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VISTA—The Data Level

Franz Fasching, Walter Tuppa, and Siegfried Selbetherr, Fellow, IEEE

Abstract— In order to meet the requirements of advanced
process and device design, a new generation of technology CAD
(TCAD) simulation frameworks is emerging. These are based
on a data level providing a common data interchange format.
Such a format must be suitable for building simulation databases,
and needs to be supported by tools and a procedural interface
with multi-language bindings for data storage and retrieval by
application programs. In this work, the data level of the Vien-
nese integrated system for TCAD applications (VISTA) [1], which
includes the profile interchange format (PIF), the PIF binary
file manager (PBFM) and the PIF application interface (PAI), is
described from a framework point of view.

I. INTRODUCTION

HE DEVELOPMENT of integrated simulation frame-

works has received considerable attention by the semi-
conductor industry, as well as universities and other organisa-
tions. Amongst the most well-known products are an integrated
system for statistical VLSI design [2], the MECCA system
from AT&T [3], the PROSE environment from UC Berkeley
[4] or the SATURN system from SIEMENS [5].

However, only few of these frameworks feature a data
level for simulation data access. Most of the existing TCAD
environments use data converters to couple simulators using
different data formats. Doing this not only causes the number
of converters needed to rise quadratically with the number
of simulators present, it also prevents the user from taking
advantage of the services provided by a TCAD-oriented data
level. Using a data level, simulators can be split up into
separate tools of well-defined functionality, allowing tool
developers to concentrate on their particular task.

Early implementations of data levels, like the DAMSEL
system from CNS/CNET [6], feature two-dimensional geome-
tries and simple data structures for easy usage by existing
simulators. Among data levels designed for TCAD environ-
ments there are the CDB/HCDB from CMU [7], and the BPIF
implementation from UC Berkeley [8]. Another data level
built on PIF featuring object-orientedness is the PIF/Gestalt
system from MIT [9]. A recent approach is the SWR 1.0
specification of the CFI/TCAD TSC [10], defining an object-
oriented application interface for TCAD data access.
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II. REQUIREMENTS AND DESIGN

Seen from the applications’s point of view, there are nu-
merous requirements which the data level of a TCAD system
must satisfy. Firstly, there has to be a simulation database
where simulation problem descriptions, histories and results
are stored. A clear, syntactic procedural interface provides
access to the simulation data and conveys all physical and
nonphysical information used by the application. The in-
terface must contain language bindings for those program-
ming languages which are commonly used to develop TCAD
tools. Moreover, the interface must be operating system- and
machine-independent, to achieve easy portability to different
platforms. Compatibility with external TCAD tools must be
ensured by facilitating their migration into the framework
through the use of appropriate concepts.

The procedural interface must be characterized by its ease of
use, and an orthogonal architecture, to minimize the effort in-
volved in the creation of new tools. The interface should auto-
matically perform conversions of coordinate systems, physical
units, simulation grids, etc. so that the application can concen-
trate on its actual task. Fast random access to simulation data
and compact database sizes are crucial for 3-D simulators, so
these issues cannot be neglected when designing a procedural
interface. Since some TCAD applications may want to use
their own internal data structures, the interface has to adapt
easily to application-specific data structures.

Once these demands are satisfied, simulators may be run
as standalone applications coupled by a common data format.
However, a full TCAD integration imposes further require-
ments upon the data level, under the assumption, that simply
“wrapping” the simulator is not a desirable integration method.
Flexibility is needed to support all possible framework archi-
tectures (client—server, master—slave, parity, ...). It is ques-
tionable, if a true client-server architecture using the network
will exhibit the required performance in a TCAD environment,
since large data amounts like grids, attributes or solver stiffness
matrices (especially in 3-D) have to be communicated between
client and server. Although mapping client memory into the
server substantially improves performance, this approach is
neither portable, nor works over the network.

In fact, a confinement to a specific architecture would result
in an inflexible data level and thus lead to a framework that
cannot be adapted to the environmental needs of a simulation
site. A precondition for this is the multiprocessing ability of the
application interface, to enable parallel simulator runs using
the same data set as well as ensuring clusterwide access to
the data. The data level of a TCAD environment must be
able to manage and archive simulation sequences in order to
ensure the reproducability of the results and easy backtracking
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Fig. 1. The logical PIF structure.

through the simulation history. The environment has to provide
facilities for intersite data exchange, message passing between
applications, and error reporting, handling and recovery, which
have to be consistent with the data-level implementation. Since
many different tools have to interact in a TCAD framework,
the data level has to apply semantic rules to ensure the
“understandability” of common simulation data for all tools
integrated in the environment.

Thus, the data level is the backbone of the whole framework.
The data level of the VISTA system was designed to meet most
of the above requirements. It features:

* A layered procedural interface for applications to store

and retrieve all TCAD relevant data

« Language bindings to FORTRAN, C and LISP

* A common ASCII interchange format (profile interchange

format, PIF)

« A compact binary storage format (PIF logical binaries,

PLB’s)

+ Parallel access to PLB’s

» The ability to build databases of PLB’s into PIF binary

files (PBF’s)

+ Database utilities to manage PBF’s

« Networking capabilities.

The procedural interface to the database services is called
PIF application interface (PAI [11]) and makes extensive use
of automatic code generation to achieve platform indepen-
dence and generate the individual language interfaces. It is
described in detail in the next chapter. .

The PIF plays a very important role in the VISTA data
level. Its ASCII format, first proposed by Duvall [12], was
modified to meet the requirements of a TCAD framework.
It is used as an intersite data exchange format and is, in its
its binary form [11] the database storage format of the data
level. Fig. 1 shows the logical PIF structure with corresponding
object relationships. Note that the majority of the simulation
information is carried in the grey shaded geometry, grid
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(attribute geometry attribute
(attributeType "MaterialType")
(nameList (ref my_segments (valuelist 1)))
(valueType asciiString)
(valueList "Silicon")

Fig. 2. Attribute defined on a segment.

(attribute grid attribute
(attributeType "ElectricField")
(namelist (ref my.grid))
(valueType (vector 3 real))
(valuelist 1.2 3.4 6.5

4.4 3.5 4.7

Fig. 3. Attribute defined on a grid.

and attribute constructs, while the objectGroup and
meta objects are important extensions for conveying TCAD-
related data. Both the geomet ry and the grid constructs are
built out of primitive geometric objects (points, lines, faces
and solids). The geometry construct additionally holds a
simulator’s point of view of a simulation geometry through
segmentList and boundaryList constructs.

The attribute construct is used to attach any kind of
information to an object. The att ributeType subconstruct
describes the meaning of an attribute. Thus the PIF attribution
mechanism is the most flexible means in attaching information
to geometries and grids, since they can express anything rang-
ing from a simple descriptive string to a vector field defined
on a tensor product grid. With this unified concept there is no
separation between fields and attributes necessary, which is
another milestone to a clearly structured architecture allowing
a simple implementation. Fig. 2 shows a materialType
attribute defined over a segment and Fig. 3 shows a 3-D
electricField attribute defined over a grid.

In contrast to other approaches, attributes types are seman-
tically standardized to prevent incompatibilities in tool com-
munication (e.g., one tool writing a “Potential” attribute,
and a second tool trying to read an “ElectricPotential”
attribute), although each tool is free to define its own local
attribute types.

Due to its generality and flexibility, a PBF may hold an
unlimited number of PLB’s, and one PLB (conforming to one
ASCII PIF) in turn may hold an infinite number of objects.
So, a PBF may contain anything from just one PLB with a
few comments, to hundreds of PLB’s, each holding several
geometries, attributes, grids and process flow descriptions. The
maximum size of a PBF is limited by the adressing capability
of the PAI, which in turn is affected by the machine word
length. On a 32-bit machine the PAI can address one gigabyte
(some bits are reserved) which is therefore the maximum PBF
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size, supposed the operating systems file size limitation is
higher. Since the PAI is capable of opening up to 16 PLB’s, an
application has a maximum of 16 gigabyte of data available.
Typically, a single PBF holds one or two PLB’s containing a
geometry, attributes and grids of a single tool run. Through the
special 1ink construct objects in other PLB’s or even other
PBF’s may be referenced.

The binary format is closely related to the ASCII format
inasmuch as the hierarchical structure of the ASCII PIF
is preserved in the binary form through the use of LISP-
like constructor nodes. However, to improve performance
and data compactness, several additional features have been
implemented, such as a symbol hash table for fast object access
by name and a compressed array storage format for large arrays
which typically occur in TCAD applications for attributes on
grids.

It is important to note that, although the structure of the PAI
is derived from the PIF syntax, the PAI itself is independent
from the underlying database, and thus could be interfaced
(probably with losses in performance and compactness) to
other databases, since the TCAD application sees just the PAI
procedural interface and has to know little about PIF. Thus,
multiple different implementations of the low-level application
interface routines are possible, because the applications have
just to rely on the specification of the PIF application interface
services.

The decision to use PIF was made in conjunction with the
decision to adopt XLISP as the VISTA task-level extension
language: PIF uses a LISP-like syntax and XLISP as the task-
level language gives way to a seamless and homogeneous
fusion of data and task-level concepts. With this unique
combination it is equally possible to modify simulation data
in the database directly as LISP data as well as store LISP
expressions (e.g., task-level programs) in the PBF. Thus a
process flow representation can be directly embedded in the
TCAD data level; there is no artificial separation, and ho-
mogeneous data storage, retrieval and maintenance services
are available for both semiconductor wafer and process flow
representations.

III. IMPLEMENTATION OF THE APPLICATION INTERFACE

The PAI is split into seven layers with strict interfaces
between each other. The different layers are shown in Fig. 4.

Each layer calls only functions in the underlying layer. This
mechanism leads to separate modules with distinct function-
ality as used by individual tools. Each layer is responsible for
a unique storage concept of the whole PBF, with increasing
complexity towards the upper layers. The application interface
works on PBF’s (intertool format); for data exchange with
other hosts there is the PIF ASCII form (intersite format).
To convert PIF files between these two formats there is the
PIF binary file manager (see Section 3.10), implemented as a
separate PIF tool on top of the PAL

The PAT is able to handle simulation data in three geometric
and infinite nongeometric dimensions. Thus it is possible to
read and write distributed attributes ranging from scalar to
N-order tensor values on one- to three-dimensional grids. All
PIF objects can be selectively and directly accessed with the
PAL, either by handle or by name. The PAI will read only the
necessary parts of a PBF into a cache avoiding performance
drawbacks of common file-based systems.

3.1. Error Handling

Errors detected in the PAI are signaled to the global VISTA
error handling system, which allows the user to specify dif-
ferent error handlers for each type of error. In addition to
program-signaled errors, the error system handles system faults
and program exit too. The default error handler prints out the
function, the line number and source file name of the function,
where the error occured.

New error handlers can be registered by each application
to handle error conditions in a program specific way. For
example, the caching layer installs its own exit handler on
initialization to panic-close all open PBF’s through the error
system if a memory fault or address violation occurs.

3.2. System Layer

This lowest layer of the PAI is the link to the operating
system and defines simple access routines to the file input and
output services. In ANSI C only the buffered file /O is defined
and standarized, but buffering is not needed by the PAI since
this is done in the caching layer above. If the unbuffered UNIX
style file I/O exists in a specific operating system, this is used
instead. This is the only layer which has system dependent
functions and implements also basic functions for network
access (TCP/IP and DEChnet).

3.3. File Layer

The standarized file I/O functions of the system layer are
used by the file layer to handle the physical I/O of PBF’s.
It guarantees that a PBF is only opened by one application
at a time for writing (file locking). Avoiding multiple write
accesses to one PBF allows an easier implementation of the
data base, since the physical file cannot change during access
(unless it is closed); multiple read-only accesses are allowed.
The locking of a PBF is not implemented through system
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Fig. 5. Local and network storage.

functions. It works through a mark in the header of the PBF
and a special lock status, where multiple accesses of the same
file at the same time are detected. The file layer also allows
the creation of temporary PBF’s for intermediate storage of
simulation data. Temporary files are stored in PBF’s without
a physical name and deleted automatically upon closing.

34. Network Layer

The functional interface exhibited by this optional layer is
equivalent to the one of the file layer for access to PBF’s, but
allows instead accesses to PBF’s over the network. In order
to minimize network traffic, the functions of the file layer are
used for local and temporary PBF’s. The network databases
are accessed through a database server as shown in Fig. S,
which opens, reads, writes and closes PBF’s.

The client uses the database server for all file I/O functions
on the network PBF’s, but all database operations are done
locally with the help of ‘the basic and interface layers. For
fast access to the data, the server holds some data blocks of
the files in a local cache similar to the caching layer. This
cache is shared by all clients and is not cleared upon closing
a PBF, so that a following reopen and usage of the same file,
even by a different application, is fast due to its remaining in
the server cache. All write operations are delayed and buffered
through a cache to maximize performance. The runtime option
of unbuffered write operations ensures consistency of the PBF
during update operations, and allows to examine a PBF while
a tool is running and writing to it, which is an invaluable help
in debugging simulators.

Another aspect of the network layer is the capability of
message passing. It allows the application to contact other
programs (e.g., the XLISP interpreter on the task level) over
the network. Fig. 6 shows an example network configuration
with tools and database servers interacting over the network.

3.5. Caching Layer

This layer buffers 1/O data to minimize disc and network
accesses. Depending on the application, the size of this buffer
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can vary from a few hundred kilobytes to several megabytes.
The advantage of the cache is that data requested by read
operations frequently can be found in the cache, while write
operations can be delayed until closing of the file, depending
on the page size and total cache sizes and on the page
replacement algorithm. The caching layer is designed in such
a way that the page-replacement algorithm can be substituted
with a different one like LRU or random replacement of
memory pages [13]. Currently, an algorithm implementing
a combination of these two methods is used. The memory
pages are usually as big as or—for better performance—even
bigger than operating system cache pages. This layer also
allocates file space for all types of objects. To optimize cache
hits, all small objects with a few allocation units in. size are
contiguously stored in one big chunk whereas large data pieces
are always appended at the current end of the file. Since the
above layers need the functionality to update data items, a
free () operation is also implemented so that no space on
the physical file is permanently wasted. From the above layers,
the caching layer can be seen as a big malloc () /free ()
library with access functions that perform cached file access.

3.6. Basic Layer

This layer is the lowest to implement structured data nodes.
Fig. 7 shows the general structure of such a basic layer node.
The header word of the node determines its type and structure,
i.e. the type and number of the generic and specific data slots.
The former are common to each node type whereas the latter
carry the actual data visible to upper layers. Thus the shaded
fields in this figure are maintained and used by the basic layer.
For the unshaded fields the basic layer just reserves space and
provides access functions.

The possible data types of the specific slots as determined
by the tag field of the header word are:

Car pointer to another node

Symbol unique symbol name in the logical PIF file
Symref reference to a symbol node

Char character node

Byte unsigned byte value (8 bit)

Short short data value

Word unsigned short data value (16 bit)
Long long data value

LongWord  unsigned long data value (32 bit)
Float real data value

Double double presision data value

LongDouble quad precision data value

All these types correspond to the C language types of the
same size. To connect nodes together into a list or to implement
arrays like strings (consequently stored as character arrays),
the flags in the header word are used. The possible values
are any combination of the following definitions, responsible
for determining the generic slots of the node:

Cdr the node has an implicit pointer to
a successor node
Array the node is an array (its size is stored as

a separate entry)
Compressed the data of the node is compressed
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Fig. 7. Implementation of a basic layer mode.

With the basic layer a functional interface to a LISP-like
information storage concept is implemented. The interface
presents the notion of atoms (primitive data items like a
number, character or string value) and constructor nodes
(CONS nodes for list creation) to the upper layers, as described
in [14]. One significant difference to a LISP interpreter’s
memory structure is that every basic layer node is implicitly
a CONS node providing a CDR pointer as one slot in the data
slots and carrying an atomic data value, i.e., the CAR pointer
is redundant and therefore removed. The actual CONS node is
implemented as a basic layer node with the atomic data value
being a CAR pointer.

It should be noted that in contrast to LISP storage concepts,
all nodes of the basic layer (and hence the PIF Application
Interface) are originally kept on a file and are just cached
through the caching layer. This implies, that all reference
pointers stored in a basic layer node are file offset pointers
and thus do not point to memory locations. It is the caching
layer’s duty to resolve those references correctly.

Fig. 8. Example of a LISP internal data structure.

To illustrate the different storage concepts, let us consider
the simple PIF expression (ref P (valueList 1 2)).

This construct represents a reference to the first two points
of a pointList P. Fig. 8 shows how this construct would
be stored in the XLISP interpreter with separate CONS nodes.
The comresponding PBF structure, as it is handled in the
basic layer, is shown in Fig. 9. The CONS nodes are fused
with the CAR data values, to compact the data structures and
minimize data access time, which is crucial on slower external
storage media. Furthermore, this concept retains the principle
extension language storage structures on the data level.

Using this concept of LISP-like information nodes the PLB
is stored, whereas the PBF is built as a linked list of PLB’s,
shown in Fig. 10. Since this list is only searched when the
file is opened, this is no performance drawback. The data area
is shared by all PLB’s in the PBF, but on write operations it
is checked that no crosspointers into disjoint PLB’s occur. To
allow fast access to all symbols, these are stored in a hash table
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Fig. 9. Example of a PIF binary file and basic layer data structure.

file header
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Fig. 10. Layout of a PIF physical file with multiple logical files.

which is unique for each PLB so that there are no conflicts
between different PLB’s.

3.7. Interface Layer

This layer is the implementation of the PIF syntax, provid-
ing administration, access and inquire functions. To improve
performance, it uses a structure of the basic layer array node
to implement the interface layer nodes. A reserved field of the
header word of a basic layer node Fig. 7 is used to store the
type information of the interface layer node (labelled IL node
type) as an integer value.

The tag field of the basic layer node contains the CAR
type identifier, stating that this node contains CAR pointers
to other nodes as data values. The flags field of the basic
layer node has the Array and Cdr bits set, indicating that the
interface layer node may have successors (pointed to by the
CDR pointer) and multiple CAR data values (the number of
which is stored in the Size field of the node).

The corresponding name of the object and all related infor-
mation is stored in an automatically generated syntax table
This reduces the file size of a PLB significantly.

The IL node type identifies the PIF object type like pointList,
geometry or valueType which are defined by the syntax. This
field is automatically checked upon creation of a node through
the syntax table. All access functions and the syntax table are
generated automatically from a syntax description an example
of which can be seen in Fig. 11.

(rule ’snapshot
’(deriv
LPAR SNAPSHOT OBJNAME
(opt comment)
(1list namelist)
(11ist attribute)
RPAR))

Fig. 11. Abstract syntax description of the PIF snapshot construct.

integer

integer

Fig. 12. Example of an interface layer data structure.

The snapshot construct is defined as a named PIF object,
whose name can be used to search for the object. It has an
optional comment, an optional list of references through the
nameList construct and an optional list of attributes. Therefore,
the node will have four specific slots. The first slot will hold
the unique name of the snapshot. The second will hold the
comment, the third the references and the last the attribute
definition. This information is also used to limit the search
depth when traversing the tree (in case not all slots have to
be searched) on PLB inquiries, and to check the correctness
of the PLB upon node creation.

The previously mentioned example of a reference con-
struct represented with interface layer nodes is shown in
Fig, 12. The ref and valueList constructs have specific
interface layer node representations, whereas the symbol name
and the valueList indices are genuine basic layer nodes,
since they just represent primitive data values. Compared
with the basic layer-only representation of the same reference
construct in Fig. 9, a significant reduction in the number of
required nodes and total storage size can be seen, resulting in
faster data access.

Since the syntax defines many fields optional to allow a
wide range of possible constructs, additional “language rules”
are needed to define a well constructed PLB which can be
understood by different simulators. Many of these rules are
implemented by the application layer, others are described
in the PIF CookBook (see [15]) which defines the semantic
meaning of the PIF,

3.8. Application Layer and Language Binding

This layer implements some functionality common to sim-
ulators and utility programs. Its design is intended to be
extendable in order to adapt the interface to new simulators
or special demands. Many semantic rules and checks are
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/* local variables */
pailbject valuelist, ref;
pailong points[2];

points[0] = 1;

points[1] = 2;

ref = pilCreateRef (
namelist, /*
pointlist, /*
PilCREATENESTED) ; /*

valuelist = pilCreateValueList(
ref, /*
PilDATA_INTEGER, /*
points, /%
0, 2, /*
PilCREATE.NESTED) ; /*
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parent namelList construct */
referenced pointList P */
create a new reference construct */

parent ref construct */

data type is integer */

data points indices */

which values to write */

create a new valuelist construct */

Fig. 13. Interface layer code example.

implemented in the application layer, making the adaption of
existing simulators to PIF easier, and ensuring interoperability
in the VISTA framework. High-level functionality and auto-
matically invoked data-manipulation services are provided to
relief TCAD tools from tedious “everyday” work. The routines
of the application layer implement geometry-manipulating as
well as attribute-manipulating functions, because we think
that both aspects are closely related in a TCAD environment.
This fact is expressed in the uniform data representation of
geometries and attributes on geometrical objects in PIF.

3.8.1. FORTRAN Interface: As the application layer is
written in C and most simulators are written in FORTRAN,
we have developed language bindings for most application
layer functions and all inquiry functions to FORTRAN. This
binding is strongly dependent on the two compilers, since there
is no standard in parameter passing of strings in FORTRAN
and the implementation of logical values (. TRUE. may be
represented as the cardinal number 1 or —1). So we generate all
binding functions automatically out of a formal description and
additional information about the specific FORTRAN compiler.
All string and logical variable conversions to C types are
done automatically before the user-supplied C code is called.
Adding a new binding or another compiler requires only few
additions in the configuration files.

3.8.2. LISP Interface: The LISP interface of the PAI is not
built on top of the application layer, since it makes no sense
to use LISP for computationally intensive calculations on PIF
data. The extension language of the task level is primarily
used to generate input PLB’s and control information for
TCAD tools or to read output values of simulation results for
further investigations. Thus the extension language interpreter
connects to the interface layer, allowing full access to PBF’s.
For convenience there is an additional LISP library to support
the creation of whole PIF constructs (like generated with the
application layer).

High level functions of the PIF ToolBox are automatically
bound to LISP by the Tool Abstraction Concept (TAC) and
so available to the TCAD shell. The big difference between
Application Layer functions and ToolBox functions is that the
second get their input from the PLB and write their output
back to the same or another PLB. No data manipulation is
done in LISP.

3.9. Procedural Interfaces

The short code example in Fig. 13 shows the C calls to
generate an example of a PIF data structure. namelist is the
handle to the parent nameList object [15]. The two element
array points holds the indices of the points on which the
line is created. In the Application Layer code example Fig.
14 this part of information is generated by the function pal-
WriteLineList1l. In addition to the reference construct this
function generates the whole 1ineList construct, as can be
seen in Fig. 15.

3.10. PIF Binary File Manager

As mentioned above, the whole PAI works on a binary
representation- of the data for fast access. This type of data
storage is optimized for architecture-dependent coupling of
simulators in non human-readable form. For data exchange via
eMail or FTP, or making PLB’s human-readable, there is the
ASCII PIF representation holding the same information. The
PBFM is able to convert the binary to ASCII PIF and vice
versa. Thus data exchange between machines with different
byte ordering (little and big endian) and floating point formats
(e.g., IEEE, VAX and IBM) is possible by converting PLB’s
to ASCII PIF and back to binary format on a machine with
different architecture. The maintenance functions of the PBFM
allow the user to list all PLB’s of a PBF, delete any PLB within
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/* local variables */
pailbject linelist;
pailong endindices[1];
pailong objdx[2];

endindices[0] = 2;

objdx[0] = 1;

objdx[1] = 2;

linelist = palWriteLineList1(
parent,
"myLine",
1,
endindices, /*
2, /*
pointlist, /*
objdx, /*
palCREATE NEW) /*
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/* handle to PIF file */

/* name of the lineList »/

/* number of lines */

endindices of the lines */

number of used points */

handle to referenced pointlist P */
point indices */

create a new lineList */

. Fig. 14. Application layer code example.

a PBF, repair a not cleanly closed PBF and check PIF ASCII
files for lexical correctness (Fig. 16).

IV. SEMANTIC ISSUES

The PIF itself, be it its ASCII or binary form, only defines
a syntax. It does not prescribe any interpretation of the stored
TCAD data. This is one issue which accounts for the flexibility
and general-purposeness of the PIF. On the other hand, many
ambiguities arise from the possible multilateral description of
the same physical problem in terms of PIF syntax. There
are many ways to describe a geometry, ambiguities in rec-
ognizing a grid or an attribute, and general PIF semantics.
These ambiguities arise from different coordinate systems,
hierarchical or non-hierarchical geometry specifications and
using one or many lists of primitive geometric objects, with or
without references to other PLB’s. Grids can be of unstructured
or tensor product type, defined on a segment or the whole
geometry and attributes can be defined on the grid, its points,
lines, faces or solids. Moreover, the application interface has
to know what to do with different units of measure, when to
write and what to reference in a snapshot, geometry or
written construct, where to define attributes, what attribute
types to use,...).

However, ambiguities and multilateral descriptions are a
general problem, because the more general a syntax is and
the more functionality a procedural interface has, the more
semantic standardizations are needed to make applications
work properly in a common environment.

In order to unambiguously interpret PIF data, there have
to be both semantic constraints which applications have to
adhere to (losing PIF flexibility), and ambiguity resolution
mechanisms built into the application interface. However, only
few additional semantic rules specified in the PIF CookBook
[15] have to be obeyed. The PAI takes care of different

(linelist "myLine"
(nameList (ref P (valueList 1 2))))

Fig. 15. PIF construct produced by example code.

coordinate systems through a transformation matrix applied to
geometrical data, and accounts for different units of measure
through a unit conversion system (e.g., point coordinates can
be written in micrometers and read in inches, different spatial
axes can have different units). It automatically resolves links
to other PLB’s and provides a multitude of inquiry functions
for locating a certain PIF construct wherever it appears in the
PLB.

The more severe semantic differences between simulators
(e.g., a simulator working on an unstructured grid coupled
to a simulator using a tensor product grid) are dealt with in
the PIF ToolBox, comprised of generic PIF tools such as grid
generators, interpolators, attribute and geometry manipulators
using the PAI and preparing a PLB according to the semantic
standards of the PIF CookBook [15]. However, these tools are
controlled by the task level and belong to the tool rather than
to the data level. .

A particularily difficult problem is the support mechanism
for the innumerable different grid types used today. A distinc-
tion between tensor product and unstructured grids has been
made, because we didn’t want to lose an orthogonal grid’s
unique features by decomposing it into rectangles/cuboids.
Therefore the special orthoProduct construct was intro-
duced, which significantly enhances the efficiency of storing
tensor product grids while preserving its advantageous struc-
ture. However, since the number of different unstructured
grid types increases steadily, a specification mechanism for
dynamically adding new grid types just by providing a unique
name, an interpolation and a decomposition function has been
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Pif Binary File Manager

/ Maintenance \cxica.l Check

‘ Conversion (PIE
‘ (pointList
\V/
=
Binary (intertool) ASCII (intersite)

Fig. 16. Using the PIF binary file manager.

(grid grd_1
(pointList pgrd
(valueList ....)
) —_ interpolTRI3 ()
(faceList fgrd decomposeTRI3 ()
(nameList
(ref pgrd 1 2 3)))
(attribute elemgrd
(namelist
(ref fgrd))
(attributeType
"elementType")
(valueType
asciistring)
(valuelist
“TRI3"
"TRI6"

interpoclTRI6 ()
decomposeTRI6 ()

-

interpolTET1O0 ()
decomposeTET10 ()

interpolPRISMG ()
decomposePRISMS ()

Fig. 17. Support for unstructured grids.

implemented. Using automatic code generation tools, these
routines are linked into generic PIF ToolBox functions, thus
adding support for the new grid element to the whole frame-
work. Fig. 17 shows some example elements and how they
are referenced in a PIF grid. Through using an attribute
defined over the faceList it is possible to specify different
element types in one and the same grid.

New element types are introduced by specifying the name,
dimensionality, number of nodes and a decomposition and
interpolation function in a element definition table. After
recompiling the PAL, the new element type is known to
applications through a unique constant identifier. But most
applications need not explicitly take care of new element types:
Reading attributes defined over a grid can be done without
knowledge of the grid, since there is a generic interpolation
function, which is automatically invoked when requesting an
attribute value at a location (x,y). The generic interpolation
routine knows the grid type the attribute is defined on, and
correspondingly invokes the orthoProduct interpolation or
determines the element in which the requested location lies,
then invoking the element interpolation function defined for
that element type.

(orthoProduct my_tensor grid
; the 3D base point
(origin
(units "um")
(valueType (point 3 real))
(valuelist 1.0 1.0 0.0))
; the two axis vectors
(base
(valueType (vector 3 real))
(valuelist 1.0 0.0 0.0
0.0 1.0 0.0))
; the two axis specifications
(axes
(valueType real)
(valueRange 0.0 5.0 0.23)
(valuelist 0.0 0.1 0.22 0.37 0.4))

Fig. 18. Tensor product grid example.

Tensor product grids are supported through the ortho-
Product construct. The grid has an origin point, may have
different topological and topographical dimensions and each
dimension may have a different base vector. Conforming to
the PIF syntax, the number of supported dimensions is infinite.
The example Fig. 18 shows a tensor product grid of topological
dimension 2 lying in 3-D space. This capability is needed e.g.
to describe distributed boundary conditions of a 3-D device.

The assembly of solver matrices is not supported by the
PAI, since we believe that this task is very problem-specific
and current networks don’t exhibit the necessary performance
to transfer these large amounts of data in an acceptable time
frame to a solver server. The “know how” of a simulator is
always contained in its physical models, the knowledge of
which is essential in matrix assembly. A simulator using a
standard matrix assembly method would lose much of it’s
advantages. This holds true for grid generation and the partial
differential equation solver too.

V. PERFORMANCE EVALUATION

Besides the goals of classical intertool PIF implementations
featuring object-orientedness (PIF/Gestalt, [9]) or suitabil-
ity for TCAD environments (BPIF, [8]) our implementation
stresses efficiency in terms of run-time performance and
database compactness. Thus, writing and reading 10 000 3-D
points of a PIF pointList takes 0.51 and 0.66 s (real time)
respectively on a DECstation 3100; the database written is 250
kBytes in size. Therefore, linking a TCAD application to the
VISTA environment is not a performance issue. In contrast to a
client-server approach, the administrative and communication
overhead is negligible for any application consuming a few
seconds of CPU time—the commonly used argument, that PIF
is not practical because of its low run-time performance no
longer holds true.
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VI. CONCLUSION AND FUTURE ASPECTS

Using PIF as the interchange format of the data level of a
TCAD system is an effective choice. However, the crucial
part of the data level is an efficient application interface
like the VISTA PAIL The source code of the VISTA PAI is
available free of charge from the Institute for Microelectronics
[15]. Because of its homogeneity, the combination of LISP as
the task level extension language and PIF as the data level
interchange format has proven to be a flexible basis for a
powerful TCAD framework.

6.1. Graphic PIF

On top of the PAI's basic layer, almost any imaginable
procedural interface for LISP-based languages can be built
using automatic code generation tools. This is used to create
a special Graphic PIF (GPIF) for a comprehensive device
editor which is currently under development, which supports
backward referencing and strips unnecessary PIF data.

6.2. Object-Oriented Design. Representation

.~In a TCAD environment, it would be convenient to represent
“devices to be simulated as objects belonging to a device class
hierarchy and with methods attached to them. Thus a device
would “know” how to simulate itself, i.e. its class would
have methods attached which call the appropriate simulator.
To achieve this, the design representation of the data level
has to be fully object-oriented, and the procedural interface
has to provide means to build class hierarchies and attach
methods to classes. Since PIF provides a LISP-like syntax it
is ideally suited to extend it with such object-oriented features.
A C++ language interface would present those features to
applications. Methods attached to PIF objects would be coded
in C++ and made available to the extension language through
the Tool Abstraction Concept. However, since only a minority
of today’s TCAD applications are written in C++, there is
presently no strong need for such an interface.
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