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I. INTRODUCTION 

This contribution is intended to review the state­
of-the-art in numerical simulation of semiconductor 
processes and devices. Concerning the technological 
processes, the main direction for ongoing research is 
the extension of the simulation tools to three spa­
tial dimensions. This is necessary for modern devices 
in order to provide sufficiently accurate doping pro­
files and device geometries for the three-dimensional 
device simulation. There are two major problems 
for three-dimensional simulations [20): First, three­
dimensional computations are very CPU-time inten­
sive. Second, in some fields (e.g. for diffusion pro­
cesses) it is simply the lack of really good and accurate 
models. In this paper efficient approaches to acceler­
ate three-dimensional process simulation are sketched. 
Regarding the simulation of submicron devices much 
emphasis has to be laid on the used carrier transport 
model. This contribution presents a transport model 
suitable for ultra small MOS transistors . 

II. TOPOGRAPHY SIMULATION 

Topography simulation deals with the basic processes 
of pattern definition and pattern transfer which ul­
timately change the shape of the wafer surface. The 
numerical algorithms for surface movement play a key 
role in those simulators and lead to major differences 
in accuracy, robustness, and efficiency of the simu­
lation tools. Basically there are two types of algo­
rithms used for modeling three-dimensional topogra­
phy processes. Volume removal methods which have 
been successfully used in three-dimensional lithogra­
phy simulation [10, 26) can easily handle arbitrary ge­
ometries, but unfortunately they suffer from inher­
ent inaccuracy, because they favor certain etch direc­
tions (12). Surface advancement methods on the other 
hand offer highly accurate results, though with poten­
tial topological instabilities such as erroneous surface 
loops which result from a growing or etching surface 
intersecting with itself. The surface loops must be 
removed before they become too complex which is a 
rather complicated task in three-dimensional simula­
tion [9). 

A new and very promising approach (30) for the 
surface movement is based on fundamental morpho-

logical operations used in image and signal processing 
[4) and allows accurate simulation of arbitrary three­
dimensional structures without loop formation. The 
simulation geometry is basically considered as a two­
valued image (material or vacuum), and an array of 
square or cubic cells is used where each cell is char­
acterized as etched or unetched. Additionally, a ma­
terial identifier is defined for each cell, therefore ma­
terial boundaries need not be explicitly represented. 
The surface or etching boundary consists of unetched 
cells that are in contact with fully etched cells. Cells 
on the surface are exposed to the etching medium or 
to the deposition source, and etching or deposition 
proceeds on this surface. A linked surface cell list 
stores dynamically etch or deposition rates of exposed 
cells. To advance the etch front spatial filter opera­
tions based on the erosion or dilation operation [4) 
are performed along the surface boundary. During 
an etching process, all cells within a filter are etched 
away, while cells outside stay unchanged. Usually, for 
anisotropic three-dimensional simulations filters are 
ellipsoids, for isotropic movement of surface points fil­
ters are spheres, although there is no restriction on the 
filter shape. The spatial dimension of an applied filter 
determines how far a surface point moves. The main 
axes of an ellipsoid are given by the local etch or de­
position rates multiplied by the time step. After each 
time step the exposed boundary has to be determined 
by scanning all the cells in the material. Material cells 
are surface cells if at least one cell side is in contact 
with an already etched cell. The exposed sides of the 
detected surface cells describe the etch or deposition 
front at a certain time step. 

III. ION IMPLANTATION 

Ion implantation is currently the most important tech­
nique for introducing dopants into semiconductors. 
As modern annealing methods (RTA) do not alter the 
implanted profile very much anymore, the determina­
tion of the initial implantation profile has become a 
very important task. Thus the simulation of ion im­
plantation gained in significance tremendously. For 
the simulation three main techniques can be used: 
The analytical description of the doping profile [25), 
the solution of the Boltzmann transport equation [5) 
or the Monte Carlo method [14, 35). 



The analytical method usually has the benefit of 
minor demands on CPU-time consumption. One­
dimensional profiles can be modeled accurately by the 
analytical description of profiles. Already for two­
dimensional computations problems arise, because of 
the lack of an underlying physical base for multi­
dimensional extensions of this technique. The limita­
tions can be seen on examples with abrupt changes 
of the simulation geometry or for tilted implanta­
tions [28]. Finally, in the three-dimensional space, the 
CPU-time requirements increase dramatically, and 
this last advantage against the other mentioned meth­
ods looses its weight. 

The solution of the Boltzmann transport equa­
tion is very efficient and accurately possible for one­
dimensional applications [5]. For two-dimensional 
simulations the CPU-time and memory requirements 
increase significantly. Nevertheless, this method 
can be still advantageous compared to the two­
dimensional Monte Carlo methods, when demands 
on accuracy are not too high. For three-dimensional 
simulations this method is despite today's computer 
power not applicable. 

Fig. l. Implantation into an amorphous target. 

For the above listed reasons the Monte Carlo 
method is the choice for three-dimensional problems, 
although some special considerations are necessary to 
reduce the otherwise tremendous CPU-time consump­
tion. Two main techniques have been developed to ac­
celerate the simulation: First a superposition method 
is used to decrease the number of collision events to 
be evaluated (14], and second an octree has been in­
troduced for the discretization of the geometry to sim­
plify the point location problem [29]. 

A problem is the incorporation of the real crys­
talline structure of semiconductor materials. Al-

though crystalline simulators exist (13] the time re­
quired to get three-dimensional results is very high, 
because the superposition method can not be used 
for crystalline targets. Nevertheless, Fig. 1 and Fig. 2 

.. 

Fig. 2. Implantation into a crystalline target. 

clearly show that the effect of a crystalline target has 
to be taken into account: Boron was implanted with a 
tilt angle of 0° and an energy of 30 keV into an amor­
phous target (Fig. 1) and a crystalline one (Fig. 2). 
There is a significant difference in the mean projected 
range. The ions penetrate the crystalline target about 
twice as deep as the amorphous material. 

IV. DIFFUSION 

Modeling realistic diffusion processes requires incor­
poration of as much physics as possible to obtain suf­
ficient accuracy. To design a new simulation model 
one has to make a compromise between the number of 
parameters and the underlying physical relationships. 
As an example a robust, physically based model which 
is easy to understand is presented below in form of a 
two-dimensional simulation model for dopant diffu­
sion in polysilicon. 

Polysilicon layers are used in modern IC fabrica­
tion processes as diffusion sources, for instance for 
out-diffusion processes by forming a n-polysilicon-gate 
MOSFET or for emitter- and graft-base formation 
in high performance bipolar LSI's technology .[31]. 
Any advanced polysilicon diffusion model must in­
clude various phenomena such as clustering due to 
the excessively high dopant concentrations and seg­
regation kinetics to handle the exchange of dopants 
in the grain/grain-boundary network. To determine 
the impurity profile in the complex lattice polysilicon-



silicon structure, it is also necessary to include gen­
eration/recombination mechanism and grain growth 
kinetics. The two-dimensional coupled PDE's for the 
active dopant concentration in the grain interior (C9a) 
and the grain boundaries (Cgb) are given in Eq. (1)­
(3), where s denotes the charge state of the dopant 
and r is the effective grain size which can be seen as 
the reciprocal grain boundary area per unit volume. 
r denotes a geometric factor taking into account the 
structure of polysilicon material. Diffusion and segre­
gation kinetics is followed after [19]. 
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Eq. (3) describes the generation/recombination 
term of the exchange of dopants between grains in­
teriors and grain boundaries by use of trapping t and 
emission e factors, where rrax denotes the maximum 
number of free states in the grain boundary. c; 01 is 
the solubility limit for the dopant species; it is also 
taken to calculate the active grain interior concentra­
tion Cga from the total interior concentration c: in 
the static clustering model Eq. ( 4) after [23]. 
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During the thermal treatment grain growth occurs. 
In this model the grains of polysilicon are assumed to 
be squares ( r = 1) growing from initial grain size ro. 
The calculation of the migration of the grain bound­
aries is based on thermodynamic concepts of surface 
energy anisotropy and secondary grain growth [15]. 
From basic rate theory, the net rate of atomic transfer 
of dopants from lattice sites from one grain to those 
of a neighbor site is given by an complementary Ar­
rhenius law 

(5) 

where K+ denotes a jump frequency for atoms at the 
boundary and D..µ is the difference in the electrochem­
ical potential on either site of the boundary. Under 
constant pressure and volume the electrochemical po­
tential is given by Eq. (6). The boundary migration 

G is obtained from Eq. (7). 
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(7) 

N denotes Avogadro's number, V denotes the atomic 
volume, D..F the change in Helmholtz free energy, and 
,\ the thickness of the boundary. The jump frequency 
K+ can be expressed in terms of the temperature de­
pendent diffusivity, thus the growth rate reads 

The grain growth depends on the local dopant con­
centration via the diffusion coefficient D ga, so the 
grain size becomes non-uniform along the vertical and 
lateral direction. 

V. MOS TRANSISTOR SIMULATION 

Enabled by the progress in the fabrication processes, 
the miniaturization of semiconductor devices forces 
improvements of the physical models as well as of the 
numerical procedures which the simulation of semi­
conductor devices is based on. 

On the one hand, the numerical tools have been ex­
tended to three spatial dimensions in order to address 
geometry-dependent effects [l, 8, 22, 32]. On the other 
hand, actual devices are characterized by large electric 
fields in conjunction with steep gradients of the elec­
tric field and of the carrier concentrations. In many 
cases the distances over which the variations occur are 
comparable to the mean free path of the carriers -
under these conditions, the widely used drift-diffusion 
model is losing validity. More sophisticated mod­
els, such as the hydrodynamic and energy-transport 
models [2, 18, 24], the spherical harmonics expansion 
method [6, 21, 33], and the Monte Carlo technique 
[3, 11, 34], overcome these limitations. However, the 
increased physical rigour of these models comes at the 
expense of increased computing times. 

The so-called hybrid transport model represents 
a combination of the Monte Carlo method and the 
drift-diffusion equations [16] which is based on the 
following considerations: The Monte Carlo method is 
well suited to describe the non-equilibrium transport 
occurring under conditions appearing in ultra small 
MOS transistors (i .e. very high electric field in the 
active region with rapid changes over distances com­
parable to the mean free path of the carriers). On 
the other hand, for the description of low field trans­
port the drift-diffusion model with local transport co­
efficients provides sufficient accuracy. Moreover, the 
drift-diffusion model has turned out to be even supe­
rior to the Monte Carlo method in regions with re­
tarded fields. 



Starting point for the refinement of the trans­
port model are the so-called "enhanced drift-diffusion 
equations" consisting of Poisson equation (9), conti­
nuity equations for electrons and holes (10), (11), and 
the current relations for both carrier types (12), (13). 

div(c ·grad ,,P) == -p (9) 
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At the first glance these equations look like the funda­
mental semiconductor equations which have already 
been used in the famous work of Gummel in 1964 
(7]. The enhancement lies in the existence of different 
temperatures Tn and T,, within the diffusion terms of 
the current relations (12), (13) as well as in the ap­
propriate models for the carrier mobilities µn and µ,, 
[17]. 

The idea of the hybrid model now is to estimate the 
carrier mobilities and carrier temperatures by means 
of the Monte Carlo method in regimes with non­
equilibrium transport only. In regions with low-field 
transport these physical parameters are supplied by 
local models thus saving computation time. 
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Fig. 3. Surface potential of the investigated n-channel 
MOSFET. 

Fig. 3 and Fig. 4 show the potential and the lat­
eral electric field at the surface of an n-channel MOS­
FET with Lgate = 0.15 µm, t 0 x = 5 nm simulated self­
consistently by MINIMOS [27] once with the com­
pound model (solid lines) and with the drift-diffusion 
model (dashed lines). The device has a metallurgi­
cal channel length of Leff = 0.12µm and exhibits a 
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Fig. 4. Lateral electric field at the surface of the in­
vestigated n-channel MOSFET. 

threshold voltage Uth = 0.24 V; the bias conditions 
are U a = UD = 2.0 V. In the Monte Carlo case, in the 
high field region the potential profile (Fig. 3) becomes 
smother so that a significant lower lateral electric field 
(Fig. 4) is predicted. 
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