Gusshausstrasse 27-29, A-1040 Vienna, Austria. Monte Carlo transport simulations call for effective methods
to calculate the free flight duration and to choose the scattering mechanism and the state after scattering. We
propose a representation of the valence bands using an expansion into a series of spherical harmonics that is
capable of resolving details of the band structure both at the center and at the boundary of the Brillouin zone.
The basic intention of our method is to simplify the calculation of the integrated scattering probability.
Assume that the energy-wave-vector relationship is given in polar coordinates: € = E(k,Q). Here, € is the
energy of the hole, & the magnitude of the wave vector, and Q denotes (9,¢ ). We now introduce a coordinate
transformation (k, Q)— (¢,Q), which transforms k to £ and lets Q unchanged: k¥ = K(&,Q). For any
given Q the function K is defined to be the inverse of the function E. The function K can be interpreted to
describe the shape of an equi-energy surface in k-space. Inversion of a function is possible only in an interval
where the function is monotonous. By inspection of the full band structure one finds that both the heavy hole
and the split-off bands can entirely be represented by such functions K. Above a hole energy of Ex(3.04eV)

inversion of the light hole band is no longer unique. In this work, we represent the function K as a series of
sperical harmonics.

w1
K, (e,Q)° = i2za,’;,,(z»:)P,”‘(cose)Tm(cos ¢), b=H,L,SO. (1)
am =0 m=0

Derivation of the scattering rates is considerably eased by taking the third power of K as the function to be
expanded. For symmetry reasons non-vanishing coefficients only exist for even values of ! and m being a
multible of 4. With (1) a set of functions a;,(£) contains the whole band structure information. The essential
advantage of the sperical harmonic expansion of the valence band is the resulting representations of the total
scattering rates and of the distribution of the scattering angle. Our transport model accounts for three different
scattering mechanisms, namely acoustic deformation potential (ADP) scattering in the elastic approximation,
optical deformation potential (ODP) scattering and ionized impurity scattering (ION) in the Brooks and
Herring formalism. The angular distribution functions of the solid angle after scattering are also given by
spherical harmonics series. The rejection technique is used to choose the after scattering state. The free flight
time is calculated by a self-scattering method. The functions aj,(€) are represented numerically by means of
a finite elemente method. The free parameters of the series are determined by a variational approach. The
number of harmonics was made a function of energy ranging from / = 20 at lower energies to 1 = 60 at
higher energies. In this work the steady-state hole transport in silicon has been simulated using the expansion
(1) for the heavy and light hole bands up to a hole energy of E,, = 3.04eV. The split-off band has been
neglected. Figure (1) shows the numerical band structure compared with the series representation. The
numerical band structure has been computed by a nonlocal empirical pseudopotential method. Figure (2)
depicts the resulting drift velocities in comparison to measured data and Figure (3) the simulated average hole
energy, both as a function of the electric field applied in characteristic directions.

P32. An Improved Ionized Impurity Scattering Model for Monte Carlo Calculations, G. Kaiblinger-
Grujin and H. Kosina, Institute for Microelectronics, Vienna Technical University, Gusshausstrasse 27-29, A-
1040 Vienna, Austria. We have developed a physically based ionized impurity scattering model including the
following corrections to the standard Brooks-Herring model. First, momentum dependent screening of
impuritites by conduction electrons is taken into account assuming degenerate statistics. Second, the effect of
multi-ion-scattering is included. Dynamical screening is described by a function of both the tranferred
momentum 4 and the Fermi level [1]. Unfortunately, this function is represented by an integral which cannot
be solved analytically. We approximated this integral by an analytical expression which has exactly the same
behavior as the original integral for large g and is a very good approximation for small g for arbitrary
degeneration. The advantage of this approach is that we are able to get a closed form for the scattering rate
without changing the physics of the underlying problem. With higher doping, the average distance between
tango impurities becomes smaller and the neighboring ion potentials overlap appreciably, so that the single-
site-model for ionized impurity scattering breaks down. Therefore it is necessary to consider scattering
processes at two ion potentials simultaneously. Equally charged pairs of impurities scatter up to twice as
effectivly than monopoles [2]. The well-known problem of very large scattering rates at small angles is
commonly solved by using a method after Ridley [3], which essentially cuts off the scattering rates at small
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impact parameters. As Ridley's method makes the agreement of theory and experiment even worse, we
generalized this method in that we allow arbitrary filter functions. The filter function, which cuts off large
values of the impact parameter, is chosen such that the mobility remains unchanged. Comparing our results
with experimental data it can be noticed that our impurity scattering model improves the agreement between
theory and experimental data significantly and that it is therefore more suitable for Monte Carlo calculations
than the classical Brooks-Herring model. Despite the greater complexity our model doesn't consume much
more CPU time. The new model represents a rather good trade-off between an exact theory and an accurate
approximation that is applicable for simulation of semiconductor devices.
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P33. Simulation of Electron Transport in Strained Si/SiGe Heterostructures, Mahbub Rashed. W.-K. Shih,
S. Jallepalli, R. Zaman, T.J.T. Kwan*, and C. M. Maziar, Microelectronics Research Center, The University of
Texas at Austin; *Los Alamos National Laboratory, New Mexico. Scaling of silicon MOSFET channel lengths
to achieve increases in speed and drive current has pushed the limit of gate length towards 0.1 um. An
alternate approach for drive current enhancement is to increase the mobility of the charge carriers in the
channel. Recent reports have suggested that electron mobility is enhanced when electrons flow in a strained-Si
channel pseudomorphically grown on relaxed (001) Si, Ge, [1,2,3]. The enhancement of mobility in strained-
Si is due to both the suppression of intervalley scattering and the lower effective mass due to the valley
splitting of the six-fold degeneracy of the silicon conduction band minima. This lifting of degeneracy results
in an upward shift of the four transverse valleys and lowering of the two longitudinal valleys (in energy). In
this work electron transport in strained Si/Si, Ge_ heterostructures is studied using a both a bulk Monte Carlo
(MC) tool and one developed for 2D systems. The MC simulator SLAPSHOT [4] has been modified and
enhanced to investigate electron transport in strained Si/SiGe systems. The bulk MC simulator is based on a
multiband analytical model representing the features of a realistic energy bandstructure. The scattering rate
computation is based on a non-local pseudopotential bandstructure. Recent results of semi-empirical
pseudopotential bandstructure calculations show that, to first order, biaxial strain yields changes in only the
relative energy and not the shape of the valleys [3]. Therefore, in our work, effective masses and
nonparabolicities of different valleys are assumed to be unaffected by the strain. Fig. 1 shows the velocity-field
characteristics of strained and unstrained silicon for different directions of the field. Figs. 2 and 3 illustrate the
velocity-field characteristics at 300 K and 77 K for several mole fractions of relaxed Si, Ge,. Low field
mobility is enhanced by about 80% at 300 K and by 35% at 77 K, as compared to bulk silicon. The higher
mobility observed at room temperature is due to greater suppression of intervalley phonons as phonon
scattering increases with temperature. While bulk simulation ignores the quantization effect in the transport,
the nature of transport in the inversion layer requires consideration of these effects. The subband structure is
calculated by applying the formalism based on the effectivemass approximation with bulk non-parabolic E(K)
relation, as described in detail in [S] for the case of Si MOSFETs. Scattering of the 2D electrons due to bulk
phonons and surface roughness is included. The formalism developed by Price [6] has been adopted for the
phonon scattering rate calculation. Ionized impurity scattering, being important only in the presence of large
interface charge density or when the channel is weakly inverted, is ignored. Surface roughness scattering is
simply modeled with the formalism of Cheng et. al.[7]. A long channel strained Si nMOS structure with
uniform substrate doping concentration and zero source-drain bias is simulated. At each gate bias, a two
dimensional potential profile for the device is obtained by solving drift-diffusion (DD) and Poisson equations.
Since a uniform inversion layer is assumed, a slice along the depth is selected at the middle of the channel.
One dimensional Schrédinger and Poisson equations are then solved self-consistantly for the slice in order to
calculate subband structures in the strained silicon channel. This calculation is followed by a single particle
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