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Abstract. We propose an improved mobility model for hydrodynamic device simulation . 

The mobility is modeled as function of the total mean energy. Expressions for the individ­

ual valley mobilities are combined by means of the relative valley populations estimated 

by a modified Boltzmann distribution. Our model is based on steady-state Monte Carlo 

calculations and reflects the situation of intervalley transfer in 111-V compounds. As an 

example the model is applied to Gaxln1-xAs. 

1. Introduction 

Hydrodynamic device simulation is believed to be today's best suited tool for device 
characterization in the submicron regime in view of accuracy and computational effort. 
It bridges the gap between the classical drift-diffusion simulation tools, which run into 
difficulties if the characteristic length dimensions approach the thermal wavelength, and 
the computationally expensive Monte Carlo codes which are most accurate in describing 
non-local effects. The drift-diffusion (DD) and the hydrodynamic (HD) methods are 
approaches to solve the semiclassical Boltzmann equation via balance equations which 
are solved for the moments of the carrier distribution function. An important physical 
parameter governing electron transport in devices within the mentioned frameworks is 
the carrier mobility µ. The Monte Carlo (MC) technique calculates the distribution 
function by observing particle trajectories, the only input being basic physical quantities 
and scattering formulae [l]. 

2. Mobility modeling 

Carrier mobility modeling is usually split into the characterization of the mobility at 
zero field, µ 0 , which takes into account all doping and temperature dependences and the 
deviation from this value at increasing fields. A usual approach in the DD framework 
is to assume mobility as a function of the local driving force F, µ = µ(µo, F), which 
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consists of the electric field and a diffusion term, F = E - l \7 nkT. A summary of various 
n q 

formulations can be found in [2]. In the HD case a dependence on the local carrier 
energy w is commonly assumed, µ = µ(µ 0 , w ). This includes non-local dissipation since 
the electron energy is a solution of the energy balance equation. 

3. Methods of calculation 

In calculating µ0 one usually assumes an equilibrium distribution function (Boltzmann 
or Fermi-Dirac) and calculates mobilities for the individual scattering mechanisms which 
implies that momentum relaxation times exist. These contributions are then combined by 
Mathiessen's rule. This is believed to be reasonably accurate in most cases of elemental 
and III-V semiconductors. 

Different methods for the calculation of high-field mobility have been proposed in 
the literature [3]. The simplest one is based on the relaxation time approximation. The 
energy dependent relaxation times are averaged over the assumed distribution function. 
Though very crude, this gives analytic expressions for isotropic parabolic bands. The 
method of calculating the distribution function by a variational principle gives more 
accurate results. The most accurate method is the Monte Carlo technique. It removes 
the restrictions of the relaxation time approximation and allows full inclusion of the 
complex band structure of semiconductors [4). This technique yields a self consistent 
distribution function, therefore we have used it in this work. 

3.1. Monte Carlo calculation 

Our simulation program incorporates a many-valley isotropic nonparabolic band struc­
ture representation (f ,L,X valleys) and takes into account scattering by polar and non­
polar optic phonons, acoustic phonons, ionized impurities, and alloy disorder. An in­
terpolation routine for the basic material parameters is included both for ternary and 
quaternary alloys. The band edges are given by quadratic expressions in the composition 
ratio. In the ternary case we have 

(1) 

The remaining parameters are interpolated linearly. 

Fig. 1 and Fig. 2 show the calculated low-field mobility and velocity-field relation, 
respectively, with the typical negative differential resistivity, both as function of the 
composition x for Gaxlni-xAs. Table 1 shows the material parameters used in the MC 
calculation. 

4. The hydrodynamic mobility model 

4.1. The conventional model 

Hansch [5) obtained the following expression for the momentum relaxation time Tm from 
a series expansion of the distribution function into its first four moments, 

j. s 
T~ 1 = A+ B ----;-, 

J 
(2) 
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Figure 1. Low-field mobility for Gaxln1_.,As at 
300K as function of the composition x. 

Figure 2. Electron velocity for Ga.,In1-xAs at 
300K as function of the electric field. 

Table 1. Material parameters used in MC calculation. 

Quantity GaAs In As Unit 

a 5.653 6.058 A 
V/ 5.23 4.28 105cm/s 
Vt 2.47 2.65 105cm/s 
f~ 12.9 15.15 lo 

loo 10.92 12 .75 fo 
p 5.36 5.67 g/cm3 

nWLO 36.25 30.2 meV 

r L x r L x 
E 1.439 1.769 1.961 0.36 1.442 1.98 eV 
m• 0.063 0.22 0.41 0.023 0.29 0.64 mo 
a 0.61 0.461 0.204 1.39 0.536 0.90 ev-1 

Dae 7.0 9.2 9.27 8.0 8.0 8.0 eV 
Do 3.0 3.0 108 eV /cm 
Dij r 10.0 10.0 10.0 10.0 108 eV/cm 

L 10.0 10.0 5.0 10.0 10 .0 9.0 108 eV /cm 
x 10.0 5.0 7.0 10.0 9.0 9.0 108 eV /cm 

nWij r 27.8 29.9 27 .8 29.9 meV 
L 27.8 29.0 29.3 27.8 29.0 29.3 meV 
x 29.9 29 .3 29.9 29.9 29.3 29.9 meV 

Cr 0.44 eV 
CL 1.10 eV 
Cx 2.0 eV 
Dau 0.5 eV 

where j denotes the current density and S the energy flux. A and B are constants with 
respect to the moments. The balance equations for momentum and energy read in the 
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stationary homogeneous case 

j = qµnE 
. E w -wo 
J. = n , 

Tw 
(3) 

where w0 is the equilibrium energy, and Tw denotes the energy relaxation time which is 
assumed to be constant. This gives the mobility as function of w, 

( 
µo µo 

µ w) = T/ = --. 
1 + TJ( w - wo) qrwv; 

(4) 

This dependence represents the well-known saturation curve in silicon via the explicit 
w(E) relation which can be obtained from (3). 

f2. The new model 

However, because of the different band structure of compound semiconductors a different 
behavior is observed from MC results (Fig. 4). A much steeper decay is clearly evident, 
which can be related to intervalley transfer. 

In principle two different approaches for dealing with the many-valley bands of 
compounds can be thought of. Firstly, one could introduce a carrier concentration for 
each valley and find models as functions of the average energy of that carrier types 
(measured from the valley minimum). The intervalley processes must be accounted 
for via energy dependent generation terms in the balance equations. This approach 
increases the number of PDEs, both the number of variables and the model complexity 
are increased too. Keeping in mind the rather poor convergence of the HD method itself, 
it is not often used. Secondly, one retains the single electron model in the calculation, 
where the different valleys are lumped together into the physical models, thus using a 
single energy variable. This approach is pursued in our work. 

4 .2.1. The valley mobilities. We propose a functional relation for each valley 
( i = r,L,X) which is a modified version of ( 4) 

µo,i (~ )"; 
µi( W) = 1 + ( w-o~o,i )f3i (5) 

The equilibrium energy wo,i in the nonparabolic case can be expressed as 

3kT 5 2 wo,i "" -
2
-(1 + 2z - 5z ) z - a·kT 

- i ' 
(6) 

where a denotes the nonparabolicity parameter. (6) results from series expansion of the 
integral representation of the average energy. The parameter I describes the mobility at 
low energies i.e. when intervalley scattering does not play any significant role. I is the 
energy exponent of the prevalent scattering process in this range. In direct compounds 
polar-optic phonon scattering yields a value of I ~ 0.5. 8 can be viewed as the energy 
at which intervalley transfer starts to be important (at the band edge difference), the 
exponent /3 reflects the amount of energy that an electron changes when it moves to a 
different valley. 

Usually the total kinetic energy w is split into a drift and a thermal part, 
m•(v)2 3kT I b l" 11 m•(v2) . b l" 11 . w = 2 + ~. n para o 1c va eys w = 

2 
, m non para o 1c va eys w 1s gen-

erally higher. In the many-valley case the total energy consists of kinetic and potential 
energy, w = Wkin + Wpot =Li ni (wi + D.Ei) /Li ni, where ni is the population of the ith 
valley. Fig. 3 depicts the energy versus field relations. 
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Figure 3. Energy vs. electric field for Ga41lno.s3As. 

4.2.2. The combined mobility. Having defined the valley mobilities, we can calculate 
the total mobility by weighing the valley contributions by the valley populations, 
µ( w) = Ei ni( w) µi( w) / Ei ni( w ). It is known that the distribution function in high 
fields deviates significantly from the drifted Maxwellian. However, we find it a useful 
approximation to assume a modified heated Maxwellian leading to a relative population 
of valley i with respect to the lowest one, 

, ni b..Ei) 
ni(w) = - = Ri exp(-a--, 

n 1 w 
(7) 

where a is a factor describing the different scaling in energy (the total energy w is used 
instead of the kinetic energy) and R takes into account valley degeneracy and the carrier 
masses. 
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Figure 4. Total mobility for Gaxln1-xAs 
at 300K as function of the total energy w 
with material composition x as parameter. 
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Figure 5. Valley specific mobilities 
for Ga47lno.s3As at 300K as function 
of the total energy w. 
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Table 2. Model parameters for Ga,)n1-xAs obtained from MC calculation. 

5. Results 

µo,r ( cm2 /Vs) 
µo,L (cm2 /Vs) 
µo ,x (cm2/Vs) 
Or (meV) 
0£ (meV) 
ox (meV) 
/3r 
f3L 
/3x 
Ir 
IL 
IX 
a 

32900 - 101900x + 181820x2 - 166910x3 + 62270x4 

234.8 - 304.4x + 429.7x 2 

27.2 - 91.8x + 204.3x 2 

734.1 - 770.9x + 320.5x2 

1108.5 - 1403.5x + 748.7x2 

1604.2 - 2528.9x + 1475.8x2 

5.82 - 2.85x + 2.13x 2 

7.0 - 5.2x + 0.2x2 

5.0 + 1.47x - 4.63x 2 

-0.23 - 0.98x + 0.83x 2 

0 
0 
4.0 

As an example the new mobility model is demonstrated for Gaxlni-xAs, an important 
channel material used in heterostructure FETs. The parameters /3, /, 8 are obtained 
by a nonlinear least-square fitting algorithm. The result at 300K is given in Table 2. 
A good correspondence between the new model (lines) and the MC results (symbols) is 
obtained (Fig. 4 and 5). 

Acknowledgments 

This work is supported by the laboratories of AMS AG at Unterpremstatten, Austria, 
Digital Equipment Corporation at Hudson, USA, and SIEMENS AG at Munich, Ger­
many. 

References 

[1] Jacoboni C and Lugli P 1989 The Monte Carlo Method for Semiconductor Device Simulation 
(Vienna-New York: Springer) 

[2] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices (Vienna-New York: Springer) 

[3] Nag B R 1980 Electron Transport in Compound Semiconductors (Berlin-Heidelberg-New York: 
Springer) 

[4] Fischetti M V 1991 IEEE Trans. on Electr. Dev. 38 634-649 

[5] Hansch W and Miura-Mattausch M 1986 J. Appl. Phys. 60 650-656 

[6] Chin V W Land Tansley TL 1991 Solid-State Electr. 34 1055-1063 

[7] Thobel J L et al 1990 Appl. Phys. Lett. 56 346-348 


