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SUMMARY An advanced model for self-heating effects in
power semiconductor devices is derived from principles of ir-
reversible thermodynamics. The importance of the entropy
balance equation is emphasized. The governing equations for
the coupled transport of charge carriers and heat are valid in
both the stationary and transient regimes. Four characteristic
effects contributing to the heat generation can be identified:
Joule heating, recombination heating, Thomson heating and
carrier source heating. Bandgap narrowing effects are included.
Hot carrier effects are neglected. Numerical methods to solve the
governing equations for the coupled transport of charge carriers
and heat are described. Finally, results obtained in simulating
latch-up in an IGT are discussed.
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1. Introduction

In order to allow accurate computation of device
characteristics and analysis of parasitic effects in mod-
ern power semiconductor devices, the electrothermal
nature of such phenomena as thermal runaway, current
crowding, avalanche injection, secondary breakdown
and latch-up has to be accounted for. Realizing
electrothermal effects a transport model for the simulta-
neous flow of charge carriers and heat is needed.

From a numerical point of view the simulation of
transient self-heating effects in semiconductor devices
requires the self-consistent solution of Poisson’s equa-
tion, the continuity equations for electrons and holes
and the heat flow equation in space and time.

Following a rigorous approach to treat self-
heating effects, the ansatz and the derivation of the
governing equations for the coupled transport of
charge carriers and heat are discussed in Sect.2. In
Sect. 3, the numerical methods used to solve the system
of nonlinear, coupled partial differential equations
describing electrothermal interaction are described.
Results obtained in investigating latch-up in an IGT
are presented in Sect. 4.

2. The Mathematical Model

To derive a closed set of equations for the simultane-
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ous flow of charge carriers and heat in a semiconductor
device, principles of irreversible thermodynamics are
utilized [3], [7], [9]. The idea is to explicitly set up the
entropy balance equation for the semiconductor, to
identify thermodynamic currents and conjugated
forces, and to formulate the phenomenological equa-
tions. To obtain governing equations describing
mutually coupled electrothermal transport phenom-
ena, transport parameters have to be defined and
specific state functions have to be evaluated [3], [7],

[9].

Provided that the concept of local equilibrium is
valid, the Gibbs fundamental equation for the semi-
conductor takes the form:

ou_ 0o . on., . _ dp
at_T Eranl A2 5 T4 90 (N

u denotes the total internal energy per unit volume, s
the entropy density. » means the electron, p the hole
concentration. T is the temperature, ¢, ¢» are the
quasi-Fermi levels for electrons and holes, respectively,
with ¢ being the elementary charge. Note that u
includes the energy due to the applied and built-in
potential too.

The Gibbs equation (1) interrelates balances of
electrodynamic and thermodynamic quantities. Usu-
ally continuity equations for charge carriers together
with Poisson’s equation are derived from Maxwell’s
equations [10].

div 7n—q-%=q-R (2)

I or
div Jp+g¢q e
7, 75 J, » represent the current densities for electrons and
holes, respectively. The net recombination rate R is
introduced by definition [10]. The conservation equa-
tion for the total internal energy u reads:
I Giv Fu=0 (@),
ot
Ju is the energy flux vector. Equation (4) represents
the first axiom of thermodynamics in terms of vector
analysis for continuous systems. Momentum balance
equations are not considered, thus neglecting hot car-

—q'R (3
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rier effects. The actual form of the entropy balance
equation is obtained by substitution of continuity
equations for the carrier concentrations #, p and the
energy density # into the Gibbs fundamental equation

os
-(9—1+dlv< Jh>
—f-(—i~ dT>+7< L grad >
=Jn Tz gra n T *grad ¢p
_§0n)>

(5)

3 1 1
+ Jp-(—?-grad gop>+R-<7-q- (@p

where
Ta=Ju— oo To (6)

is a definition of the heat flux J,.

The right-hand side of (5) is the local production
of entropy. Due to the first postulate of irreversible
thermodynamics it can be interpreted as the sum of
products of thermodynamic currents and conjugated
forces. Furthermore, exploiting the second postulate
of irreversible thermodynamics, that each flux linearly
depends on all thermodynamic forces [3], the so-called
phenomenological equations result:

Pn* fn_

1
[ ~7grad @n
T Lin O Ly 0 X
7 0 Ly Lee 0|| ~7%2des
T Lin Lip Ly 0O _%gradT
R 0 0 0 1
1 ]
_7'4'((017’—(071)
(7

Due to Onsager’s symmetric reciprocal relations,
known as the third postulate of irreversible ther-
modynamics, the number of independent kinetic
coefficients in Eq.(7) can be reduced. Thus only
conductivities ¢ and thermoelectric powers P for elec-
trons n and holes p, respectively, have to be defined,
together with the thermal conductivity x.

_ L - Lnr
On= T Pn= T2 On
o= Ltp —_Lor
» T » T2 Op
X= Tz - (771 P T Up PP (8)

The resulting current relations (9)-(11) for the ther-
moelectric transport in a semiconductor include both
limiting cases, (i) flow of electric charge due to the
imposition of the quasi-Fermi potential, and (ii) flow
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of heat caused by a temperature gradient:
J»=0, (—grad p,+ Py-grad T) (9)
Jo=0p+(—grad p,— Pp-grad T) (10)
Jo=—T-Py Tyt T Py Jp—x-grad T  (11)

If Egs.(9)-(11) are reformulated in terms of the
total current density J=T.+7 » and the heat flux
J, the thermal conductivity x has to be redefined in
order to include the bipolar contribution. L% sub-
sumes a lattice, an electron and a hole contribution.

With the heat flux (11) the entropy balance equa-
tion (5) can be transformed into the heat flow equa-
tion (12):

as .
T-E-i—dlv(

=— fn'grad On—

— TPy Jy+ TPy Jp—x+grad T)

To-grad @p+q- R+ (9p— @n)
(12)

The expansion of the divergence operator and some
algebraic operations yield:

T W%—dw( x-grad T)
— Jn'fn fp'fp
On * Op

+ J o+ (grad (T - P,) —Py-grad T)

— Jp+ (grad (T - P,) — Ppegrad T)
+q-R(pp— ¢n)

+TPyediv Jo— T+ Pp-div T, (13)

The right-hand side of Eq.(13) is the heat generation.
It can be shown that (13) implies Thomson’s laws.

The entropy density has to be regarded as a state
function of the temperature and the carrier concentra-
tions s=s(T, n,p). Furthermore, the quasi-Fermi
levels are considered as state functions of the electros-
tatic potential ¢, the carrier concentrations n, p, the
temperature 7', and the effective intrinsic carrier con-
centration ;. to fit heavy doping effects [10]. Using
Maxwell’s relations [3], [12] and Boltzmann statistics
the following system of nonlinear, coupled, partial
differential equations results:

div(e-grad ¢)=—gq-(p—n+C) (14)

div q-yn-n-<§— k-T -grad (In #)

+£.ql-%-grad n+ P «grad T)

T, grad (In n;,)
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k-T 1
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Equation (14) is the well known Poisson equation. ¢
denotes the electrostatic potential, C the total net
concentration of all ionized impurities. ¢ is the per-
mittivity. Equations (15), (16) are continuity equa-
tions for electrons n and holes p including the so-
called extended-drift extended-diffusion approxima-
tion of the current relations. That is, an effective
electric field is introduced because of the possible
dependence of the intrinsic concentration on position,
and the diffusion not only accounts for concentration
gradients but also for temperature gradients. x denotes
the mobility, £ the Boltzmann constant. E is the
electric field, P the thermoelectric power, ¢ means
‘carrier’ and may take the value »n or p for electrons
and holes, respectively. Equation (17) is the heat flow
equation. C;, denotes the heat capacity. The right-
hand side in (17) represents the heat generation. Four
contributions to the heat generation can be distin-
guished: Joule heat Gj (18), recombination heat G¥
(19), Thomson heat G7 (20) and carrier source heat
Gi (21). Equation (22) is a definition of the effective
thermoelectric power P&, The expression in brackets
arises due to the dependence of the quasi-Fermi poten-
tial on temperature.

The governing equations depend non-linearly on
the lattice temperature. If lattice heating is significant,
the thermal system becomes tightly coupled to the
electrical system. Recombination, mobility, ther-
moelectric power and the effective intrinsic carrier
density n;, depend on temperature [10], while the
temperature gradient acts as a driving force and the
heat generation is a function of the electrical variables.

Auger recombination and carrier-carrier scatter-
ing, known as limiting physical effects for high injec-
tion conditions in power semiconductor devices
[10], have been taken into account. As heavy doping
effects limit thyristor operation, the effective intrinsic
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carrier concentration is computed using [10], [11]. One
obtains the relation:

8nie__ < Ey 3 )
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Note also that the dependence of the bandgap energy
E, and the effective masses on temperature is account-
ed for in Bq.(23). Following [4], [8] the ther-
moelectric powers can be expressed as functions of
contributions to the overal mobility [6].

For the electrical subsystem, either Dirichlet
boundaries at ohmic contacts or Neumann boundaries
are assumed. Mixed boundary conditions for the heat
flow equation are mandatory in order to be able to
model realistic imperfect cooling conditions. This is of
special importance for transient electrothermal simula-
tions, as the time constant for self-heating increases
with increasing external thermal resistance.

3. Solution Methods

The simulation of the coupled transport of heat and
charge carriers requires the self-consistent solution of
Poisson’s equation (14), the continuity equations for
electrons n (15) and holes p (16) and the heat flow
equation (17) in space and time. Spatial discretization
is obtained using finite boxes [5], a generalization of
finite differences, while time is discretized with the
backward Euler method.

The electrothermal problem is computed self-
consistently following a decoupled approach. At each
time step the electrical subsystem of equations is solved
first, the lattice temperature being regarded as an in-
dependent variable. Then the temperature distribution
is updated by solving the heat flow equation.
Newton’s method and LU-decomposition are used to
solve the electrical and thermal subsystems alternately
until convergence is attained.

Usually, the characteristic time for the electrical
and the thermal subsystem differ by several orders of
magnitude. Thus a device is in steady state from the
electrical point of view, whereas thermally it is still in
transition.
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4. Results

An IGT combines bipolar conduction with MOS gate
control of the current. Due to bipolar conductivity
modulation arising from carrier injection into the
n”-drift region an IGT can be operated at high forward
current densities, even when supporting high blocking
voltages. Due to its MOS gate the IGT can be driven
with low power.

The concept of the IGT is to use a MOS gate
created channel to link the n*-emitter region to the
n~-base [2]. In the on-state the lower junction towards
the collector is forward-biased and the current flow in
the IGT occurs via the channel. When latch-up occurs,
however, the parasitic thyristor between the collector
and emitter terminals in the four-layer IGT structure
turns on, and the control of the collector current by the
applied gate voltage is lost. In DC circuits latch-up
usually produces catastrophic failure of the device as a
result of excessive heat dissipation.

Static latch-up has been investigated in an IGT. It
occurs when the forward conduction current density
exceeds a critical value, while the collector voltage is
low. Geometry and doping data of the IGT have been
taken from [2] . The simulation area contains only
one half of a symmetric IGT cell. Figure 1 shows a
cross section of the most interesting part of the IGT
with respect to latch-up analysis. The n*-emitter (1-
10 cm™®) is embedded in a double doped p-base
region (1-10"® cm™, 5-10" cm™®). In order to support
a blocking voltage of 300 V the n-drift layer (1-10%
cm™®) has been chosen to be 65 um long. The bottom
of the simulation area is made up of a 10 um p*-doped
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substrate (1-10" cm™) which cannot be seen in Fig. 1.
A n-buffer layer is not included.

Figures 2 and 3 show the electron and hole con-
centration in the critical part of the IGT, containing
the emitter and p-base region, under equilibrium con-
ditions. Figures 1, 2 show how both, the p-base region
together with the n*-emitter are incorporated in the
lightly doped n-type drift layer, which is the central
region of the IGT.

In order to find the critical value of the collector
current I, the collector voltage Ve, has been ramped in
a transient electrothermal simulation first. Then the
electrothermal steady-state solution has been computed
for Vge=15V, Vee=1.5V. The idea is to investigate
one bias point (from the electrical point of view) but
to modify the conditions for self-heating. Thus the
current handling capability of the IGT limited by the
onset of latch-up can be investigated as a function of
lattice temperature determined by different thermal
conditions.

Two different thermal boundary conditions have
been chosen. First very good cooling conditions (heat
sink thermal conductance 4#=50 W/cm?K), then realis-
tic cooling conditions (A=5 W/cm?K) have been
assumed. In the latter case a second simulation has
been performed based on a heuristic heat generation
model [1], [10]:

Gy=(Jp+Jp) E+R-E, (24)

Equation (24) accounts for two contributions to the
overal heat generation, Joule heat with the electric field
as a driving force and recombination heat considering
the contribution of the bandgap only. Double sided
cooling is assumed. The heat sink temperature T, is
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300 K in all simulations.

When the heat sink thermal conductance is 50 W/
cm’K the IGT is still in the save operating area (SOA).
The peak lattice temperature is 305.2 K in this case.
Figures 4, 5 show the carrier concentration in the
n*-emitter, the channel region and the p-base. Latch-up,
however, is very pronounced for a heat sink thermal
conductance 5 W/cm?K. The corresponding peak
lattice temperature is 346.1 K. Figures 6, 7 present the
electron and hole concentration for the onset of latch-
up. Note that the difference between Figs. 4, 5 and 6,
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7 is due to different cooling conditions only. In both
cases Vy=15V, V;=1.5V have been applied. Thus it
is demonstrated that latch-up in the IGT has to be
regarded as an electrothermal problem.

The increase of lattice temperature, however, is
not only determined by thermal boundary conditions
but also by the local heat production. Using the
heuristic heat generation model (24), (incorporated in
many device simulators), the peak lattice temperature
is predicted to be 329.5 K (A=5 W/cm?K unchanged).
Latch-up is much less pronounced. This fact indicates
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that the capability to accurately predict the safe operat-
ing area depends on the availability of an advanced
model for local energy conversion.

When latch-up occurs the emitter injects electrons
into the p-base as is made visible in Fig. 6. The emitter
region spreads into the p-base, as is seen from Fig. 8 by
comparison with the equilibrium distribution in Fig.
9, initiating the turn on of the parasitic thyristor in the
IGT-structure.

In order to compare the different levels of injected
electrons the IGT has been cut at the emitter edge for
Fig. 10. The electron concentration in the p-base rises
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with the increase of lattice temperature.

In isothermal silicon at 300 K, the critical value
for the onset of latch-up is exceeded when the n*-
emitter-p-base junction becomes forward-biased by
more than 0.7 volt, usually because of lateral current
flow in the p-base. Under non-isothermal conditions,
however, the junction voltage is reduced which can be
seen in Fig. 11. Therefore more electrons are injected.
Furthermore the voltage drop in the p-base due to hole
current flow is higher in the non-isothermal case
because of the increase of the sheet resistance due to the
excess lattice temperature. This effect is made visible in
Fig. 12.

Figure 13 shows the excess temperature in the
channel region after onset of latch-up. The maximum
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temperature is found to be 346.1 K for the conditions
cited above. The temperature distribution is almost
homogeneous. Most of the temperature drop is exter-
nal to the device. The temperature peak is located in
the inversion layer due to excessive Joule heating.

It is found that the latching current is reduced
with increasing temperature. The reason is that the
gain of the pnp-transistor as well as the sheet resistance
of the p-base increases with temperature. Furthermore
the reduction of the n*-emitter-p-base junction voltage
due to self-heating enhances latch-up. Thus the latch-
ing current reduction is a function of cooling condi-
tions.

5. Conclusion

Emphasizing the entropy balance equation an
advanced model for self-heating effects has been derived
from principles of irreversible thermodynamics. It is
valid in both the stationary and the transient regimes.

Four contributions to the heat generation can be
distinguished: Joule heat, recombination heat,
Thomson heat and carrier source heat.

The electrothermal nature of device behavior
during latch-up in an IGT has been simulated. It has
been found that accurate analysis of latch-up phenom-
ena requires electrothermal simulation to account for
the reduction of latching current due to self-heating.
Furthermore it has been shown that simulations based
on a heuristic model of electrothermal transport tend
to predict a larger save operating area of the IGT than
simulations based on the suggested rigorous model of
electrothermal interaction.

Acknowledgement

This work has been supported by SIEMENS Austria,
PSE 3. Special thanks go to PSE 362 for the provision
of computer resources.

References

[1]  Adler, M., “Accurate Calculations of the Forward Drop
and Power Dissipation in Thyristors,” IEEE Trans.
Electron Devices, vol. ED-25, pp. 16-22, Jan. 1978.

[2]  Baliga, B. J., Modern Power Devices., John Wiley & Sons,
New Y ork-Chichester-Brisbane-Toronto-Singapore, 1987.

[3] Callen, H. B, Thermodynamics., John Wiley Sons, New
York-London-Sidney, 1966.

[4] Dorkel, J.M. “On Electrical Transport in Non-
Isothermal Semiconductors,” Solid State Electronics, vol.
26, pp. 819-821, Aug. 1983.

(5] Franz, A. F., Franz, G. A, Selberherr, S. and Markowich,
P., “Finite Boxes—A Generalisation of the Finite-
Difference Method Suitable for Semiconductor Device
Simulation,” IEEE Trans. Electron Devices, vol. ED-30,
pp. 170-1083, Sep. 1983.

[6] Franz, A F. and Franz, G. A, “BAMBI—A Design
Model for Power MOSFET’S,” IEEE Trans. CAD, vol.
CAD-4, pp. 177-189, Jul 1985. vol. ED-30, pp. 1070-

IEICE TRANS. ELECTRON., VOL. E77-C, NO. 2 FEBRUARY 1994

1083, Sep. 1983.

[7] de Groot, S.R. and Mazur, P., Grundlagen der Ther-
modynamik irreversibler Prozesse, Bibliographisches In-
stitut, Mannheim-Ziirich, 1961.

(8] Madelung, O., Grundlagen der Halbleiterphysik, Sprin-
ger, Berlin-Heidelberg-New York, 1970.

[9] Prigogine, I, Thermodynamics of Irreversible Processes,
Interscience Publishers, New York-London, 1961.

[10] Selberherr, S., Analysis and Simulation of Semiconduc-
tor Devices, Springer, Wien-New York, 1984.

[11] Slotboom, J. W. and DeGraaff, H. C., “Bandgap Narrow-
ing in Silicon Bipolar Transistors,” IEEE Trans. Electron
Devices, vol. ED-24, pp. 1123-1125, Aug. 1977.

[12] Wachutka, G., “Rigorous Thermodynamic Treatment of
Heat Generation and Conduction in Semiconductor
Device Modeling,” IEEE Trans. CAD, vol. 9, pp. 1141-
1149, Nov. 1990.

Hermann Brand was born in Mauth-
ausen, Austria. He studied electrical
engineering at the Technical University of
Graz, where he received the degree of
‘Diplomingenieur.” He has held various
positions in many software developement
projects. His research interests include
Computational Engineering especially
Process- and Device Simulation, Software
Engineering and Telecommunications.

Siegfried Selberherr was born in
Klosterneuburg, Austria, in 1955. He
received the degree of Diplomingenieur in
Control Theory and Industrial Elec-
tronics from the Technical University of
Vienna in 1978. Since that time he joined
the Institut fiir Aligemeine Elektrotech-
nik und Elektronik, previously called the
Institut fiir Physikalische Elektronik, at
the Technical University of Vienna. He
finished his thesis on “Two Dimensional
MOS Transistor Modeling” in 1981. Dr. Selberherr has been
holding the venia docendi on computeraided design since 1984.
He is the head of the Institut fiir Mikroelektronik since 1988. His
current topics are modeling and simulation of problems for
microelectronics engineering. He authored and coauthored more
than 200 publications in journals and conference proceedings.
Furthermore, he wrote a book Analysis and Simulation of
Semiconductor Devices. Dr. Selberherr is member of the Associ-
ation for Computing Machinery (1979), the Society of Industrial
and Applied Mathematics (1980) and the Verband deutscher
Elektrotechniker and fellow of the The Institute of Electrical and
Electronics Engineers.




