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A Hybrid Device Simulator that Combines
Monte Carlo and Drift-Diffusion Analysis
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Abstract—A hybrid simulator suitable for modeling small semi-
conductor devices has been developed in which Monte Carlo and
drift-diffusion models are combined. In critical device regions,
the position-dependent coefficients of an extended drift-diffusion
equation are extracted from a Monte Carlo simulation. Criteria
for identifying these regions are described. Additional features
which make the code more efficient are presented. First, a
free-flight time calculation method using a new self-scattering
algorithm is described. It allows for an efficient reduction of
self-scattering events. Second, a unique Monte Carlo-Poisson
coupling scheme has been developed which converges faster than
all presently known schemes. It exploits the so-called Monte
Carlo-drift diffusion coupling technique, which also forms the
basis of the hybrid method. The simulator has been used to model
submicron MOSFET’s with gate lengths down to 0.15 pm. In
addition to the non-local effects occurring in these devices, the
performance of the hybrid simulation method is analyzed.

I. INTRODUCTION

ECAUSE OF its efficiency, the drift-diffusion transport

model has been extensively used in many device sim-
ulation programs developed to date. As long as devices are
sufficiently large, this transport model along with a static
mobility model has been known to yield accurate results.
However, with the continuous decrease of device dimensions,
this situation has changed; the electric field in the active region
of a submicron device is often very high and undergoes rapid
variations over distances comparable to the carrier’s mean free
path.

The applicability of a mobility model that depends on
local quantities such as electric field, driving force or the
carrier’s mean energy becomes questionable. Artificial effects,
e.g., spurious velocity overshoot in simple n*tnn™ diodes,
may then be the consequence. Actually, the local distribution
function has to be known in order to specify mobility correctly
under these conditions. However, this is beyond the scope of
any drift-diffusion or energy-transport model.

On the other hand, tools based on the Monte Carlo tech-
nique, which directly solve the Boltzmann transport equation
(BTE) in a stochastic manner, do not have this limitation.
The distribution function is in principle known at any position
within the device. The Monte Carlo technique, although phys-
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ically very accurate, has some other limitations when applied
to global device simulation. It may become very inefficient,
especially in device regions where the electric field is low
or retarding, whereas drift-diffusion based device models
perform quite satisfactorily. Significant benefits therefore can
be expected from combining both methods in such a way
as to retain the computational efficiency of the drift-diffusion
method as well as the physical accuracy of the Monte Carlo
technique.

Several attempts have been published on this matter [2]-[4].
Park et al. [5] have proposed the so called hybrid technique in
order to study non-local transport in small bipolar devices. The
emitter-base potential barrier drastically reduces the efficiency
of the Monte Carlo technique. Therefore, Monte Carlo is
applied only to those regions where it is mandatory; the re-
maining regions are described by the drift-diffusion equations
with local transport coefficients. From the Monte Carlo data,
a position-dependent mobility is extracted for the simulated
regions and is used in a drift-diffusion equation which is
applied globally to model the entire device.

On the basis of the BTE, Bandyopadhyay et al. [1] have
developed a rigorous method for extracting mobilities and
diffusion coefficients required by the hybrid technique.

This paper is organized a follows. In Section II we describe
the basic ideas of the so-called Monte Carlo-drift-diffusion
coupling technique, which is the theoretical background of
the hybrid approach. In Section III we focus on the Monte
Carlo part of the hybrid simulation program; for the drift-
diffusion part, the well established MINIMOS program [6]
is used. Several algorithms have been developed to improve
the performance of the Monte Carlo code. Self-scattering, a
numerical device for free-flight time calculation, is used to
set up a piecewise linear total scattering rate. In this way
the amount of wasteful self-scattering events is considerably
reduced. In very small devices, the carrier distribution has to
be computed self-consistently with the electrostatic potential
given by Poisson’s equation. By means of a novel iteration
scheme, which is feasible only in conjunction with the Monte
Carlo-drift-diffusion coupling technique, this task can be per-
formed in a very efficient manner. Furthermore, in Section III
interface and boundary conditions necessary when linking the
different transport models are discussed. To identify the critical
device regions, physics-based criteria are presented. Finally, in
Section IV we present results of the simulation of small silicon
MOSFET’s, highlighting both the physical effects inside the
devices and the performance of the self-consistent iteration
scheme.
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II. THEORY

If in a portion of a device the drift-diffusion model be-
comes invalid, the carrier’s mean velocity v(r) is reproduced
incorrectly. However, from the conventional semiconductor
equations [7] a subset consisting of Poisson’s and continuity
equations still remains valid. One can now ask how a velocity
profile v(r) originating from another source, e.g., from a
Monte Carlo calculation, can be inserted into these remaining
equations. One straight forward way would be to relate the
correct v(r) to the current density by

j=—en(r)v(r), )

where (1) is then used in a continuity equation.

In [1] it is argued that during an iterative solution of (1),
together with continuity and Poisson’s equations, the electric
field inside the device may change with each successive
iteration and the Monte Carlo simulation has to be rerun each
time to compute the new v(r). In that case, it is advantageous
to recast (1) in the form of a drift-diffusion equation, involving
certain coefficients. These coefficients are expected to change
very little with the electric field unless the distribution function
changes drastically. Consequently, the Monte Carlo simulation
does not need to be rerun so often and convergence can be
achieved faster [1].

2.1. Basic Equations

To find the above mentioned current equation we con-
sider the time independent BTE for electrons. Generation-
recombination of electron-hole pairs is neglected at this stage.
From the BTE one can directly derive the moment equation
of first order,

10 hk; - v dp;
(E+_(_<__L_k>>) :_(&) @)

en Ory dt

where the distribution function implied by the averages is still
treated as an unknown function. Summation over repeated
indices is assumed. Here, the right-hand side represents the
average momentum loss rate which explicitly reads as

dp;
(%) = </(hk,- ~ RS K)K > . (3)
In (2) and (3), E; denotes the electric field, k; and v; the
electron wave vector and group velocity, respectively, and
S(k, k') is the differential scattering rate.

We now take as the defining relation for the mobility

1(dp;
uijg(—f,%) =< >, @

which holds in the presence of any distribution function being
physically meaningful.
If we insert (4) in the first moment equation (2) and if we
interpret the second moment as energy tensor, w;x = (1/2)
< hkj - v >, then we end up with a current equation in
the form

02w;rn

ji = e’ll,lLiJ'Ej + 14ij 87‘k

(&)

Due to the similarity of (5) and the conventional drift-diffusion
equation, both equations comprise a drift and a diffusive term
at the right-hand side, we consider equation (5) as an extended
drift-diffusion equation.

In what follows we illustrate the basic ideas of coupling the
Monte Carlo method with the rigorous current equation (5). In
the next subsection we discuss how (5) can be approximated in
order to obtain a current equation better suitable for numerical
implementation.

To find the required coefficients ;; and w;; Bandyopadhyay
et al. [1] suggest calculating the three lowest order moments of
the distribution function, namely n(r), <v;> and < hk;-v; >,
and use them in the defining relations!

1 0 hk; v
en ork
1
wjk:5<ﬁkj-vk>. 7

Equation (6) can be found immediately by comparing (2) and
).

If the Monte Carlo technique is used to calculate the
moments then the resulting coefficients y;; and w;; can be
interpreted as a link between the Monte Carlo and the extended
drift-diffusion models.

The derivation of the coupling coefficients from the mo-
ments outlined above shows the generality of this method. All
the physical models affecting the distribution function which
are accounted for in the Monte Carlo simulator, e.g., band-
structure models or scattering processes, directly influence the
moments and thus the coupling coefficients. In addition to the
approximations inherent to the Monte Carlo-model, no further
approximation is introduced when the Monte Carlo-model is
coupled with (5).

Under conditions far from thermal equilibrium, (5) together
with Monte Carlo generated space-dependent coefficients sim-
ply reproduce the Monte Carlo current-density. Approaching
thermal equilibrium, the energy tensor becomes independent
of space and is solely determined by the lattice temperature,
and p reverts to the low-field mobility jg. In this manner
the conventional drift-diffusion equation is recovered. The
set of semiconductor equations incorporating the extended
drift-diffusion equation (5) is therefore capable of describing
high-energy transport as well as low-field transport in very
small devices.

2.1. Approximation of the Basic Equations

Theoretically, additional approximations are not needed
since the tensor-like coefficients in (5) can be directly ex-
tracted from a Monte Carlo simulation. Practically, due to
the anisotropy of the coefficients it is difficult to numerically
solve a continuity equation including (5). Isotropic mobility
and temperature are therefore desirable.

In this work we substitute the Monte Carlo-drift-diffusion
coupling coefficients, f;; and w;;, by scalar quantities as

'In [1] a slightly different notation is used. The coefficients there are related
to those used here by D;; = (2/e)pix - wy; and & = (2/e)dw,; /Ox;.
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Here Ur is the thermal voltage and d is the number of
considered space dimensions. With these assumptions (5)
becomes

i =enu| E; + —
J ﬂ( +n ar;

Another possible approximation of the energy tensor is
based on random wave vector and velocity components that
are defined as

Ak; =ki— <k; >, Avy=v,—<wv;>. (1)
The energy tensor can then be separated in two terms,
I3 h
w,-jzi<ki><vj>+§<Aki~Avj>. (12)

By analogy with the hydrodynamic transport model an
isotropic temperature voltage can be defined by means of
the random components,

ho1
U}:g-gTr<Aki-Avj>. 13)

With this definition one obtains from (5) a different current
equation,

/
gi = enu(Ei +C; + L 9nly
n Or;

). (14)

in which an additional convective term occurs,

8 < hk; >
or; '

1
Ci=—<’UJ>
€ j

(15)

(14) could be employed in the Monte Carlo-drift-diffusion
coupling technique as well, however within this approximation
one would have to extract the convective term as a third
coupling coefficient from the Monte Carlo simulation.

III. THE SIMULATION PROGRAM

The simulator implementing the hybrid technique is com-
posed of two parts, the conventional MINIMOS program to
solve the semiconductor equations, and a single-particle Monte
Carlo program to provide the Monte Carlo-drift-diffusion
coupling coefficients. A simulation is controlled by MINIMOS
and all required input data are supplied by its specific user-
interface. In the rest of this section, we focus on the Monte
Carlo module, in particular on newly developed algorithms
used herein and on the underlying physical model.
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3.1. The Semiconductor Model

The Monte Carlo technique applied to charge transport in
semiconductors relies on the simulation of individual electron
trajectories, each consisting alternately of a drift governed by
the electron’s ¢(k) relation followed by a scattering event.

The band-model of silicon used here accounts for the six
equivalent minima of the conduction band near the X-points.
Anisotropy is treated by the Herring-Vogt transformation,
while nonparabolicity is described by the band-form function

~(e) = €(1 + ae), (16)

which is defined as v = h°k*?/2mg4. Here, ¢ denotes the
electron energy, « the non-parabolicity factor, k* the wave
vector in the Herring-Vogt transformed space and mg the
density-of-states effective mass. The scattering mechanisms
included in our model are acoustic intravalley scattering in
the elastic approximation, intervalley phonon scattering of
both f- and g-type [8], scattering by ionized impurities and
surface roughness scattering, the latter being of particular
importance in MOSFET’s. With the coupling constants and
effective masses given in [8] the lattice mobility of bulk silicon
can be reproduced very well.

In order to implement the hybrid technique, a generalized
mobility given by (6) has to be evaluated. This step can
cause difficulties, as in the diffusion term spatial derivatives
of Monte Carlo generated quantities are needed. Because of
the noise associated with such quantities, this procedure is
expected to be inaccurate.

To circumvent this problem we directly employ the defining
relation (4). The required term (dp; /dt). can be calculated by
the Monte Carlo method without a need for spatial differen-
tiation.

For band-structures with either spherical or ellipsoidal en-
ergy surfaces, the average momentum loss rate given by (3)
can be expressed in terms of an energy-dependent momentum
relaxation rate 7.,1(€) as

(@> =< hik; -7t e) >, an
dt ),
where 7.7'(¢) is related to the differential scattering rate
S(k,k’) by

77;1(5)Z/(l—%’wsH)S(k,k’)dk’.

Considering the scattering mechanisms included in our
model, the momentum relaxation rate can be written as a
superposition which implies independence of all scattering
processes:

7';1(5) = Aine(€) + Aac(e) + ’\g(l)xtrf(f) + Trix?n(e)_l-

(18)

(19)

Here we have exploited the fact that, for isotropic scattering
mechanisms, 7,1 (¢) = A(e), where A(e) is the total scattering
rate. In (19), the isotropic mechanisms are intervalley phonon
scattering Aint(€), acoustic intravalley scattering Aac(€), and
surface roughness scattering Asurf(€). The latter is a two-
dimensional scattering process which is treated isotropic in
the plane parallel to the Si/SiO2 interface [9].
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Tonized-impurity scattering, which is strongly anisotropic,
requires a distinction to be made between Ajon(¢) and
rion(¢)~1. In the Brooks-Herring model one obtains

1
)\ion(f) = Cion(ﬁ) . Eé(l—-i—b)'

. 1 1
T(€) ™ = Cion(€) - 75 - (ln(l +b) - m)’ @b

(20)

82
where
V184
Cion SO/ L N— (14 2ae), (22
(€) 23/27r(606r)2\/77d VY (1+ 2a6),  (22)
h?p32 4y
E = S b: .
3 de’ Eﬁ (23)

To get realistic impurity scattering in the heavily doped source
and drain regions, Fermi-Dirac statistics has to be used in the
reciprocal screening length G, in (23) [10],

e?n(r) F_isa(n)
eoeTkBT(r) .7:1/2 (’I])

To compute the final impurity scattering rate we use the
formula suggested in [11], thus avoiding the high values of
the scattering rate at low energies typically found for the
Brooks—Herring formula.

B2 = 24)

3.2. Boundary Conditions

In order to save computer time, the Monte Carlo simulation
should be restricted to that region where the drift-diffusion
model is in error. In that region, the accelerating field causing
elevated carrier energies is usually high, so that the Monte
Carlo technique is expected to perform quite efficiently. This
fact is exploited in the so-called “regional” Monte Carlo
approach [12]. Regions with low fields and, in particular, those
with retarding fields which make Monte Carlo methods very
inefficient are excluded. Following this approach, a severe
problem arises from the treatment of the boundaries. In fact,
the electric field there is significant and, in order to model
carriers entering and leaving the analyzed region, a certain
distribution function has to be assumed. A special guess, €.g.,
a displaced Maxwellian [2], [12], seems to be too crude to
perform accurate device analysis.

A solution to this problem is to extend the Monte Carlo
domain in regions where the electric field nearly vanishes, im-
plying that the carriers there obey an equilibrium distribution
[13], [14].

To clarify how we treat the boundary conditions in the
hybrid approach, let us consider the MOSFET sketched in Fig.
1. There, the whole simulation domain is labeled Dy. Further-
more, let D; be a subdomain of Dy and Ds a subdomain of
D;. The boundaries of D; and D, are referred to as 9D; and
9Ds, respectively.

Physically, Dy denotes that window to which Monte Carlo is
restricted; and in D» the Monte Carlo-drift-diffusion coupling
technique described above is applied. D is considered as that
subdomain in which hot carrier effects are prevalent and hence
the drift-diffusion model is invalid.

s a 0
D
D,
Do |

Fig. 1. Placement of subdomains D; and Dy in the overall simulation
domain Do for a MOSFET. Dy: overall simulation domain, described by
the extended DD-equation, D;: domain for MC-simulation, Ds: application
of the MC-DD-coupling technique.

Carrier transport in the overall simulation domain Dy is
described by the extended drift-diffusion equation (10). The
solution of (10) in conjunction with continuity and Poisson’s
equations is unique in Dy. In particular, neither of the bound-
aries 3D; and &D9 has an influence on the solution process.
From the standpoint of transport physics, both the zero- and
first-order moments, n(r) and j(r), are continuous at either
boundary &D; and dD,. Therefore, no special care has to be
taken of fulfilling interface conditions for n(r) and j(r).

The remaining question concerns the interface conditions
for the coefficients in (10), p(r) and Urp(r). Outside Do, the
electric field is so moderate that conventional drift-diffusion
analysis suffices. Crossing the boundary 0D,, p and Ur
continuously evolve from their near-equilibrium values in the
region Do\D> to their off-equilibrium values in Ds. In a
practical hybrid simulation, this continuous transition at 9Dz
is ensured by the fact that in the moderate-field limit for a
given material any local mobility-model has to coincide with
the non-locally defined one after (4).

In the rest of this section we discuss the criteria for domain
boundary placement. The Monte Carlo domain D; is chosen
such as to include parts of the heavily doped source and drain
regions where the electric field nearly vanishes and carriers are
thermally distributed. Since there is an overlap area, D1\ D3,
where particle trajectories are already examined but the final
transport description is still done by drift-diffusion , the choice
of any boundary distribution at 9D is by far less stringent than
it would be in the original “regional” approach. Such a choice
of boundaries, while essential for the accuracy, degrades the
efficiency of the Monte Carlo code. Therefore, to overcome the
difficulties associated with the retarding potential barrier which
occurs at the source-channel transition, we have implemented a
particle split algorithm [15], such that the number of particles
injected in the channel is increased and the statistics in the
domain of interest, D5, is enhanced.

To identify the critical region Dy we look at the Monte
Carlo-drift-diffusion coupling coefficients in their scalar ap-
proximation, (8) and (9).

As in D, the spatial distribution of Ur is known, it would
be straightforward to identify Dy by comparing Ur with its
equilibrium value Urg. D> shall include those points r where

Ur(r) > Uro- f (25)

holds. Here f; is a factor slightly above 1, we typically use
f1 = 1.05. With criterion (25) we certainly identify a region
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Fig. 2. Comparison of different criteria to identify the off-equilibrium region
D+, demonstrated on a quarter-micron MOSFET. The critical region consists
of those points where (a) the average momentum loss rate is in excess of 2
kV/em, and (b) Ur is by 5% larger than Uro.
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where carriers are more or less far away from equilibrium
conditions. However, due to the peculiarities of the Monte
Carlo method this argument needs to be refined. Ur, being
proportional to the second order moment, depends solely on
the symmetric part of the distribution function. On the other
hand, the terms entering the expression for the mobility,
namely < v > and (dp/dt), depend on the antisymmetric
part of f(k,r). This part however, disappears when thermal
equilibrium is approached. As a consequence, Ur can be
very well reproduced by the Monte Carlo method both in the
equilibrium and non-equilibrium regimes, whereas o will be
very noisy in conditions near equilibrium. We therefore use
different criteria for p and Uz, leading to different regions
Ds. For Ur criterion (25) is natural. For p we check whether
its constituent terms are large enough to avoid division of too
small quantities in (8). In the criterion determining the mobility
window we account for the denominator in (8), namely the
average momentum-loss rate, and compare it to a certain value

Fm'ms
dp
— >e- in-
(£) > Fu

In practical simulations for Foin a range of 1.5kV/em to
2kV/em has turned out to be useful.

Fig. 2 depicts those regions in the cross section of a
quarter-micron MOSFET that are identified by (25) and (26).
Obviously, the temperature criterion, (25), yields a larger area
than the momentum loss criterion (26). The reasons for this
are twofold. First, with the assumed parameters ( fi=105in
(25), Fin = 2 kV/cm in (26)) criterion (25) more sensitively
detects off-equilibrium conditions than criterion (26). Second,
in the area near the drain edge two distributions coexist,
one of hot carriers arriving from the channel and another of
cold carriers residing in the drain. This mixture exhibits an
increased Ur detected by (25), but a drift component which
is too low to fulfill (26).

(26)

3.3. The Self-Consistent Iteration Scheme

For very short devices, an increasing fraction of the electron
population is in non-equilibrium conditions. As Monte Carlo
treats the average motion of those electrons in a way which
differs substantially from a standard drift-diffusion model, the
resultant distribution of mobile charge in real space will also
differ. Realistic results can therefore only be expected by
applying some sort of self-consistent technique. The standard
technique described in [16] couples the BTE solved by the
Monte Carlo method with a linear Poisson equation. This
method, though straightforward, may lead to stability prob-
lems. Improvements are obtained by a non-linear coupling
scheme proposed in [14].

On the basis of the Monte Carlo-drift-diffusion coupling
method presented in this work a novel self-consistent solution
strategy can be investigated. Let us consider the following set
of equations,

div(e grad ¢) = e(n —p — Ne)s 27
divj=0, 28)
j=enp (—grad P+ %grad(nUT)) 29

The extended drift-diffusion-equation (29) corresponds to (5)
if scalar coefficients are inserted instead of tensor ones.

In each cycle of the self-consistent iteration loop, a Monte
Carlo simulation has to be performed where the potential
is taken from the previous cycle, and the distributions of p
and Ug serve as result. These coefficients, given by Monte
Carlo just in the critical device region (see Fig. 1), are then
extended analytically over the rest of the simulation domain.
With the p and Ur profiles assembled in such a way, the
coupled set of equations, (27)~(29), is solved. With the updated
potential the iteration cycle is repeated until the change in the
potential is sufficiently small. Fig. 4 shows a flowchart of this
algorithm. The initial potential distribution, @, is generated
by a standard drift-diffusion simulation.

This new approach to self-consistency is expected to yield
a high convergence rate. Generally, the carrier concentration
is rather sensitive to small changes in the potential, due to
the roughly exponential dependence. On the other hand, the
potential strongly depends on the space-charge density, which
is determined by the carrier concentration, A procedure that
iteratively calculates ¢ from n (solving Poisson’s equation)
and then n from % (solving the transport problem) will
suffer from this strong coupling and thus will exhibit a slow
convergence rate.

When we now consider the coefficients used in our iteration
scheme, we find that they depend on some kind of first order
moments, < v(k) >,< Ak -7.'(€) >, and on the second
order moment, < hk; - vj(k)>, but that they definitely do
not depend on the zero-order moment, n(r). The critical
potential dependence as it exists for n(r) is thus removed
from the coupling coefficients. Consequently, there is just 2
quite moderate coupling between the iterated quantities, 1 and
(11, Ur) (see Fig. 4). This explains the extremely low number
of required iterations, as it will be demonstrated in the next
section.
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34. Self-Scattering

In a Monte Carlo simulation, a stochastic sequence of free-
flight times must be generated according to a given probability
distribution. Following the direct technique [8] the free-flight
time ¢; is determined by an integral equation,

tr
/ Alk(e), ) )dt = = In(r), (30)
0

where 7 is a random number evenly distributed between 0
and 1. Usually, A(k,r) is a rather complex function of its
arguments. Furthermore, (30) along with the equations of
motion form a coupled system of equations, which has to
be solved simultaneously, For these reasons, a direct analytic
solution to (30) is in most cases prohibited. This problem
can be significantly eased by the introduction of a virtual
scattering mechanism called self-scattering [17]. In the so-
called constant-I" technique the self-scattering rate is chosen so
that A becomes independent from k and r. Then (30) simplifies
to a first-order algebraic equation

-ty +1In(r) = 0. 31)

Although the solution for ¢ £ is quite trivial, this technique has
computational drawbacks. Since the total scattering rate is kept
artificially high, a high percentage of self-scattering events
occurs. Improvements of the constant-I technique are the
piecewise-constant I’ technique [13] and those techniques that
try to optimize a constant I level with respect to the current
particle’s state [18], [19]. All the methods outlined above share
the assumption that self-scattering can only be used to simplify
(30) into (31), at least in predefined energy intervals. An
equation of intermediate complexity, yet analytically solvable,
shall be derived in what follows.

Our Ansatz starts with the equation of motion in k space,
which is solved analytically under the assumption that the
electric field is constant within a mesh-cell,

k(t)=kyg—¢-1. (32)

Here ¢ is related to the electric field, & = eE/h, and k denotes
the wave vector at the beginning of the free flight. Now we
deviate from the constant I" and allow a linear dependence
from %2,

I'(k) = ak? + b. (33)
Since k(t) evolves linearly in time, T'(k(t)) has a quadratic
time dependence. If (32) and (33) are inserted in (30) we end
up with a third-order algebraic equation in tj,

t} = 3Tt} + Sty — T = 0. (34)
Here the coefficients are defined as
(ko - €) 3(ak3 +b) 3

From (34) the free-flight time can be obtained analytically,
since for third-order algebraic equations a closed solution
always exists. Due to the inclusion of impurity and surface

le+ld — T T T T ]
t T-300K
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(a)
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0.e+00 Lo e vt o T e
400 600 800 1000
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(b)
Fig. 3. Use of self-scattering to set up a piecewise linearenvelope function
(T(4))for the physical scattering rate(A(.), for different doping levels. The
argument of thefunctions is v, defined as v = hzk2/2md.

scattering the parameters ¢ and b have to be chosen space-
dependent.

Fig. 3 illustrates the small size of the area bounded by
the curves A(v) and I'(y) which is obtained by means of
the linear Ansatz (33). Since that arca can be considered as
a measure of the amount of self-scatterings that will occur,
an efficient suppression of self-scattering can be expected. It
should furthermore be noted that an assumption of a maximum
energy during the simulation, as required in the piecewise-
constant I' technique, is not needed in the approach presented
here.

An implementation of the new algorithm using three dif-
ferent linear segments has shown that the amount of self-
scatterings typically lies below 10%.

IV. RESULTS AND DISCUSSION

In this section, we apply the hybrid technique described in
the previous sections to the simulation of 7-channel MOS-
devices. Gate mask length ranges from 0.75 um down to 0.15
pm. Table I summarizes the characteristic parameters of the
devices under investigation. L.g denotes the distance between
the vertical pn-junctions, r; is the junction depth and t,, is
the oxide thickness. The threshold voltage, Vry, is determined
at room temperature for Vps = 0.05V. For devices A and B,
doping profiles are modeled with process parameters similar
to those described in [20], [21].
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Fig. 4. Flowchart of the self-consistent iteration scheme.

TABLE 1
CHARACTERISTIC PARAMETERS OF THE SIMULATED n-CHANNEL MOSFETS
: Lg Leq 7y tox Vbs Urn
Device (i) () Gm) _ m) ) (V)
A 0.15 0.121 0.039 5 2.0 0.24
B 0.25 0.168 0.125 5 2.5 0.26
C 0.75 0.604 0.181 15 5.0 0.70

Throughout the simulations, we use a = 0.7¢cV L, A L=
0.3 nm? (surface roughness parameter, see [91) and N = 5-107
as the number of scattering events to be calculated during a
single Monte Carlo simulation.

Normalized averages are assigned to the grid nodes by a
convolution method, with weighting functions as described in
[22]. The lateral and vertical widths of the weighting function
are related to the device’s gate length by L, = Ls/10 and
L, = Lg/50, respectively.

Quantities such as drain current, drift velocity and carrier
concentrations plotted in this section are obtained from a
solution to the extended semiconductor equations, 27N—(29).

Fig. 5 shows the evolution of the drain current with the
number of iterations for device B. An iteration number of zero
corresponds to the initial solution determined by a standard
drift-diffusion simulation. The drastic increase in the drain
current after the first iteration can be attributed to velocity
overshoot. Subsequent iterations cause the impact of velocity
overshoot on Ip to be reduced so that the final stationary
value of Ip lies slightly above Ig)). In Fig. 6(a) and (c)
the evolution of Ip is shown for the 0.75 pm device at
different gate biases. In Fig. 6(c), where Ves = Vps, an
overshoot of Ip can be observed at the beginning of the
iteration. Fig. 6(b) and (d) show the relative norms of the
increments of carrier concentration and electrostatic potential
as a function of the number of iterations. The norms first
decrease rapidly but are then limited due to the statistical noise
inherent in the Monte Carlo method. The relative norms of
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Fig. 5. Convergence rate of the self-consistent coupling scheme: drain
current as a function of the number of iterations for device B at a high
gate bias.

the ¢-increments typically taper off below 1073, In all the
simulations we have performed, an iteration count no larger
than five was required in order to obtain the final drain current.
Any systematic transient in the relative norms also dies out
within this iteration number. With the new iteration scheme
therefore, the number of costly Monte Carlo-Poisson iterations
is considerably reduced compared to other coupling schemes
reported in the literature [14], [16].

In order to figure out the differences between self-consistent
Monte Carlo and self-consistent drift-diffusion simulations we
have plotted in Fig. 7 the potential and the electric field
occurring at the Si/Si0 interfaces of devices A and B. In the
Monte Carlo case, in the high field region the potential profile
becomes smoother (Fig. 7(a) and (¢)) s0 that a significant lower
lateral electric field is predicted (Fig. 7(b) and (d)). This effect
comes from a reduced space charge density in that area, as is
indicated by the reduced carrier concentration shown in Fig.
9(b). When using standard drift-diffusion simulations for such
small devices, one should be aware first of the tendency to
overestimate the maximum electric field by some 10 % (e.g.,
39% in device A, 35% in device B). Second, in order to predict
hot carrier-induced phenomena such as impact ionization the
maximum electric field is not as significant as in long-channel
devices. Due to the narrowness of the field peak, its capability
of producing damage is decreased.

In Fig. 8 we compare the surface mobility obtained from
a local model with that from a Monte Carlo simulation. At
the beginning and at the end of the depicted lateral distance
mobility is mainly determined by the high doping levels in
that sections.

In the high-field region where the extended semiconductor
equations massively reproduce velocity-overshoot (see Fig.
9(a)), the non-local mobility (solid line) exceeds the local one
(dashed line). In the example shown in Fig. 8 the absolute
minima differ by 37%. The local mobility recovers from its
minimum to the same extent as the electric field decreases,
whereas the non-local mobility, which is degraded due to a hot
distribution function, recovers with some delay, since cooling
has to take place.

As for Fig. 9(a), the velocity profile from the local mobility
model (dashed line) is clearly bounded by the bulk saturation

velocity (Vsas = 107 cm/s). The reasons why the carrier
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V. CONCLUSION

A hybrid simulation method based on the Monte Carlo-
drift-diffusion coupling technique has been implemented in a
two-dimensional device simulator. In the high-field region of
a device, an extended drift-diffusion equation reproduces non-
local transport phenomena, provided that the coefficients there
are calculated correctly by the Monte Carlo method.

To impose safe interface conditions when connecting the
drift-diffusion and the particle models, an overlap area is
admitted, in which transport is still described by the drift-
diffusion model but particle trajectories are also examined.

As a by-product of the Monte Carlo-drift-diffusion coupling
technique, a self-consistent iteration scheme is obtained which
has been shown to require a very low number of iterations. In
each cycle of that scheme an update of the Monte Carlo-drift-
diffusion coupling coefficients is performed.

Additionally, a self-scattering algorithm has been proposed,
which takes advantage of a piecewise linear total scattering
rate. Suppression of self-scattering has been shown to be very
efficient. Application to submicron MOSFET’s has demon-
strated the applicability of the hybrid simulation method as
well as the necessity of self-consistent simulation for such
small devices.
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Fig. 9. Comparison of MC- (solid line) and DD-results (dashed line) for
device B. (a) average velocity at the surface; (b) surface concentration of
electrons.

concentrations in the non-local case (Fig. 9(b)) are lower than
in the local case are twofold. First, due to the introduction of
carrier heating, which is absent in the standard drift-diffusion
model, the inversion layer broadens and thus the surface
concentration lowers. The second contribution comes from
the continuity of the total current, which is controlled by
the situation at the source-sided part of the channel. Velocity
overshoot in this region is not very pronounced. In the pinch-
off region, the massive overshoot in the velocity is then
compensated by an undershoot in the carrier concentration.

(1

[2

—

[3]

9]

[10]

(1]

[12]

(13]

[14]

REFERENCES

S. Bandyopadhyay, M. Klausmeier-Brown, C. Maziar, S. Data, and M.
Lundstrom, “A rigorous technique to couple Monte Carlo and drift-
diffusion models for computationally efficient device simulation,” /EEE
Trans. Elect. Dev., vol. ED-34, pp. 392-399, Feb. 1987.

D. Cheng, C. Hwang, and R. Dutton, “PISCES-MC: A multiwindow,
multimethod 2-D device simulator,” IEEE Tran. Computer-Aided De-
sign, vol. CAD-7, pp. 1017-1026, Sept. 1988.

J. Higman, K. Hess, C. Hwang, and R. Dutton, “Coupled Monte Carlo-
drift diffusion analysis of hot-electron effects in MOSFET’s,” IEEE
Tran. Elect. Dev., vol. 36, pp. 930-937, May 1989.

C. Hwang, D. Navon, and T. Tang, “Monte Carlo simulation of the
GaAs permeable base transistor,” JEEE Trans. Elect. Dev., vol. ED-34,
pp. 154-159, Feb. 1987.

Y. Park, D. Navon, and T. Tang, “Monte Carlo simulation of bipolar
transistors,” IEEE Trans. Elect. Dev., vol. ED-31, pp. 1724-1730, Dec.
1984.

W. Hinsch and S. Selberherr, “MINIMOS 3: A MOSFET simulator
that includes energy balance,” IEEE Trans. Elect. Dev., vol. ED-34, pp.
1074-1078, May 1987.

S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Wein, Austria: Springer Verlag, 1984.

C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution
of charge transport in semiconductors with applications to covalent
materials,” Rev. Mod. Phys., vol. 55, pp. 645-705, July 1983.
Chu-Hao, J. Zimmermann, M. Charef, R. Fauquembergue, and E.
Constant, “Monte Carlo study of two-dimensional electron gas transport
in Si-MOS devices,” Solid-State Electron., vol. 28, no. 8, pp. 733-740,
1985.

D. Chattopadhyay and H. Queisser, “Electron scattering by ionized
impurities in semiconductors,” Rev. Mod. Phys., vol. 53, pp. 745-768,
Oct. 1981.

T. Van de Roer and F. Widdershoven, “lonized impurity scattering in
Monte Carlo calculations,” J. Appl. Phys., vol. 59, pp. 813-815, Feb.
1986.

P. Nguyen, D. Navon, and T. Tang, “Boundary conditions in regional
Monte Carlo device analysis,” IEEE Trans. Elect. Dev., vol. ED-32, pp.
783-787, Apr. 1985.

E. Sangiorgi, B. Ricco, and F. Venturi, “MOS?: An efficient Monte Carlo
simulator for MOS devices,” IEEE Trans. Computer-Aided Design, vol.
CAD-7, pp. 259-271, Feb. 1988.

F. Venturi, R. Smith, E. Sangiorgi, M. Pinto, and B. Ricco, “A
general purpose device simulator coupling Poisson and Monte Carlo



210

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994

transport with applications to deep submicron MOSFET’s,” IEEE Trans.
Computer-Aided Design, vol. 8, pp. 360-369, Apr. 1989.

A. Phillips and P. Price, “Monte Carlo calculations on hot electron tails,”
Appl. Phys. Lett., vol. 30, pp. 528-530, May 1977.

R. Hockney and J. W, Eastwood, Computer Simulation Using Particles.
Philadelphia, PA: Adam Hilger, 1988.

H. Rees, “Calculation of distribution functions by exploiting the stability
of the steady state,” J. Phys. Chem. Solids, vol. 30, pp. 643-655, 1969.
K. Kato, “Hot-carrier simulation for MOSFET’s using a high-speed
Monte Carlo method,” /EEE Trans. Elect. Dev., vol. ED-35, pp.
1344-1350, Aug. 1988.

C. Moglestue, “A self-consistent Monte Carlo particle model to ana-
lyze semiconductor microcomponents of any geometry,” IEEE Trans.
Computer-Aided Design, vol. CAD-5, pp. 326-354, Apr. 1986.

G. Sai-Halasz and H. Harrison, “Device-grade ultra-shallow junction
fabricated with Antimony,” IEEE Elect. Dev. Lett., vol. EDL-7, pp.
534-536, Sept. 1986.

G. Sai-Halasz, M. Wordeman, K. Kern, E. Ganin, S. Rishton, D.
Zicherman, H. Schmid, M. Polcari, H. Ng, P. Restle, T. Chang, and R.
Dennard, “Design and experimental technology for 0.1-um gate length
low-temperature operation FET’s,” IEEE Elect. Dev. Lett., vol., EDL-g,
pp- 463-466, Oct. 1987.

H. Kosina and S. Selberherr, “Analysis of filter techniques for Monte-
Carlo device simulation,” in Simulation of Semiconductor Devices and

Processes, D. Aemmer, W. Fichtner, ed. Konstanz: Hartung-Gorre,
pp. 251-256, Sept. 1991.

Hans Kosina (S’89-M’93) received the Diplomin-
genieur degree in electrical engineering and the Ph.
D. degree from the Technical University of Vienna,
Austria in 1987 and 1992, respectively.

He was with the Institut fiir flexible Automation
for one year, then joined the Institut fiir Mikroelek-
tronik at the Technical University of Vienna. Cur-
rently he is an Assistant Professor there, managing
the device modeling group. His current interests in-
clude physics and technology of solid-state devices
and integrated circuits.

Siegfried Selberherr (M*79-SM’84-F'93), for a photograph and a biography,
please see page 81 of the January 1994 issue of this TRANSACTIONS.



