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 Two-Dimensional Simulation of Thermal
Runaway in a Nonplanar GTO-Thyristor

Hermann Brand and Siegfried Selberherr, Fellow, IEEE

Abstract—The problem of electrothermal stability due to dif-
ferent cooling conditions has been investigated by computing the
thermal transients in a nonplanar GTO-thyristor. In the first
simulation, a steady state occurs with a heat sink removing all
the dissipated power. In the second simulation severe thermal
runaway is induced due to bad cooling conditions, allowing the
analysis of destructive electrothermal interaction.

The simulations are based on an advanced model for self-
heating effects in silicon devices derived from first principles
of irreversible thermodynamics, self-consistently incorporating a
phenomenological model of band gap narrowing in order to take
account of heavy doping effects. The system of governing equa-
tions is valid in both the steady state and the transient regimes.
Four characteristic effects contributing to the heat generation
can be identified: Joule heating, recombination heating, Thomson
heating, and carrier source heating. Thermal runaway is signifi-
cantly accelerated in the simulations based on the thermodynamic
model of thermoelectric transport compared to a conventional
heuristic theory of thermoelectricity.

The importance of the entropy balance equation is emphasized
in order to derive the mathematical form of the heat flux and
the current relations for electrons and holes. Limitations of
underlying assumptions are discussed. It is shown that the heat
generation implies the Thomson relations.

1. INTRODUCTION

HERMAL runaway is a phenomenon of electrothermal
interaction where the dissipation of electrical energy
causes a temperature rise over the entire area of the device,
resulting in increased current flow and further dissipation, until
unrecoverable device failure or “burn-out” of the device occur.
This paper focuses on “global” thermal runaway due to bad
cooling conditions rather than secondary breakdown which is
often explained as “localized” thermal runaway [23].
Thermoelectric effects are associated with the simultaneous
flow of charge carriers and heat in-a system. Since.the
early works based on a heuristic approach [1], -[5], [10]
accurate simulation of transient self-heating effects in semi-
conductor devices has required the self-consistent solution of
the semiconductor equations and the heat flow equation in
space and time. However, recently thermoelectric effects have
been treated rigorously from a thermodynamic [31] and a
hydrodynamic [21] point of view.
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In Section 1T the entropy balance equation for the semicon-
ductor is explicitly set up [4], [11], [22]. Identifying conjugate
thermodynamic fluxes and forces in the actual mathematical
form of the entropy source heat flux and current densities
for electrons and holes can be derived [7], [14], [29], [30].
High doping effects are self-consistently accounted for by the
incorporation of a phenomenological model of carrier degener-
acy and band gap narrowing into the electrothermal transport
due to principles of irreversible thermodynamics. Regarding
underlying assumptions Section III provides comments on
classical thermoelectricity and hydrodynamic theory of energy
transport.

In Section IV, the numerical methods used to solve the
governing equations for electrothermal transport are sketched.
The results obtained in investigating thermal runaway of a
GTO thyristor are presented in Section V. The scope is
to analyze basic electrothermal interactions as well as to
compare simulation results based on a heuristic [1] and the
new thermodynamic approach to electrothermal transport.

II. THE MATHEMATICAL MODEL

A. Governing Equations

The concept of local equilibrium involves the hypothesis
that a continuous system may be regarded as the sum of
cells in which thermostatic equilibrium conditions are fulfilled,
despite various processes taking place between them. Thus,
such quantities as temperature, entropy, internal energy, etc.,
can be used as field quantities depending on space and time,
although according to classical heat theory they are only
defined in equilibrium systems.

Basically the concept of internal energy in a solid contains
only thermal energy due to random motion and short range
forces. Thus the potential energy of built-in and applied
electric fields causing long-range forces is excluded. On the
other hand the boundary of a thermodynamic system is not
certain apriori. The intrinsic semiconductor [30], the doped
semiconductor [14] or the ‘semiconductor together with the
built-in and applied electric field” can be regarded as thermo-
dynamic system to be investigated.

In the latter case the thermodynamic system can be charac-
terized by the total internal energy per unit volume v, for which
the first axiom of thermodynamics applies. The conservation
equation for u can be written as follows, Ju being the total
energy flux vector

du

5t +div J, = 0.
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Note that a conservation equation neither holds for the total
internal energy of the separated electron, hole or lattice system,
nor for specific energy forms like kinetic or potential energy.

Due to the postulate of local equilibrium the Gibbs function
of the thermodynamic system “semiconductor-electric field”
u(F,t) = u(s(7,t),n(7,t),p(¥,t)) can be applied in each
cell of a continuum. s(7,%) denotes the entropy density,
n(7,t),p(7,t) the electron and hole concentrations, respec-
tively, in space and time. Actually, by definition of the
complete set of independent extensive variables s, 7, and p in
the Gibbs function it is specified how energy can be exchanged
in the semiconductor. Note that the entropy density s contains
contributions of the electron, the hole, and the phonon system.

Defining intensive variables T' = -3“(2#2, —q o =
—“(3—%2, q-op = M the Gibbs fundamental equation
of the semiconductor results when the time derivative of the
total internal energy w is calculated

7] Js on 17

5?=T;E—q~<pn-a—t+q-<pp'a—§ 2
The quasi-Fermi potentials ¢,,y, for electrons and holes,
respectively, associated with the thermodynamic system
“semiconductor-electric field” reflect that the change of
chemical energy of charged particles is always coupled with
the change of electrical energy. T is the temperature. Note that
equality of the lattice temperature and the carrier temperature
has been assumed in the Gibbs function . Thus, hot carrier
effects are neglected.

The Gibbs fundamental equation (2) plays the role of the
missing link between electrodynamics and thermodynamics.
The actual form of the entropy balance equation is obtained
by substitution of continuity equations for n,p [24] and » (1)
into the Gibbs fundamental equation (2)

1 - - 1
g—i +div (? . Jq> =Jg- <_ﬁ . gradT)

, + _;1. <_%’grad§9n>
- 1
. o |~ rgrad ey
1
+Q'R'(T'(‘Pp_(pn)>- (3

The right-hand side is the entropy production G, per unit
volume. Jn,J represent the current densities for electrons
and holes, respectively. It is remarkable that the mathematical
form of G, is not unique. Due to the first postulate of
irreversible thermodynamics G, can be expressed as formally
equivalent sums of products of different pairs of conjugate
thermodynamic fluxes and driving thermodynamic forces.

The difficulty of an adequate definition of the heat flux is the
consequence of the fact that in contrast to  and s heat is not a
Gibbs function. Heat only appears when energy is exchanged.
One possibility to define the heat flux is to generalize the
second axiom of classical thermodynam1cs Thus the heat flux
J is proportional to the entropy flux J, which is well defined
because the entropy density is a Gibbs function

To=T - Jy=Jy—n-Jo—p-J,. 4
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Note that it is equivalent to express f;., in terms- of fluxes
of the total energy and electrochemical energy [4], [14] or in
terms of kinetic and chemical energy current densities [30]. An
alternative definition of the heat flux is based on the separation
of the total internal energy into different energy forms [11],
[13], [22]. Apart from the flux of chemical energy the heat
flux resulting from this Ansatz is equivalent with (4).

The first postulate of irreversible thermodynamics allows for
ideatifying conjugate thermodynamic fluxes and forces in (3).
Due to the second postulate of irreversible thermodynamics
linear relations may be assumed. Thus phenomenological
equations (5) can be set up for the semiconductor

:;z Lo 0 Lyt 0 -% grad g
({? | 9 Ly Lpr 0 -z grad ¢,
Jg Lpyn Lrp Lpr 0O grad T
q-R 0 0 0 Lgr (@p ©n);
(5)

Isotropy has been assumed. ¢ denotes the elementary charge,
R the net recombination rate. Recombination processes are
represented as a quasichemical reaction in (5), ¢ - R being
the reaction velecity, (¢, — ¢,) the corresponding driving
affinity. Incomplete ionization of impurities can be taken
into account by introducing additional reaction velocities and
affinities, as can be necessary for low temperature simulations.
Equation (5) already accounts for Curie’s principle which
states that in isotropic systems phenomena which are described
by thermodynamic forces and currents of different tensorial
order do not interfere with one another. ,

Due to Onsager’s symmetric réciprocal relations L, = Ly,
known as the third postulate of irreversible thermodynamics,
the number of independent kinetic coefficients in (5) can
be reduced. However, the L, are parametrized in terms of
conductivities g, = L , thermoelectric powers P, = TL;T
for the carrier concéntratlons ¢ = n,p, respectively, and the
thermal conductivity x = LTQ ~ T YO - P2 since
the latter are accessable by measurement and can hence be
used to characterize material properties. The definition of the
heat conductivity » is usually given under the condition that
no net transfer of charge carriers to the surrounding takes
place. The semiconductor equations- [24], however, require
to describe the electron and hole current flow separately.
Therefore it is adequate to define the heat conductivity  under
the assumption that elther J,, or J is zero instead of the total
current J = J, + J Thus x does not explicitely contain
the ambipolar contribution to the heat conductivity, which
is, however, implicitly included in (6) through (8) (details in
Section ). L7, subsumes a lattice, a hole, and an electron
contribution. Both limiting cases, flow of electric charge due
to the imposition of the quasi-Fermi potential (Ohm’s law),
and flow of heat caused by a temperature gradient (Fourier’s
law) are included in. the resulting current relations for the
thermoelectric transport in a semiconductor

T,
Ty

-

=0n-(—grady, — P, -gradT) (6)
op - (—grad @, — P, - grad T') )
T-Pn-L—I-T~PP~J;-l{~gradT. (8)
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Note, that the form of the current relations is derived with this
Ansatz, whereas in [31] it is assumed.

With the heat flux (8) the entropy balance equation (3) can
be transformed into the heat flow equation. Heat capacities of
the semiconductor must be determined considering also the
contributions of the carriers to the entropy. Due to the concept
of local equilibrium not only the Gibbs fundamental equation
is valid but also all thermostatic relations [13], allowing to
utilize Maxwell’s relations to eliminate the entropy density in
the left hand side of (3) without further assumptions [4], [13],
[17] :

T _a_s _ 8_T + Opn a_n Op, Op
at -~ e U ar ey T 9T ot
: &)
Crnp =T g—; is a definition of the heat capacity per unit
volume.

In order to gain a system of partial differential equations
which is reduced to the semiconductor equations in the isother-
mal case, the dependencies of the quasi-Fermi potentials on
¥, n,p, T, and the effective intrinsic carrier concentration n;e,
in order to fit heavy doping effects, have to be explicated.
Using Boltzmann statistics the expansion of the gradient of
the quasi-Fermi potentials with respect to 9, e, n, p, T in (6)
and (7) yields the final form of the current relations

-

Jn=q tn-n- (—gradw - k—(—J—T— - grad (Innge)

k-T 1
+——~—-gradn+P§ﬂ~gradT)

qg n
(10)
= kE-T
Jp=¢q-pp-p- (—gradd) + _q_ - grad (In n;e)
- k—q—z 1% -gradp — P;ﬂ . gradT).
an

In (10) and (11) the conductivity o, , has been expressed in
terms of the mobility 4, , and carrier concentrations. k is the
Boltzmann constant. P,fg) denotes the effective thermoelectric
powers which are defined as follows:

(E-lni—ﬁ~i-anie>:§:lz’c£1’:ﬂ

oT

c=n,p; P, <0. (12)

Equations (10) and (11) are said to be the extended-drift
extended-diffusion approximations of the current relations.
That is, an effective electric field is introduced because of
the possible dependence of the intrinsic carrier concentration
on position, and the diffusion not only accounts for concen-
tration gradients but also for temperature gradients. Note that
including a single quasi-field corrective term in the current
relations (10) and (11) allows for accurately modeling the
combined phenomenon of carrier degeneracy and band gap
narrowing within the context of classical statistics, provided
that this correction is based on measurements of the higher
n - p-product being the phenomenological effect of heavy
doping, inherently including both phenomenons [2]. Equation
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(12) reflects the dependence of the quasi-Fermi potentials on
lattice temperature. :

Applying Boltzmann statistics again (9) together with (8)
and (3) and some algebraic operations yield the following
final heat flow equation:

oT
Cnp — +div(—k-gradT)

ot
I dn JpJp
q-Pn-N q-Up P
—-j;l-Tgrad(—P,‘iﬁ-l-(@-lnﬂ—
q " Nie
kg - T 1 On;
q nge OT
> o ks P
—JI,~T-g1raJd<Ppﬁ—(F-Inn—ie
_kB T _1_ 6’!7,1'6
q nie OT
kE-T 1 Ony
R-lo. 7.2 = [T
+q-R (2 b 8T)

+T- P div], - TP . div J, (13)

Equation (13) is valid in both the steady state and the transient

-regimes. Its right-hand side represents the heat generation

which describes all local energy conversion processes con-
tributing to self-heating of the device due to dissipation
of electrochemical energy. Four characteristic heat sources
can be distinguished. The first two terms represent Joule
heating due to electron and hole current, respectively. As Joule
heating is proportional to J,%’p it must always be positive.
The next two expressions take account of Thomson heating.
Due to its proportionality to J,, the sign depends on the
current’s direction and the carrier type. The subsequent term
is recognized as generalized recombination heat. The last two
contributions are interpreted as carrier source heat due to
electron and hole conduction, respectively. It represents the
change of the energy of the system due to the net change of
the concentration of charged particles in a volume element
with a certain energy expressed in terms of the thermoelectric
power times the temperature. The variation of the total internal
energy due to the local charging rate is especially significant
as a transient phenomenon.

The governing equations comprising Poisson’s equation,
continuity equations for n and p [24] supplemented with the
current relations (10) and (11) and the heat flow equation (13)
depend nonlinearly on the lattice temperature. If lattice heating
is significant, the thermal system becomes tightly coupled to
the electrical system. For the electrical subsystem, either ohmic
contacts or homogeneous Neumann boundaries are assumed.
Mixed boundary conditions (14) for the heat flow equation
are mandatory in order to be able to model realistic imperfect
cooling conditions '

—fi-gradT-N: h - (T — Tgink)- a4

h denotes the heat sink thermal conductance and Tsink the
ambient temperature of the heat sink. N represents the unit
normal vector. Note that the left hand side in (14) results



2140

from the total energy flux density in the limiting case when
surface recombination processes of carriers are neglected. The
proper modeling of imperfect cooling conditions is of special
importance for transient electrothermal simulations, as the
characteristic time for self-heating increases with increasing
external thermal resistance.

B. Physical Parameters

The dependence of the recombination rate and the mobility
on temperature has been taken from [24]. Auger recombina-
tion and carrier-carrier scattering—known as limiting physical
effects for high injection conditions in power semiconductor
devices [1]—have been taken into account. The phenomeno-
logical mobility model includes velocity saturation due to
high electric fields. Thus the regime of applicability of the
drift current expression in (10) and (11) can be extended
phenomenologically despite the fact that doing so means
withdrawing the principle of linear transport theory requiring
the independence of kinetic coefficients from driving forces. It
is noteworthy that it is not an infringement of linear transport
theory to comprehend the mobility as a function of the carrier
temperature.

In the high temperature range the intrinsic carrier con-
centration n; as a function of temperature [25] has been
fitted to the data from [28]. As heavy doping effects limit
thyristor operation, the effective intrinsic carrier concentration
is computed using [26]. Calculating the change of n; with
temperature gives the result

3nie _
T
B 3
Me\ 9 TR.T2 T3 T
NE+N, 2 Np+N3
¢V (ln<D—N0A)+\/1n (—DM)—&)JFO.s)
2. k-T2
9.025-107%¢Y +6.10 - 1077<Y . (%)
+nie'

2-k-T

1.4-107%% -m +4.5-107%L . m*
+ e é'mm K Tn K T )
4 my - my
15)

In order to determine P, , and P, f; (12) either P, , or Peﬂr
has to be interpreted physically and modeled adequately. It
can be shown that with the help of the effective thermoelectric
power thermal diffusion due to kinetic excess energy in hot
regions is described. Utilizing results of kinetic transport
theory one obtains [3], [7], [18], [29]

e 11 5 3
Pn,f;f):f'g'[(Tn,p+§>'kB'T_§'kB'T
_ks DT

(rnp+1) = (16)

.U'n
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The numerical parameter r,, depends on the dominating
scattering mechanism and can be computed as a function of
mobilities 75, , = 7, (u®, ut) [6]. % is the mobility ac-
counting for lattice scattering, 1 for impurity scattering only.
As the effective thermoelectric power Pf{‘;ﬂ rélates the thermal
diffusivity DT p to the mobility it may be called “Soret factor.”

Inserting (15) and (16) into (12) gives the thermoelectric
powers F,, P, as a result. Due to the third term in the right
hand side of (15) they decrease in highly doped regions, which
is a very remarkable property of the derived expressions. for
the thermoelectric powers compared to conventional models
of P, P, [28], [29], [31]. Furthermore the dependence of the
band gap Fgand the effective masses m;;, m,, On temperature
is accounted for in P, P,. It can be shown that the thermo-
electric powers physically have to be interpreted as entropy
per elementary. charge of one electron or hole, respectively
[3], [14], [29].

1. COMMENTS ON THERMOELECTRIC TRANSPORT

The contribution of the carriers to the overall entropy can be
regarded as negligible in the low temperature range, compared
to the Debye temperature, which is 645 K for silicon [16]. The
entropy of the lattice even dominates in the high temperature
range. Omitting the last two terms in (9) the heat flow
equation (13) can be reduced. Under steady state conditions the
divergence of the electron and hole current densities equals the
recombination rate of carriers times the elementary charge. So
recombination heat and carrier source heat can be summarized
resulting in the quasisteady state approximation of the heat
generation, which is often used for transient simulations too
[15], [31], [32].

In order to demonstrate that the heat flow equation implies
Thomson’s laws, it has to be written in terms of the total
current density J = J, + J and the difference of quasi-Fermi
potentials 6 = @, — @, [20]

ar . ,

E-Fdlv(—n -grad T')

J-J - -
:—U——i—P-J-gradT—J-grad(TvP)

—(T-P)-divJ+q-R-Sp

Cn,p )

< (grad 6¢)?
17

Q On- O

— -grad §p - grad T' it 4
+T grad op - gra +0n+0p
+ grad (Q2 - grad 6¢).

In (17 P = ProntBpoop denotes the total thermoelectric
On+0p

power. o = op,+0, represents the total electrical conductivity.
Note that ' = [k +T - ;"J:f (P, — P, )2) comprises the
ambipolar contribution of the thermal conductivity. Q =
;:+?,, T - (P, — P,) is an auxiliary quantity.

Regarding (17) in the limitihg case ¢ = 0, all contributions
to the heat generation due to two-band conduction vanish

ar
Cop- B +div (—k - grad T)
7 7.
= J—J— —J-(gradll = P-gradT)
~II-div J.

(18)
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The Peltier coefficient Il = T - P is defined in conformance
with Thomson’s second law. In the classical theory of thermo-
electricity steady state conditions are usually presumed. Hence
the divergence of the current density J vanishes. Furthermore
it is assumed that the Peltier coefficient is only a function of
the temperature, which is true in a homogeneous material. So
finally

Sy

7
o

div (- - grad T) = +6.J gradT

(19)

is obtained in perfect agreement with Thomson’s first law
being a definition of the Thomson coefficient © = (2% — P)
[27]. .

Within the theory of thermoelectricity neither individual
contributions of the electron, the hole, and the phonon system
to the overall energy, nor various forms of energy, such as
kinetic or potential energy, e.g., in the conduction band are
treated separately. On the other hand the hydrodynamic energy
balance equation represents a balance equation of kinetic
energy of carriers only, neglecting their position dependent
potential energy due to built-in potentials in an inhomo-
geneously doped semiconductor. Furthermore the change of
potential energy of carriers due to recombination processses
of carriers is not described. Thus the thermoelectric model
based on hydrodynamics [21] is restricted to the special
case of a homogeneous one band conductor. The constant
thermoelectric power only accounts for the contributions due
to the transport energy of carriers with the assumption of an
energy independent relaxation time. The dependence of the
thermoelectric power on the Fermi energy is neglected at all.

The theory of thermoelectricity of either the electron, the
hole, or the phonon system delivers an energy balance equation
accounting for the total energy of carriers as a sum of the
kinetic and potential energy in analogy to the microscopic
picture of an electron in the band diagram. The continuity
equation of potential energy can be derived from the conti-
nuity equation of carriers. It accounts for inhomogenities of
‘potential energy due to doping and interband transitions in
a two-band conducting solid. Neglecting the contributions of
the drift energy to the mean kinetic energy of carriers the
hydrodynamic energy balance equation, supplemented by a
continuity equation of potential energy, delivers the heat flow
equation which also results from principles of irreversible
thermodynamics [3].

The limitations of the assumption of local equilibrium and
the approximation of linear transport theory can hardly be
discussed separately. By solving the Boltzmann equation with
Enskog’s method it can be shown theoretically that at least in
the case when transport phenomena can be described by linear
phenomenological laws the hypothesis of local equilibrium is
also fulfilled [12].

Beyond linear irreversible thermodynamics -three regimes
can be distinguished. First, system properties (e.g., transport

. parameters) turn out to be functions of driving forces. Second,
if the system is perturbed further qualitatively new phenomena
may occur e.g. turbulences, shock waves or fast plasma
processes. Finally, it is possible that the local equilibrium does
not hold any more [13]. The concept of local equilibrium
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breaks down when continuum theory of matter cannot be
applied any more. That is, characteristic spacial and temporal
variations of macroscopic quantities exhibit the same order of
magnitude as characteristic microscopic lengths and times. If
the variation of temperature and velocity within the mean free
path is small compared to the absolute temperature and the
velocity of sound [13], [27], relaxation processes are strong
enough to guarantee adjustment of local equilibrium.

In principle phenomena of all three categories can be
found in submicrometer semiconductor devices (e.g., electron
shock waves [9]). The fact that, within linear transport the-
ory transport parameters may be functions of local intensive
variables but must not depend on driving forces, represents
the most serious restriction with respect to device simulation.
Due to the spacial extensions of power semiconductor device
structures, continuum theory of matter and consequently the
concept of local equilibrium can be applied. As high dissi-
pation capability is a design goal for power semiconductor
devices, dissipative processes due to scattering are strong
enough in order to compensate perturbations by external
forces. Actually, exchange processes between subsystems of
the semiconductor are magnitudes of order slower than those
within a single subsystem. Thus it can be assumed that each
subsystem locally is in a variable thermostatic equilibrium
state, although—regarding a specific cell—the subsystems are
not in equilibrium with one another.

IV. SOLUTION METHODS

Usually, the characteristic time for the electrical and the
thermal subsystem differs by several orders of magnitude.
Thus a device is often in steady state from the electrical point
of view, whereas thermally it is still in transition. Provided the
applied voltages are time independent, the electrical transient
can be neglected with respect to the thermal transient, an
assumption which is well satisfied in practice [5], [10].

Spatial discretization is obtained using finite boxes, a gener-
alization of finite differences [8], [24], while time is discretized
with the backward Euler method. The electrothermal problem
is computed self-consistently following a decoupled approach.
At each time step the electrical subsystem of equations is
solved first, the lattice temperature being regarded as an
independent variable. Then, the temperature distribution is
updated by solving the heat flow equation. Newton’s method
and LU-decomposition are used to solve the electrical and
thermal subsystem alternately until convergence is attained.

V. RESULTS

One half of a symmetric GTO-thyristor cell has been inves-
tigated. Geometry and doping profiles are specified following
[19]. Fig. 1 is a sketch of the simulation area, which is 254 um
long and 160 pum wide. The anode contact covers the whole
right side in Fig. 1. The 2-10** cm™3 doped n-base region is
150 pm long. The surface doping concentration of the emitter
is 1 -10%° cm™3, the doping concentration in the anode and
p-base amounts to 1.5 - 10*® cm~3. Note that the quadrangle
at the left bottom corner is not part of the thyristor.
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Fig. 1.

Geometry of simulation area in gm (one half of symmetric GTO-
thyristor cell). g

First, the electrical steady state is computed for the thyristor
in the on-state, where significant current filamentation occurs.
The anode voltage is 3.3 V, the anode current 28 A. In
[19] switching off the thyristor under an ohmic load has
been simulated. In this paper it is investigated if and how
a dynamic electrothermal eqﬁilibriurn evolves due to given
cooling conditions. The primary interest focuses on the thermal
behavior and thermally induced electrical behavior of the
thyristor.

With the isothermal electrical steady state solution as a
starting point, the subsequent thermal transients are calculated.
Although the thyristor is in a steady state from an electrical
point of view (time independent applied voltages), it is in
transition thermally due to self-heating because of energy
dissipation. In order to show the physical significance of
various contributions to the heat generation in (13), simulations
have also been performed using a heuristic model of heat
generation, allowing to compare results based on a rigorous
and a conventional model on thermoelectric transport. The
heuristic Ansatz only contains a simplified expression for Joule
heat and recombination heat [1], [24].

A. The Electrothermal Steady State

In the first series of computations for the heat sink thermal
conductance h = 50 W/cm?K has been chosen {1]. The heat
sink temperature Ty is 300 K. Double sided cooling is
employed. i

Fig. 2 shows the evolution of the internal maximum and
minimum temperatures of the thyristor in time. After about
three milliseconds self-heating ceases. An electrothermal
steady state adjusts representing a dynamic equilibrium of the
electrical and thermal subsystem of the device. The thyristor
consumes electrical energy and delivers heat energy to the
heat sinks. Within the device energy conversion takes place.

The numerical results agree very well with the analytical
solution of an equivalent simplified thermal network, con-
sisting of a thermal capacitor Ci and a thermal resistor
Ry, If at the time %o the dissipated power Py is applied
to the thermal network, following temporal increase of the

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 42, NO. 12, DECEMBER 1995

= T_max (heu)
=1 T_min (heu)
= T max (thdy)
= —-—-— T_nmin (thdy)
3
=

i
—

time [secl

Fig. 2. Time evolution of maximumn and minimum temperature [K] when the
heat sink thermal conductance h is 50 Wem™2K ™1, (heat sink temperature
Tsink: 300 K) )
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Fig. 3. Increase of lattice temperature [K] after 105 seconds.

temperature results, provided the initial condition is 7" = Tgink

AT =T — Ty = Ren- Pa- (1 - exp(—R—}f@». 0)
t

Py can be computed by integration of the heat generation in
the whole volume of the device.

Figs. 3 and 4 are snapshots of the internal lattice temperature
distribution after 10~° and 0.005 seconds. There are significant
temperature gradients only at the beginning of self-heating, the
absolute temperature differences T’ — Ty;y,k, however, are low.
As the thyristor warms up the temperature profile flattens.

B. Thermal Runaway

In order to induce severe thermal runaway, bad cooling
conditions are defined by choosing 5 W/cm?K for the heat
sink thermal conductance. It can be seen from Fig. 5 that the

- increase of the computed temperature flattens after a few mil-
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Fig. 5. Time evolution of maximum and minimum temperature [K],
(h = 5 Wem™2K~ 1, Ty = 300 K).

liseconds. The thyristor seems to approach a steady state. After
6 ms, however, the temperature curve precipitously bends
upwards. The maximum thyristor temperature exponentially
ascends about 100 K within 0.1 ms. On the time scale of
self-heating the temperature increase until the melting point is
reached takes place quasi instantanously. The evolution of the
temperature in time obtained with a heuristic model of heat
transport is qualitatively equal. The onset of the exponential
increase of temperature, however, occurs about 2 ms later (see
Fig. 5).

The progress of the thyristor’s thermoelectric destabilization
in the on-state can also be traced by the evolution of the
anode current in time. Three periods can be distinguished in
Fig. 6. At the beginning the anode current rises for a short
time because in the boundary region of the nonplanar p-
base more carriers are generated, flowing off to the anode
and emitter contact. Because the carrier mobility decreases

2143

B
3
T

z B
T T T T

e thdy heu

I_A[A]
8
T

02 004 006 008 010
time [sec]

Fig. 6. Time evolution of anode current [A] in case of severe thermal
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case of severe thermal runaway after 5.0 - 1072 seconds, (h = 5 Wem™2
K1 Ty = 300 K)

with increasing temperature the second period until about
4 ms is characterized by a decline of the anode current.
The dependence of the mobility on temperature limits the
anode current thus stabilizing thyristor operation. Finally the
mobility effect is overcome by thermal generation of carriers.
The electrical conductivity increases with temperature again
because more mobile carriers are available for current flow.
At last the exponential dependence of the effective intrinsic
carrier concentration on temperature causes an exponential
rise of the anode current. As the removal of heat to the
heat sinks is only proportional to the difference of the device
temperature and the heat sink temperature there is a misrelation
of produced and removed heat causing an exponential increase
of the temperature too.

Figs. 7-10 show Joule, Thomson, recombination, and car-
rier source heat (in log scale) as four separated contributions
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the

to the overall heat generation. The simulation time is 5 ms.
In Fig. 7 a pronounced Joule heat production due to current
crowding has to be confirmed in the emitter. The nonplanar
device geometry between emitter and gate contacts represents
a perturbation of electric field and current flow. Due to a
field peak and local current crowding a striking maximum
of Joule heat results. All together the Joule heat produces
the main contribution to the overall losses. Thomson heat in
Fig. 8 yields significant contributions only in the highly doped
boundary regions. The reason is that the thermoelectric power
- exhibits pronounced gradients only in transition regions to the
highly doped emitter and anode.

While Joule and Thomson heat are functions of the electrical
current densities, the recombination and carrier source heat
depend on the local increment of carrier concentrations. Due
to high injection conditions the recombination heat is very
pronounced in the whole conducting thyristor area. Fig. 9
shows that recombination heat exhibits maxima in the emitter
and the anode region as well. These contributions are brought
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Fig. 11. Time evolution of the electron concentration [cm™3] at the center
of the emitter after 1 us and 1, 7.2, 7.7, 8.0, 8.20, and 8.25 ms in case of
thermal runaway. ‘ )

about by excessive injection of minority carriers recombining
with majority carriers there. Fig. 10 displays the logarithm
of carrier source heat. Maxima can be found in the emitter
and anode region too, on the one hand, because the effective
thermoelectric power takes higher values there than in the
n-base region, on the other hand for the reason, that-the
divergence of electrical current densities approximately equals
the recombination rate under quasisteady state conditions.

In order to visualize the evolution of dependent variables n
and p in time in Figs. 11 and 12, the thyristor has been cut
at the center of the emitter. As lattice temperature increases
the doping profile loses its implication in the majority car-
rer concentrations and hence in device operation. Only the
electron concentration in the emitter is determined by the
high doping level until irreparable device failure occurs. The
rest of the device is flooded with electrons and holes which
have been generated thermally. Note the high injection level
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Fig. 12. Time evolution -of the hole concentration [cin—3] at the center of
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thermal runaway.

of minority carriers in the highly doped boundary regions.
In the high temperature regime both base regions are filled
with a quasineutral electron hole plasma. The space charge
disappears as the temperature profile rises. Thus, Poisson’s
equation degenerates to Laplace’s equation and the potential
drops linearly between the anode and emitter contacts. The
GTO-thyristor behaves as an ohmic resistor which shorts under
the given bias because of the excessive thermal conductivity
modulation. Note that the boundary conditions for +,n and
p change in time due to different values of the effective
intrinsi¢ carrier concentration determing the built-in potential
and the equilibrium concentration of electrons and holes at
the contacts.

V1. CONCLUSION

An advanced model for self-heating effects has been derived
from principles of irreversible thermodynamics, selfconsis-
tently including an empiric model for heavy doping effects.
Being valid in both the stationary and the transient regimes
it exhibits four characteristic contributions to the overall heat

- generation, Joule heat, Thomson heat, recombination heat, and
carrier source heat.

The importance of the entropy balance equation is empha-
sized in order to derive the mathematical form of the heat flux
and the current relations for electrons and holes. Comments
on thermoelectric transport are given relating the resulting
electrothermal transport model to the theory of classical ther-
moelectricity and hydrodynamics. Limitations of underlying
assumptions are discussed.

The problem of electrothermal stability due to different
cooling conditions has been investigated by computing the
thermal transients in a nonplanar GTO-thyristor. Simulations
based on the thermodynamic model of electrothermal transport
show that thermal runaway is significantly accelerated by
carrier source heat, Thomson heat and additional contributions
in the generalized expressions describing Joule heating and
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recombination heating, compared to results obtained by usage
of a heuristic theory of thermoelectricity.

The simulation results allow extraction of the thermal re-
laxation time, and the value of the total thermal resistor and
capacitor for the equivalent thermal circuit model of the device
under investigation.
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