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Abstract

A new scaling method for non-symmetric matrices is presented. The scaling is based
on purely mathematical considerations. It is highly adapted to the demands of incomplete
LU factorization preconditioners with numerical dropping strategy. These preconditioners are
the best state-of-the-art instruments for solving ill-conditioned linear systems with very large
numbers of equations. The new scaling method causes a considerable improvement in the
capabilities of these preconditioners, both in execution speed and robustness.

1 The Scaling Problem

In process and device simulation, one generally faces the situation of mixed physical quantities in
the solution vector x and the right hand side vector b of the linearized coupled problem

A.-x=b. (1)

Mixed physical quantities presenta problem as to the choice of an optimumscaling strategy. Scaling
the equations is by far notobvious, and various scaling strategies have been developed and applied in
semiconductor process and device simulation. The numbers appearing in the final Jacobian matrix of
the system depend heavily on the physical units which have been chosen when representing physical
quantities by dimensionless numbers. All established scaling strategies have one disadvantage in
common: they require a lot of a priori knowledge about the solution components, and they do not
guarantee improvement in the condition of the problem.

The problem of scaling an arbitrary matrix has been well treated in connection with pivoting
in Gaussian elimination of full matrices. There, the accuracy to which the system of equations can
be solved depends strongly on the sequence of pivot elements which are chosen. Row and column
equilibration methods are frequently used to scale the matrix elements before pivoting. The scaling
has no direct effect on the elimination process once the pivoting sequence is fixed.

A very similar view on the matter can be taken in preconditioning by incomplete LU factorization
with threshold dropping [1, 2]. Here, the problem is not to find an optimum elimination sequence,
but rather to decide which elements in a row/column are to be dropped. Again, once this decision
is fixed the scaling has no further influence on the elimination process.
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2 The Scaling Method

The crucial point in the dropping strategy is to judge the relative weight of the off-diagonals
correctly. The relative contribution of an off-diagonal g;; in the later elimination process of row j
will depend on the product of the off-diagonal a;; and the off-diagonal aj;:
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(2)
As can be seen from the matrix substructures in (2), the relative weight (a;; - a5i) /(@i - aj;) of the
additional contribution is not influenced by row or column scaling. The scaling, however, influences
the dropping strategy during the elimination of line ¢, since the part a;;/a;; of the fraction can be
given any value by proper column scaling. The question now is to find a scaling which allows
to decide which off-diagonal elements of row ¢ will be most important in the further elimination
process, and to decide this by the relative size in row ¢ only.
To be able to compare the off-diagonals more easily, the diagonal elements (a;;, ajj, . ..) are
scaled to unity in a first phase. This is achieved by a set of r;, ¢; fulfilling Equation 3.

ricaioci=1 3)

Since this is only the first phase, the choice of the scaling method is not a critical point. Depending
on the problem, one could preset the r; or the ¢; with unity or begin with any other predefined
scaling for one of these sets. We use symmetric scaling vectors (r; = ¢;). The effect of phase 1 is
that the contributions are determined only by the products a;; - a;;.

In the second phase, the row scaling vector r and the column scaling vector ¢ are modified.
The basic idea is to make a;; the same size as aj;. This can be seen as a solution to the problem
of minimizing the sum of |a;;| and |aj;| while keeping their product constant. In a more general
formulation, and taking also into account the contributions to off-diagonals, the problem is to

minimize
3 Iril - laijl - e (4)
i j#
under the constraint of Equation 3.
The problem is nonlinear, and several strategies could be applied to achieve a solution. For
instance, iterations can be done over a linearization like r; = 740 - (14 pi), ¢i = Cio/(1+ pi) =
Cipo * (1 — p;), which brings the problem into a quadratic form of the p;. This problem can be solved

by well-known methods.
We propose a simple relaxation strategy which has proven quite satisfactory. A relaxation loop

over pairs of row 7 and column ¢ is used to modify the scaling. For each pair r; and ¢;, the sum
of the off-diagonals in row ¢ and column ¢ is minimized while keeping the product »; - ¢; constant
according to Equations 5 and 6.
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A loop of 7 over the whole matrix modifies all the scaling coefficients and decreases the total
sum of off-diagonals. In the beginning, the maximum of the sum of off-diagonals in a row/column
decreases very rapidly. Already a very few iterations result in a scaling which shows considerable
improvement in the subsequent preconditioning and solving process. The whole relaxation scheme
is very inexpensive in terms of CPU time consumption and coding effort.

3 Results

The main effect of the new method is a significant decrease in preconditioning time, since the new
scaling enables the preconditioner to factorize a matrix with much higher drop thresholds and less
fill-in than without scaling while maintaining the quality of the LU decomposition. This effect can
be best observed when different physical quantities are used in the same solution vector and right
hand side. But even for homogeneous systems of equations (like a single discretized continuity
equation) speed-ups of up to 30 percent have been observed. The improvement of course depends
on the original scaling; even for good initial states improvements show up (Fig. 1), whereas for
poor initial scalings, the new method makes solution possible at all. It should be noted that the
relaxation will not give any improvement if the matrix is already symmetric, since a symmetric
scaling is already the optimum suppression of the off-diagonals.
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Figure 1: Total CPU time for scaling, preconditioning, and solving a system of 30207 equations
with mixed quantities (potential, carrier concentrations) on a DEC ALPHA 7640. Parameter of the
curves is the allowed preconditioner fill-in per matrix row; the dropping threshold in the range from
10! 10 1077 is plotted on the abscissa. A BiCGStab [3,4] algorithm was used to solve the system
1o the relative accuracy of 10~8. Without scaling, the system could not be solved for thresholds
above 1073, With scaling remarkable reduction and broadening in the overall minimum can be
observed. Note the logarithmic scale on both axcs.
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4 Spin-offs

Total Decoupling

If the total system decouples completely into independent subsystems, the scaling within a subsys-
tem will be as described above, while the relations of the scalings of the subsystems will maintain
their original values. So decoupled systems should not be solved together.

Numerical Decoupling

If the total system contains values of a physical quantity which depends on but does not (heavily)
influence the other quantities, this quantity will be suppressed by the scaling. That will lead to less
exact solution of this quantity, but better stability. Some special iterations for this quantity might be
desirable. Very small norms of the right hand side or solution vector for this quantity will indicate
that the quantity might be solved separately.

Agy Ayn Ay 6 by
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For instance, in a device where holes have no influence on the electrical behavior, the values
in the submatrices A yp and Ay of the (simplified) system matrix in Equation 7 are comparatively
small. As a consequence, after scaling the hole concentration updates show norms of several orders
of magnitude below the norms of the other quantities.
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