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Abstract 

Three-dimensional device simulations of sidewall trench-isolated MOSFETs in- 
volve Linear systems of equations that are extremely ill-conditioned if the geo- 
metric channel length exceeds 2pm. Since conventional preconditioned iterative 
methods tend to fail in such cases we have implemented a robust iterative linear 
solver using a hierarchy of incomplete factorizations of the coefficient matrix. 

1. Introduction 

It is well-known that preconditioned iterative methods for the solution of linear sys- 
tems are a key part of every three-dimensional semiconductor device simulator. Con- 
vergence speed, efficiency of implementation and robustness for very ill-conditioned 
matrices are preconditions for any linear system solver in a production environment. 
Recently the BiCGStab method as iterative routine [6] and the incomplete factor- 
ization method with threshold pivoting (ILUT) as preconditioner [4] have evolved as 
the most promising methods for solving even the worst conditioned linear systems in 
device simulation [l] . 
The condition numbers of matrices in 3D device simulators range from moderate val- 
ues (e.g. the majority continuity equation in MOSFETs) to extremely ill-conditioned 
ones (e.g. the minority continuity equation for long channel MOSFETs). To cope 
with this variety of condition numbers, a hierarchical strategy (not to be confused 
with nested iterative methods) for combining different preconditioners has been pro- 
posed [I]. In this work we report our experience with a hierarchical linear system 
solver used in the three-dimensional part of MINIMOS 5. 

2. Incomplete LU Factorizations 

Incomplete LU factorizations of the nonsymmetric coefficient matrix are known to 
be the only viable preconditioning methods to solve the discrete continuity equations 
reliably. Other methods such as polynomial or hierarchical bases preconditioners are 
only applicable to relatively well-conditioned problems. There are various ways to 
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factorize a sparse matrix incompletely: The standard method is to define some sym- 
bolic sparsity pattern for the incomplete factors and then computing matrix entries 
according to the pre-defined pattern. In the simplest case the original sparsity pattern 
of the matrix is used, denoted by ILU(0). For block diagonal matrices the sparsity 
pattern may be augmented easily by additional diagonals along the original sparsity 
pattern. If one additional diagonal is allocated along each existing diagonal we call 
this factorization ILU(1). 
A more general class of ILU factorizations is obtained bv kee~inn fill entries in the ILU u d L U  

factors only when they exceed some threshold, thus the sparsity pattern is defined 
during factorization. Clearly, for smaller values of the drop threshold parameter TOL 
a better ILU factorization with more fill-in can be created than for a larger TOL. 
In this approach we precondition the BiCGStab method by two major preconditioning 
levels (Fig. 1): 

A vectorizable ILU preconditioner with positional dropping as the lowest hier- 
archy level, 

A parametric, non-vectorizable ILUT preconditioner in right position for higher 
levels. 

In the first hierarchy we use either ILU(0) implemented in conjunction with the Eisen- 
stat matrix-vector multiplication method to save about 30% of arithmetic work [2] or 
ILU(1). Both preconditioners are applied in split position. 
The computation of the ILUT preconditioner for the second hierarchy level depends 
on two parameters: TOL which defines a drop tolerance weighted with the actual ma- 
trix rowsum for an individual matrix entry and FIL which determines the maximum 
number of matrix entries per row of an incomplete factor. TOL controls mainly the 
robustness of the preconditioner, FIL is necessary to limit memory usage, however, 
both parameters influence the robustness of the preconditioner. 
To provide robustness for very ill-conditioned linear systems we use tolerances smaller 
than and a fill-in of 20 beside the original sparsity pattern. This choice (in the 
two-dimensional parameter space) seems to yield an optimum in CPU time for our 
specific application (Fig. 2). An iteration limit of 400 for ILU(0) and 100 for ILU(1) 
is used as a switch between the hierarchies. For iteration termination we reauire the 
residual (left split preconditioned residual in case of ILU or true residual in case of 
ILUT) to be less than lo-' to ensure convergence of the outer Gummel algorithm. 
For ILUT factorization a row oriented compressed sparse matrix format is used. The 
factorization code is inherently sequential in nature and hence does not vectorize. 
Therefore the factorization must be implemented as efficient as possible. Efficiency 
can be exploited mainly by detecting unimportant matrix entries as early as possible 
and by an efficient sort algorithm to sort out the FIL largest elements in a row. 
The package is written in FORTRAN 77 (iterative solver and preconditioner) and C 
(memory management and hierarchy sequencing) and has successfully been used on 
several platforms such as VAX/VMS, Alpha AXP/OpenVMS, DECstation/ULTRIX 
and HP9000/HP-UX. 
The solver hierarchy is user configurable, if e.g, the user is equipped with a-priori 
knowledge on the conditioning of the problem the solver can easily be directed to 
automatically leap over less rz~bust levels (in case of an ill-conditioned system). To 
our experience a two-level hierarchy (see Figure 1) is sufficient, hierarchies with more 
than one ILUT level have not proven advantageous in our simulations. 
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Table 1: Comparison of iteration counts and total simulation times (VAX 6420) for 
the first Gummel iteration using ILU(1) and ILUT(10-5) preconditioned BiCGStab 
solvers for MOSFETs with various geometric channel lengths. 

3. Solver performance 

The sidewall trench isolation structure of the devices under consideration is given 
in Fig. 3 (width direction). The channel is limited in width direction by a shal- 
low trench. Due to the small sidewall overlap a parasitic device is present with a 
smaller effective gate thickness thus lowering the threshold voltage [5]. The main 
doping profile as well as the field and sidewall doping profiles are constructed from 
two-dimensional slices. Device performance has been studied in dependence of gate 
length and width, sidewall overlap, field and sidewall doping. 
Devices with different gate lengths (from 10pm down to 0.5pm) have been simu- 
lated and their characteristics compared with measurements. We encountered serious 
convergence problems such as stagnation or iteration counts of several thousands for 
long channel devices (L > 4pm) at the beginning of Gummel's algorithm when us- 
ing an ILUT(0) or ILUT(1) preconditioner. For CPU times and iteration counts of 
the minority continuity equation see Table 1. It is worth mentioning that this ill- 
conditioning is quite independent of biasing, specifically in the subthreshold region 
which was the domain of major interest during this investigation (see Fig. 4 for the 
short channel device showing the enhanced conductivity due to the large gate sidewall . . 
overlap). 
In contrast to the ILU(0,l) preconditioner the CPU times when using the ILUT pre- 
conditioner are almost independent on the device channel lengths and much smaller. 
The iteration count in the ILUT level can be kept less than one hundred in all cases. 
Even for the largest problems the CPU time consumption is quite moderate provided 
that memory is large enough to keep the ILUT preconditioner in core. At least 32MB 
main memory is necessary for the preconditioner to solve problems involving grids 
with several lo5 mesh points. The characteristic given in Fig. 4, containing 40 bias 
points has been simulated in 7 hours. 
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Fig. 3: Device geometry. Fig. 4: Subtreshold characteristic. 




