reduces the file size of a PLB significantly.

The IL node type identifies the PIF object type like pointlist, geometry or valueType
which are defined by the syntax. This field is automatically checked upon creation
of a node through the syntax table. All access functions and the syntax table are
generated automatically from a syntax description an example of which can be seen
in Fig. 12.

(r u l e ' snapshot
' (d e r i v
LPAR SNAPSHOT OBJNAME
(opt comment)
(l l i s t name l i s t)
(l l i s t a t t r i b u t e)
RPAR))

Figure 12: Abstract syntax description of the PIF snapshot construct.

The snapshot construct is defined as a named PIF object, whose name can be used
to search for the object. It has an optional comment, an optional list of references
through the nameList construct and an optional list of attributes. Therefore, the
node will have four specific slots. The first slot will hold the unique name of the
snapshot. The second will hold the comment, the third the references and the last
the attribute definition. This information is also used to limit the search depth when
traversing the tree (in case not all slots have to be searched) on PLB inquiries, and
to check the correctness of the PLB upon node creation.

The previously mentioned example of a reference construct represented with interface
layer nodes is shown in Fig. 13. The r e f and va lueLi s t constructs have specific
interface layer node representations, whereas the symbol name and the va lueLi s t
indices are genuine basic layer nodes, since they just represent primitive data values.
Compared with the basic layer-only representation of the same reference construct in
Fig. 14, a significant reduction in the number of required nodes and total storage size
can be seen, resulting in faster data access.

Since the syntax defines many fields optional to allow a wide range of possible con-
st,ructs, additional "language rules" are needed to define a well constructed PLB which
can be understood by different simulators. Many of these rules are implemented by
the application layer, others are described in the PIF CookBook (see [26]) which
defines the semantic meaning of the PIF.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

-1 J
L symbol name P

valueLisl ref:

Figure 13: Example of an interface layer data structure.

I symbolname ref I)

I svmbol name p I \ I

I aym (cdr 1

symbol name value~istl)

Figure 14: Example of a PIF binary file and basic layer data structure.

216 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

4.2.8 Application Layer and Language Binding

This layer implements some functionality common to simulators and utility programs.
Its design is intended to be extendable in order to adapt the interface to new sim-
ulators or s ~ e c i a l demands. Manv semantic rules and checks are im~lemented in
the application layer, making the adaption of existing simulators to PIF easier, and
ensuring interoperability in the VISTA framework. High-level functionality and auto-
matically invoked data-manipulation services are provided to relief TCAD tools from
tedious 'Leveryday" work. The routines of the application layer implement geometry-
manipulating as well as attribute-manipulating functions, because we think that both
aspects are closely related in a TCAD environment. This fact is expressed in the uni-
form data representation of geometries and attributes on geometrical objects in PIF.

FORTRAN Interface

As the application layer is written in C and most simulators are written in FOR-
T R A N , we have developed language bindings for most application layer functions
and all inquiry functions to F O R T R A N . This binding is strongly dependent on the
two compilers, since there is no standard in parameter passing of strings in FOR-
T R A N and the implementation of logical values (. TRUE. may be represented as the
cardinal number 1 or -1). So we generate all binding functions automatically out of a
formal descri~tion and additional information about the s~ecific F O R T R A N com-
piler. All string and logical variable conversions to C types are done automatically
before the user-supplied C code is called. Adding a new binding or another compiler
requires only few additions in the configuration files.

LISP Interface

The LISP interface of the PA1 is not built on top of the application layer, since it
makes no sense to use LISP for computationally intensive calculations on PIF data.
The extension language of the task level is primarily used to generate input PLBs
and control information for TCAD tools or to read output values of simulation results
for further investigations. Thus the extension language interpreter connects to the
interface layer, allowing full access to PBFs. For convenience there is an additional
LISP library to support the creation of whole PIF constructs (like generated with the
application layer).

High level functions of the PIF ToolBox are automatically bound to LISP by the Tool
Abstraction Concept (TAC) and so available to the TCAD shell. The big difference
between Application Layer functions and ToolBox functions is that the second get
their input from the PLB and write their output back to the same or another PLB.
No data manipulation is done in LISP.

4.3 Use of the PA1

The short code example in Fig. 15 shows the C calls to generate an example of a PIF
data structure. namelist is the handle to the parent nameList object [26]. The two
element array points holds the indices of the points on which the line is created. In
the Application Layer code example Fig. 16 this part of information is generated by
the function palWriteLineList I. In addition to the reference construct this function
generates the whole lineList construct, as can be seen in Fig. 17.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 217

{
/* local variables * /
paiObject valuelist, ref;
paiLong points [21;

points[Ol = I;
points[il = 2;
ref = pilCreateRef(

namelist, /* parent nameList construct * /
pointlist, /* referenced pointList P * /
pilCREATENESTED) ; / * create a new reference construct

* /
valuelist = pilCreateValueList(

ref, / * parent ref construct */
pilDATAINTEGER, / * data type is integer */
points, / * data points indices */
0, 2, / * which values to write */
pilCREATENESTED) ; / * create a new valueList construct

Figure 15: Interface layer code example.

{
/* local variables * /
paiOb j ect linelist ;
paiLong endindices [I] ;
paiLong ob j dx [21;

endindices [O] = 2;
objdx[Ol = I;
objdx[i] = 2;
linelist = palWriteLineListi(

parent, / * handle to PIF file * /
"myLineU , /* name of the lineList */
1, /* number of lines */
endindices, /* endindices of the lines */
2 , / * number of used points */
pointlist, / * handle to referenced pointlist P */
objdx, / * point indices */
palCREATENEW) /* create a new lineList */

Figure 16: Application layer code example.

(1ineList "myLine"
(nameList (ref P (valueList 1 2))))

Figure 17: PIF construct produced by example code.

218 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

4.4 PIF Binary File Manager

As mentioned above, the whole PA1 works on a binary representation of the data
for fast access. This type of data storage is optimized for architecture-dependent
coupling of simulators in non human-readable form. For data exchange via eMail
or FTP, or making PLBs human-readable, there is the ASCII PIF representation
holding the same information. The PBFM (Fig. 18) is able to convert the binary
to ASCII PIF and vice versa. Thus data exchange between machines with different
byte ordering (little and big endian) and floating point formats (e.g. IEEE, VAX and
IBM) is possible by converting PLBs to ASCII PIF and back to binary format on a
machine with different architecture. The maintenance functions of the PBFM allow
the user to list all PLBs of a PBF, delete any PLB within a PBF, repair a not cleanly
closed PBF and check PIF ASCII files for lexical correctness.

Pif Binary File Manager

Conversion

Binary (intertool) ASCII (intersite)

Figure 18: Using the PIF Binary File Manager.

4.5 Semantic Issues and High-Level Functionality

The PIF itself, be it its ASCII or binary form, only defines a syntax. It does not
prescribe any interpretation of the stored TCAD data. This is one issue which ac-
counts for the flexibility and general-purposeness of the PIF. On the other hand,
many ambiguities arise from the possible multilateral description of the same phys-
ical problem in terms of PIF syntax. There are many ways to describe a geometry,
ambiguities in recognizing a grid or an attribute, and general PIF semantics. These
ambiguities arise from different coordinate systems, hierarchical or non-hierarchical
geometry specifications and using one or many lists of primitive geometric objects,
with or without references to other PLBs. Grids can be of unstructured or tensor
product type, defined on a segment or the whole geometry and attributes can be de-
fined on the grid, its points, lines, faces or solids. Moreover, the application interface
has to know what to do with different units of measure. when to write and what to
reference in a snapshot, geometry or wr i t t en construct, where to define attributes,
what attribute types to use, . . .).

However, ambiguities and multilateral descriptions are a general problem, because
the more general a syntax is and the more functionality a procedural interface has,
the more semantic standardizations are needed to make applications work properly
in a common environment.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 219

In order to unambiguously interpret PIF data, there have to be both semantic con-
straints which applications have to adhere to (losing PIF flexibility), and ambiguity
resolution mechanisms built into the application interface. However, only few addi-
tional semantic rules s~ecified in the PIF CookBook 1261 have to be obeved. The

L ,

PA1 takes care of different coordinate systems through a transformation matrix ap-
plied to geometrical data, and accounts for different units of measure through a unit
conversion system (e.g. point coordinates can be written in micrometers and read in
inches, different spatial axes can have different units). It automatically resolves links
to other PLBs and provides a multitude of inquiry functions for locating a certain
PIF construct wherever it appears in the PLB.

The more severe semantic differences between simulators (e.g. a simulator working
on an unstructured grid coupled to a simulator using a tensor product grid) are dealt
with in the PIF ToolBox, comprised of generic PIF tools such as grid generators,
interpolators, attribute and geometry manipulators using the PA1 and preparing a
PLB according to the semantic standards of the PIF CookBook [26]. However, these
tools are controlled by the task level and belong to the tool rather than to the data
level.

A particularily difficult problem is the support mechanism for the innumerable dif-
ferent grid types used today. A distinction between tensor product and unstructured
grids has been made, because we didn't want to lose an orthogonal grid's unique fea-
tures by decomposing it into rectangles/cuboids. Therefore the special o r t h o P r o d u c t
construct was introduced, which significantly enhances the efficiency of storing ten-
sor product grids while preserving its advantageous structure. However, since the
number of different unstructured grid types increases steadily, a specification mech-
anism for dynamically adding new grid types just by providing a unique name, an
interpolation and a decomposition function has been implemented. Using automatic
code generation tools, these routines are linked into generic PIF ToolBox functions,
thus adding support for the new grid element to the whole framework. Fig. 19 shows
some example elements and how they are referenced in a PIF grid. Through using an
a t t r i b u t e defined over the f a c e L i s t it is possible to specify different element types
in one and the same grid.

New element types are introduced by specifying the name, dimensionality, number of
nodes and a decomposition and interpolation function in a element definition table.
After recompiling the PAL, the new element type is known to applications through a
unique constant identifier. But most applications need not explicitly take care of new
element types: Reading attributes defined over a grid can be done without knowledge
of the grid, since there is a generic interpolation function, which is automatically
invoked when requesting an attribute value at a location (x , y). The generic inter-
polation routine knows the grid type the attribute is defined on, and correspondingly
invokes the orthoProduct interpolation or determines the element in which the re-
quested location lies, then invoking the element interpolation function defined for that
element type.

Tensor product grids are supported through the o r t h o P r o d u c t construct. The grid
has an origin point, may have different topological and topographical dimensions and
each dimension may have a different base vector. Conforming to the PIF syntax, the
number of supported dimensions is infinite. The example Fig. 20 shows a tensor prod-
uct grid of topological dimension 2 lying in three-dimensional space. This capability
is needed e.g. to describe distributed boundary conditions of a three-dimensional
device.

The assembly of solver matrices is not supported by the PAI, since we believe that
this task is very problem-specific and current networks don't exhibit the necessary

220 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Figure 19: Support for unstructured grids.

(grid grd-1
(pointList pgrd
(valueList)

) interpolTRI 3 ()

(orthoProduct my-tensorgr id
; t h e 3D base po in t
(o r i g i n

(u n i t s "urn")
(valueType (po in t 3 r e a l))
(valueLis t 1 . 0 1 . 0 0 . 0))

; t h e two a x i s vec to r s
(base

(valueType (vec to r 3 r e a l))
(valueLis t 1 . 0 0 .0 0 .0

0 . 0 1 . 0 0 . 0))
; t h e two a x i s s p e c i f i c a t i o n s
(axes

(valueType r e a l)
(valueRange 0.0 5 . 0 0.23)
(valueLis t 0.0 0 . 1 0.22 0.37 0 . 4))

)

(f aceList f grd
(nameList
(ref pgrd 1 2 3)))

(attribute elemgrd
(nameList
(ref fgrd))

Figure 20: Tensor product grid example.

decomposeTRI3()

A. interpolTRI 6 ()
(attributeType decomposeTRI6()
"elementTypeW)

(valueType
asciistring)

(valueList
"TRI3"
"TRI~" interpolTET10 ()
. . . decomposeTETlO()
. . .

)
) interpolPRISM6()

1 decomposePRISM6()

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 221

performance to transfer these large amounts of data in an acceptable time frame to
a solver server. The "know how" of a simulator is always contained in its physical
models, the knowledge of which is essential in matrix assembly. A simulator using
a standard matrix assembly method would lose much of it's advantages. This holds
true for grid generation and the partial differential equation solver too.

4.6 Performance Evaluation

Besides the goals of classical intertool PIF implementations featuring object-oriented-
ness (PIFJGestalt, [14]) or suitability for TCAD environments (BPIF, [13]) our im-
plementation stresses efficiency in terms of run-time performance and database com-
pactness. Thus, writing and reading 10 000 points (in three-dimensional space) of a
PIF p o i n t L i s t takes 0.51 and 0.66 seconds (real time) respectively on a DECstation
3100; the database written is 250 kB in size. Therefore, linking a TCAD application
to the VISTA environment is not a ~erformance issue. In contrast to a client-server
approach, the administrative and communication overhead is negligible for any ap-
plication consuming a few seconds of CPU time - the commonly used argument, that
PIF is not practical because of its low run-time performance no longer holds true.

5. Implementation of the VISTA User Interface

5.1 Structure

The structure of the VISTA user interface is shown in Fig. 21. The bottom layer
is the X Toolkit[l8], an object-oriented subroutine library, designed to simplify the
development of X Window applications. The X Toolkit defines methods for creating
and using widgets, which appear to the user as pop-up windows, scrollbars, text-
editing areas, labels, buttons, etc. Basic functionality is provided by the generic
Athena widgets, which are part of the MIT XI1 distribution. We have decided to use
this widget set rather than any other open standard, because a migration from these
generic widgets to another widget set (like OSFJMotif, or Open Look) is significantly
easier than vice versa.

A widget-wrapping layer has been put on top of these widgets in order to achieve some
widget-set independence. All widgets are created and modified via specific functions
rather than via the generic interface of the X Toolkit. This facilitates the potential
migration of the entire user interface onto another X Toolkit-based platform.

In addition specialized VISTA widgets have been developed on top of the widget-
wrapping layer for supporting TCAD-related information flow. The VISTA widgets
are also created and accessed via specific functions, so that they can more easily be
replaced by other widgets, should the need arise.

The top layer, the VUI (VISTA User Interface) library serves two purposes. It pro-
vides some often needed higher-level operations and it simultanously contains most
of the policy which is shared among VISTA applications. In other words, the VUI
library takes care that different parts of VISTA look alike and behave similar. In-
teractive applications (like visualization clients or the device editor) have their own
VUI-based user interface, whereas applications requiring no user interaction (like sim-
ulators or converters) are provided with a front-end user interface which is executed
by the XLISP interpreter.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

.................-. Xlisp

VISTA Bindings

ti

V v

Figure 21: The structure of the VISTA user interface. Shaded boxes represent ex-
tensions to the public domain products XLISP and the MIT X Window system. The
arrows indicate the sequence of function calls between different parts of the user
interface.

X Tool kit

< VISTA Widgels 1

v
Xlib

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 223

5.2 The VISTA Widget Set

The Athena widgets were developed by MIT's project Athena (it is part of she X
release). This widget set was not intended to be sufficient for all purposes and thus
does not fulfill all the needs of a TCAD user interface. but it does ~rovide the reauired
generic functionality, it is highly portable, it. is available on virtually every modern
workstation platform, and it is easy to comprehend.

Simple el

Figure 22: The widget set used by VISTA. The VISTA extensions are shaded, the
Intrinsics and Athena Widgets used for subclassing are blank.

The VISTA widgets are subclassed from either X Toolkit Intrinsics or Athena widgets
(Fig. 22). The Canvas, PED, PedGraph, and Ruler are parts of the interactive PIF
Editor (PED), the IntValue, Realvalue, TextLine and FileSel are widgets for the
specification of integer, real, and string values, and files respectively, and the SVGraph
widget is a widget for displaying simple vector graphics plots.

5.2.1 The PIF Editor

A data level implementation would be incomplete without an interactive graphical
editor for manipulating the geometrical data (device geometries) stored in the binary
PIF. The PIF editor (PED) is the front-end user interface for the interactive creation
and modification of geometrical data in one, two and three spatial dimensions and of
all attributes (like the material type) which define the device structures (see Fig. 23)

The PED makes use of the Canvas, Ruler, and PedGraph widgets and is implemented
as a widget itself (see Fig. 23). This allows the use of multiple subwindows for
editing one and the same device geometry, editing of several logical PIF files in one
PED process and even using the PED as a component in "surrounding" applications.
Thus, arbitrary additional menus or other widgets can be added without interfering
with the PED itself.

The PED can work on all PIF files independent of the specific semantical contents.
It is a generic tool for building a simulator input PIF file from scratch, for modifying
existing device structures, and for visualizing geometric PIF information.

The PIF data is held in a memory-resident intermediate representation which is
slightly extended with respect to the binary PIF to allow efficient processing of inter-
active manipulations. At the end of the editing session or during intermediate save
operations the PIF file is updated.

224 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Figure 23: The PIF editor widget.

The hierarchical geometry structure is supported by LLsnapping" on existing lower-
level geometrical objects and by automatically creating missing intermediate-level
objects during input. Common techniques like background grid or coloring according
to different physical or logical criteria are used to facilitate the comprehension and
assimilation of the spatial information.

The top-level execution control of the PED is implemented as an extensible and
configurable automaton which filters all user input and triggers appropriate actions.
Through the default configuration for this automaton, all graphical functionality is
accessible via mouse and keyboard input is used for all non-graphical data.

The implementation as a widget, together with the overall architecture of the user
interface and task-level allows LISP-coded editing macros to be added easily. It
should also be noted that the use of LISP as an extension language for an interactive
geometry editor has already proven to be a very successful strategy for interactive
geometrical CAD[21].

5.2.2 Vector Graphics Widget

The X Toolkit and Athena widget set do not provide "classical" two-dimensional
vector graphics capabilities, which ars a firm requirement for any CAD discipline.
To support platform-independent vector graphics output we have implemented a
minimum-functionality vector graphics widget (Fig. 24) which is built directly on
the generic Xlib and X Toolkit.

The widget remembers all drawing commands and provides zoom and pan functions
for the user, which henceforth, the programmer does not need to bother with. Call-
backs can be utilized for example to digitize data points. This widget is used as
interactive back-end of VISTA'S visualization library.

S. Halama et a].: The Viennese Integrated System for Technology CAD Applications

Figure 24: The vector graphics display widget is used for displaying the output of
PIF-based visualization tools.

226 S. Halarna et al.: The Viennese Integrated System for Technology CAD Applications

The contents of the widget (i.e. the "plot") can be converted to PostScript format,
other converters can be added easily due to the limited set of drawing commands
which is used.

5.2.3 File Selection

As it is not provided with the Athena widget set, we have implemented an advanced
file selection widget (see Fig. 25), which allows operating system transparent spec-
ification of files (including a GNU Emacs like filename completion) using a string
subwidget and operating system independent traversal of the directory tree and se-
lection of existing files using list subwidgets.

Figure 25: The VISTA file selection widget.

The selection of logical PIF files (one physical file can contain multiple logical PIF
files) is implemented as so-called widget bouquet.

5.3 The VUI Library

5.3.1 Bouquets

The VUI library contains functions which create often-used combinations of several
widgets in one step, arrange them and set up all required connections and callback
functions. These widget bouquets behave as if they were single composite widgets
and are indistinguishable from the user's point of view. This approach is similar to
the OSF/Motif "Convenience Function" concept(271, and helps to maintain a unified
appearance for different VISTA applications.

The following examples show some widget bouquets for performing TCAD-related
subtasks:

The periodic table shown in Fig. 26 is implemented in C and is used by applications
to let the user select a "pure element" material from a material database, which is

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 227

2

xvui2 a
I f i l e l) d i e l ogs lm

8
Ia IIa IIIa IVa Va VIa VIIa VIII. Ib IIb IIIb IVb Vb VIb VIIbVIIIl

I

2

3

4

5

La Ca Pr Nd Pia SR Eu Cd Tb Dy Ho Er Tm Yb Lu

Ac Th Pa U

Figure 26: The periodic table bouquet lets the user select chemical elements as bulk
or implantation material.

shared by all (fully integrated) simulation tools. It provides a familiar method for
the identification and specification of single chemical elements. This bouquet is used,
e.g., to ask the user for the bombarding ion species for the Monte Carlo simulation
of ion implantation.
The symbolic PIF browser bouquet (see Fig. 27) is generated by a protoype LISP
program. It is a generic intuitive facility on the task level for the selection of PIF
objects and represents the hierarchical structure of the PIF file in iconic form. It can
be used in any step which requires the specification of one or more PIF objects, like for
example visualization (choice of attribute to be visualized), inquiry, or post-processing
operations.

5.3.2 Tool Control Panels

Applications which don't require user interaction (like all classical simulation pro-
grams) can very easily be provided with a "supply parameters and run" user inter-
face. The widget bouquets shown in Fig. 28 and Fig. 30 are tool control panels which
are created from a formal specification of the tool and its parameters by an interface
generator, which is implemented in LISP. This high-level user interface tool, in most
cases, relieves the application engineer from the need to use X Toolkit programming
to make new tool control panels.

6. Implementation of the Task Level Shell

The applicability of XLISP for the execution of practical TCAD optimization tasks
has already been demonstrated[28]. The programming language features offered by
LISP are a powerful and efficient basis for carrying out complex task flows, like, e.g.,
nested optimization loops.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Symbolic PIF Browser
"*" "'- ,.--- ".."""..".., ,,".- """..."..".."..,
i hi;,!,./ i.!L%:i.i?.~j.j !:;.i!%j.J:{:.j

/iue/d5l/users/halama/vhme/minimos~doping.pbf:test

test

gaop

I/l geoL
It] 9eoF

gees

m g e o B

geoG

gridhv

gricthvp

rn BoronDoping InpurityDescri ption

PhosphorusDoping Impuri tyDascription

rn Brsanicbpicg ImpurityDescription

BcceptorDoping ImpurityDeseription

DonorDoping InpurityDescription

Figure 27: The symbolic PIF browser bouquet is created according to the data con-
tained in a (binary) logical PIF file and reflects its hierachical structure.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

--,-----Physical Ps-ters ----------
Atomic Nr:

0 8 BmON Implanted Element 5

Ion Mass iZZZ-18 amu

Dose i/cmA2

Energy -18 kcV

Tilt Angle 1 8 degrees

Rotate Angle dbgrees

Nunber of Rotations 1018 rot.

Save C w r m t Panel

Load Default Panel ILoad(

--------,Simulator Specific Keys ---------
Siwlator Specific Keys

------- konetry Inwt ---------
File m n e [et~hi.pbf:l0gi~a1-2)

Figure 28: This widget bouquet is the user interface for the PROMIS Monte Carlo
ion implantation module.

The XLISP interpreter which is used for the task level implementation of VISTA has
also bindings to the VUI-library, the X Toolkit, and the widget sets. This integration
of the user interface into the task level interpreter (which can be viewed as the "main
program" of the TCAD system) is indispensable for supporting the casual user with
a comfortable point-and-click interface and for providing the experienced user and
programmer with a high degree of customizability and extendability.

Furthermore, some parts of the user interface have been implemented as LISP macros
and are loaded at run-time. The XLISP integration has also proven to be a valuable
tool for the rapid prototyping of user-interface concepts and for tasks like the auto-
matic generation of widget bouquets, like the tool panels in Fig. 28 or Fig. 30.

The X Window interface is not a feature of the original XLISP interpreter, although
OSF/Motif bindings[22] are available, which, unfortunately, besides the disadvantages
mentioned earlier, make heavy use of the "non-standard" object system of XLISP.

To preserve the consistency and simplicity of XLISP and in order to provide a homo-
geneous procedural interface and programming environment, we had to implement
the X Window interface (VISTA UI Bindings in Fig. 21) for XLISP from scratch.
As there are other C-coded parts of the framework which need to be accessible on
the extension language level, a generic, automatic method, for linking given functions
with the XLISP interpreter has been implemented.

The size of the original XLISP interpreter (Version 2.1) is 270kB. Some specific exten-
sions have been made to the interpreter, mainly for event handling and for introducing
miscellaneous operating system interfaces, like for process control (for running sim-
ulators), and other features which are needed for TCAD purposes. These 200kB of
extensions thus increase the size of the task level interpreter to 470kB.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

Module
xvw
vu i

Table 1: Number of functions (Nj) , number of constants (N ,) , size of code for the
XLISP interface, and module size of every module that is linked with the XLISP inter-
preter. Numbers in parentheses indicate manual binding, all other code is generated
automatically.

vo s

pai

The code required to implement LISP interfaces for framework modules which are rel-
evant for the task level is currently 335kb (see I) , but is steadily increasing. There are
only a few functions (indicated by parentheses in Table 1) which are manually bound
to the interpreter. The vast majority of the interface code is generated automatically
during the build phase of VISTA.

description
Extended Widget Set
User Interface Librarv

In order to integrate the XI1 event handling mechanism in a consistent way, the stan-
dard read-eval-print loop was extended to handle events coming from the XI1 system:
Events coming from the user interface (like an expose request for a window) are passed
to the interpreter and processed simultaneously with keyboard input or events com-
ing from other (network) streams connected to the XLISP interpreter or from signals
which indicate events like child process termination. During the read phase, the in-
terpreter first checks whether the evaluation queue of pending expressions needs to be
emptied and optionally evaluates these "callback" expressions. Then it waits for any
event coming from streams, terminal input, signals (e.g. from terminating simulator
runs), or the X Window system. When any of these events occurs, the interpreter
puts the associated callback expression into the abovementioned evaluation queue -
or in the case of terminal input - waits for completion of the expression and then
evaluates it.

OS Interface
PI&' Application Interface
total

6.1 The Callback Concept

Nj
105
83

The object-oriented callback concept of the X Toolkit may be generalized in a very
straightforward manner and successfully applied to those parts of the TCAD frame-
work where a proper decoupling and high flexibility of the control flow is desirable.
It is obvious that this is of special value for a flexible task level implementation.

(63)
(20)
315

Events coming from the X Window system are passed to the XLISP interpreter.
If a LISP expression was associated with the activated widget at creation time, this
expression is evaluated by the interpreter and can be used to change parameter values,
trigger other events like the execution of a simulator or start the evaluation of a LISP
program or any other tool.

N,
19
3

The same callback concept is also used for the control of simulator execution. If a
simulation tool terminates, it signals the termination to the parent process, which

12

(117)
234

binding
115kB
96 kB

code size
531kB
254 kB

(2) kB
(54) kB
335 kB

214 kB
2256 kB
3683 kB

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 231

again causes an associated callback expression to be evaluated. Callbacks can be
triggered by the user interface, error handler, network layer, timer, or by termination
of child processes.

By agreeing upon a standard prototype for callback functions (which is already spec-
ified by the X Toolkit):

void callBackFunc(object-identif ier, client-data, call-data) ;

it is possible to use a unified consistent method in various places throughout the
framework, thereby gaining in simplicity and flexibility.

6.2 Task Level Tool Integration

As already pointed out earlier, there are different methods to create a task level
interface for a given tool. Linking the tool with the interpreter is only feasible for
small-sized applications, which have library-like properties. For larger tools (like
simulators) a LISP interface must be coded to be able to run them from within the
TCAD shell.

Fig. 29 shows a simple example of the task level interface of a conversion tool, which
converts SUPREM 3 output files to PIF. The corresponding tool control panel, which
is automatically created at run-time, is shown in Fig. 30.

7. Conclusion and Future Aspects

It is the scope of methods and unpredictable requirements that makes technology
computer-aided design a challenging discipline. It is yet this property that dictates
the rigorosity of a future-oriented TCAD framework. The need for comprehensibility,
on the other hand, prohibits the (otherwise feasible) creation of a framework by
combining existing solutions.

In VISTA, we have achieved a homogeneous and comprehensible architecture by fa-
voring the generalization of existing concepts over the introduction of new (maybe
even better suited) partial solutions. A bottom-up design has been used, wherever
possible, to be prepared for unforseeable future requirements.

Using PIF as the interchange forrnat of the data level was the initial choice, which
was motivated by the sole existence of the PIF standard at that time, and by its
intrinsic flexibility and open-endedness. However, the crucial part of the data level is
an efficient application interface like the VISTA PAI.

One of the major reasons for using the X Toolkit to implement the specialized user
interface functionality as widgets is that it provides a clear concept for re-use and for
future extensions. Finally, the well-known advantages[6][7][22] of an interpretive lan-
guage for composing a user interface from widget-level building blocks have verified
the choice of XLISP as extension language interpreter. The generalized use as exten-
sion language interpreter, "main" program of the user interface, and central facility
for CASE-related tasks contributes significantly to the consistency and maintainabil-
ity of the system. Automatic code generation (also using XLISP) helps to raise the
level of abstraction on which problems like language binding are solved. Because
of its homogeneity, the combination of LISP as the task level extension language
and PIF as the data level interchange format has proven to be a flexible basis for a
comprehensible and powerful TCAD framework.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

; This function actually runs the sup2pif executable

(defun aup2pif (asc pbf pif)
(vos : :run

(vos::oa2vospec "sup2pifU)
(format NIL "'A 'A 'A" asc pbf pif)

)

; This function is called when the confirm button is pressed
8

(defun aup2pif-confirm (widget client-data call-data)
(aup2pif

(vos::get-vospec (vuu::get-value 'ASC client-data))
(voa::get-voapec (vuu::get-value 'PLB client-data))
(voa::get-logical (vuu::get-value 'PLB client-data))

1

; This defines the control panel for the suprem 3 wrapper

(setq sup2pif -widget
(vui : :generat e-tool-panel
(setq sup2pif -description

1 (

(NAME I8SUPREM3 to PIF")
(ICON "topif 'I)
(CONFIRM #'sup2pif-confirm)
(FORM
(ASC VOSFILE I1SUPREM3 .sav file: 'I* .savU NIL)
(PLB VOSPLB I' output PLB: l1 l o * .pbf "sup3prof .pbf ")

1

; This creates an entry in the pulldown menu, which will pop up
; the tool control panel
,
(vui::add-to-menu vui::current-menu-button

"suprem3->PBFa1
#'(lambda (widget client-data call-data)

(vui::popup-tool-panel sup2pif-widget)

NIL

Figure 29: Task level LISP code which is required to integrate the SUPREM 3 output
wrapper.

S. Halama et a].: The Viennese Integrated System for Technology CAD Applications

SUPREM3->PIF m
SUPREM3 ,sav f i Is: 1-1

output PLB: Isupapraf.pbf1

Figure 30: The tool control panel for the SUPREM 3 to PIF converter.

7.1 Tool Abstraction

The use of high-level tool abstraction methods for CAD tool management has been
demonstrated through the Cadwell design framework[29]. We believe that a gener-
alized and unified concept for the abstract characterization of tools (even in a low-
level fashion, down to single functions) is highly desirable as it can be employed for
many different purposes such as the automatic creation of a user interface or the
generation of different language bindings. From an abstract tool description in LISP
syntax, several pieces of interface code (generating a main program which takes care
of argument-passing for a given function, thereby forming a stand-alone executable,
for instance) can be generated automatically. The same tool abstraction can also be
used to describe a tool for optimizers or other sequencing or analysis tools.

Another - already existing - application for a unified tool abstraction concept is
the automatic integration of given C functions into the XLISP task level interpreter.

7.2 Visual Programming Interface

Visual programming capabilities are very valuable for the efficient support of any user.
Almost every non-trivial task in TCAD is to a considerable extent data-flow oriented.
The whole task is thus fairly well defined by the arrangement of modules and the
flow of data between them, which also implies the sequence or' tool execution. Again,
both the callback concept (for module activation) and the tool abstraction concept
(for module description) can be used for the implementation of a visual programming
widget, thereby not increasing the system complexity from the programmer's point
of view.

Visual programming is especially well-suited for building specific applications through
the assembly of several generic functions or modules. We have tried to implement
all new parts of VISTA (especially the visualization and the PIF ToolBox functions)
using generic approaches. Visual programming puts the process/device engineer in
a programmers role without the need to do programming work. It is expected that
a visual programming interface will significantly contribute to the ease of use of the
TCAD framework.

7.3 Object-Oriented Design Representation

In a TCAD environment, it would be convenient to represent devices to be simulated
as objects belonging to a device class hierarchy and with methods attached to them.
Thus a device would "know" how to simulate itself, i.e. its class would have methods

234 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

attached which call the appropriate simulator. To achieve this, the design representa-
tion of the data level has to be fully object-oriented, and the procedural interface has
to provide means to build class hierarchies and attach methods to classes. Since P IF
provides a LISP-like syntax it is ideally suited to extend it with such object-oriented
features. A C++ language interface would present those features to applications.
Methods attached to P IF objects would be coded in C++ and made available to
the extension language through the Tool Abstraction Concept. However, since only
a minority of today's TCAD applications are written in C++, there is presently no
strong need for such an interface.

Acknowledgements

The VISTA project has been sponsored by the research laboratories of AUSTRIAN
INDUSTRIES - AMS at Unterpremstatten, Austria; DIGITAL EQUIPMENT at
Hudson, USA; SIEMENS at Munich, FRG; and SONY at Atsugi, Japan, and by
the "Forschungsfi5rderungsfonds fiir die gewerbliche Wirtschaft", project 21285 and
project 21299, as part of ADEQUAT (JESSI project BTlB) , ESPRIT project 7236.

We are very grateful to

A. Gabara
University of California, Berkeley, California

N. h'halil
Digital Equipment Corporation, Hudson, Massachusetts

P. Lindorfer
National Semiconductors, Santa Clara, California

E. Masahiko, M. Mukai, and P. Oldiges
SONY Corp, Atsugi, Japan

H. Masuda
Hitachi Device Development Center, Tokyo, Japan

L. Milanovic, G. Nanz, C. Schiebl, R. Strasser, and M. Thurner
Campusbased Engineering Center, Digital Equipment Corporation G.m.b.H,
Vienna, Austria

M. Noell
Motorola APRDL, Austin, Texas

H. Read
Carnegie Mellon University, Pittsburgh, Pennsylvania

I<. Traar and G. Punz
SIEMENS AG, Vienna, Austria

for their patience and support, for their efforts in installing and testing VISTA, and
for their contributions and criticisms.

References

[l] F. Fasching, W. Tuppa, and S. Selberherr. VISTA - The Data Level. IEEE
Trans. Computer-Aided Design, 1993 (in publication).

[2] S. Halama, F. Fasching, H. Pimingstorfer, W. Tuppa, and S. Selberherr. Con-
sistent User Interface and Task Level Architecture of a TCAD System. In
Proc.NUPAD IV, pp 237-242, 1992.

S. Halama et al.: The Viennese Integrated System for Technology CAD Applications 235

[3] M.R. Simpson. PRIDE: An Integrated Design Environment for Semiconductor
Device Simulation. IEEE Trans. Computer-Aided Design, lO(9): 1163-1 174, 1991.

[4] E.W. Scheckler, A.S. Wong, R.H. Wang, G. Chin, J.R. Camanga, A.R.
Neureuther, and R.W. Dutton. A Utility-Based Integrated System for Process
Simulation. IEEE Trans. Computer-Aided Design, 11(7):911-920, 1992.

[5] A.S. Wong. Technology Computer-Aided Design Frameworks and the PROSE
Implementation. PhD thesis, University of California, Berkeley, 1992.

[6] J.K. Ousterhout. Tcl: an Embeddable Command Language. In 1990 Winter
USENIX Conference Proceedings, pp 133-146, 1990.

[7] J.K. Ousterhout. An XI1 Toolkit Based on the Tcl Language. In 1991 Winter
USENIX Conference Proceedings, pp 105-1 15, 1991.

[8] H. Matsuo, H. Masuda, S. Yamamoto, and T. Toyabe. A Supervised Process and
Device Simulation for Statistical VLSI Design. In Proc.NUPAD 111, pp 59-60,
1990.

[9] P. Lloyd, H.K. Dirks, E.J. Prendergast, and K. Singhal. Technology CAD for
Competitive Products. IEEE Trans.Computer-Aided Design, 9(11):1209-1216,
1990.

[lo] H. Jacobs, W. Hansch, F. Hofmann, W. Jacobs, M Paffrath, E. Rank, K. Steger,
and U. Weinert. SATURN - A Device Engineer's Tool for Optimizing MOSFET
Performance and Lifetime. In Proc.NUPAD 111, pp 55-56, 1990.

[l l] C.H. Corbex, A.F. Gerodolle, S.P. Martin, and A.R. Poncet. Data structuring
for process and device simulations. IEEE Trans. Computer-Aided Design, CAD-
7:489-500, 1988.

[12] D.M.H. Walker, C.S. Kellen, D.M. Svoboda, and A.J. Strojwas. The
CDB/HCDB semiconductor wafer representation server. IEEE Trans. Computer-
Aided Design, CAD-12:283-295, 1993.

[13] A.S. Wong and A.R. Neureuther. The Intertool Profile Interchange Format: A
Technology CAD Environment Approach. IEEE Trans. Computer-Aided Design,
10(9):1157-1162, 1991.

[14] D.S. Boning, M.L. Heytens, and A.S. Wong. The Intertool Profile Interchange
Format: An Object-Oriented Approach. IEEE Trans.Computer-Aided Design,
10(9):1150-1156, 1991.

[15] SWR Working Group of the CFIITCAD TSC. Semiconductor Wafer Represen-
tation Architecture. CAD Framework Initiative, Austin, Texas, USA, 1.0 edition,
1992.

[16] D. Boning, G. Chin, R. Cottle, W. Dietrich, S. Duvall, M. Giles, R. Harris,
M. Karasick, N. Khalil, M. Law, M.J.McLennan, P.K. Mozumder, L. Nackman,
S. Nassif, V.T. Rajan, D. Schroder, R. Tremain, D.M.H. Walker, R. Wang, and
A. Wong. Developing and Integrating TCAD Applications with the Semiconduc-
tor Wafer Representation. In Proc.NUPAD IV, pp 199-204, 1992.

[17] S.G. Duvall. An Interchange Format for Process and Device Simulation. IEEE
Trans. Computer-Aided Design, CAD-7(7):741-754, 1988.

236 S. Halama et al.: The Viennese Integrated System for Technology CAD Applications

[18] P.J. Asente and R.R. Swick. X Window System Toolkit, The Complete Program-
mer's Guide and Specification. Digital Press, 1990.

[19] D.M. Betz. XLISP: An Object-Oriented Lisp, Version 2.1, 1989.

[20] R. Stallman. GNU Emacs Manual, 1986.

[21] AUTOCAD Release 11 Reference Manual, 1990. Publication AC11RM.El.

[22] N. Mayer. WINTERP: An object-oriented rapid prototyping, development
and delivery environment for building user-customizable applications with the
OSF/Motif UI Toolkit. Technical report, Hewlett-Packard Laboratories, Palo
Alto, 1991.

[23] F. Fasching, C. Fischer, S. Selberherr, H. Stippel, W. Tuppa, and H. Read. A
PIF Implementation for TCAD Purposes. In Fichtner and Aemmer [30], pp
477-482.

[24] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publisher Inc., 1990.

[25] P.H. Winston and B.K.P. Horn. Lisp. Addison Wesley, 1989.

[26] Institute for Microelectronics, Technical University Vienna, Gui3hausstraBe 27-
29, 1040 Wien, AUSTRIA. PAI Release, 1.0 edition, 1992.

[27] OSF/Motif Programmer's Guide, Release 1.1, 1991.

[28] H. Pimingstorfer, S. Halama, S. Selberherr, K. Wimmer, and P. Verhas. A
Technology CAD Shell. In Fichtner and Aemmer [30], pp 409-416.

[29] J. Daniel1 and S.W. Director. An Object Oriented Approach to CAD Tool Con-
trol. IEEE Trans. Computer-Aided Design, 10(6):698-713, 1991.

[30] W. Fichtner and D. Aemmer, editors. Simulation of Semiconductor Devices and
Processes, volume 4, Konstanz, 1991. Hartung-Gorre.

