Microelectronics Journal, 26 (1995) 137-158

The Viennese
Integrated system
for technology CAD

applications

S. Halama', F. Fasching’, C. Fischer”,

H. Kosina', E. Leitner’, P. Lindorfer?,

Ch. Pichler’, H. Pimingstorfer’,

H. Puchner’, G. Rieger', G. Schrom’,

T. Simlinger’, M. Stiftinger’, H. Stippel’,
E. Strasser', W. Tuppa’, K. Wimmer' and

S. Selberherr’

Nustitute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria

National Semiconductor, M/S D3-677, PO Box 58090, Santa Clara, CA 95052-8090, USA

Modern technology CAD systems consist of several simu-
lation tools and a so-called technology CAD framework for
tool integration and tool development. We discuss the
general requirements for such a TCAD framework. From a
review of existing TCAD systems with an emphasis on
software aspects, we deduce general architectural guide-
lines. Bearing these in mind, we motivate our ideas,
concepts and choices for the data level, the user intetface and
the task level of VISTA, the Viennese Integrated System for
Technology-CAD Applications. The resulting structures and
implementations of these three major parts of VISTA are
then described, and a brief overview of integrated tools and
future activities is given.

1. Introduction

1.1 The TCAD scenario
! I ' he introduction of the framework concept
into the TCAD field has had a

considerable impact on the way technology

0026-2692/95/$7.00 © 1995 Elsevier Science Ltd

CAD 1s applied. The essence of this concept is to
distinguish between specialized simulation tools
which are able to perform specific simulations,
and the integrating framework which ties
together these tools to solve actual TCAD
design tasks. The very common, unlucky
approach of point tools, equipped with pre- and
postprocessors,  eventually  coupled by
converters, 1s fortunately becoming obsolete.
Simulation tools are increasingly integrated into
TCAD systems which serve a vast variety of
users. Depending on the wuscrs’  technical
background and needs, different demands on
such systems arise:

The process or device engineer uses simulation tools,
or, more generally, TCAD applications and task-
level procedures, to simulate a given process or

137

 9jolue ainjee



S. Halama et al./Viennese TCAD system

device. For this purpose the engineer edits task
level information (like manufacturing parameters,
the process flow or optimization goals) and uses
applications (point tools) which are provided and
edited by application engineers. The application
engineers in turn make use of the framework’s
global libraries and similar facilities to add new
process and device simulation functionality and
to maintain existing simulators (Fig. 1).

In contrast to application enginecrs, process and
device engineers do not need to know about
programming aspects and technical details of the
framework. Ideally, they should perceive the
tramework (including the tools) as a ‘virtual
wafer fab’.

Finally, the framework (including all generic, i.e.
tramework-related, applications and services) are
maintained by framework engineers.

1.2 The engineers’ requirements

All three categories of engineers interact in some
way with the user interface and the task level
part of the framework, either in a ‘user role’ or in
a ‘programmer role’. Hence, the major difficulty
for user interface and task level implementation
(in contrast to the data level or other internal
parts which are ‘just’ visible from the program-
mer’s point of view) is the vast variety of inter-
ests and perspectives which must be considered.

e For casual users who seldom need to use
simulation tools (for instance, to track down

Device / process < lises edits
engineer % Task control shell
Application % ::: j: Application
AR
Data Jevel and

F k IS edits

raljnewor % other libraries
engineer

Fig. 1. Process, application and framework engineers

interact with the TCAD system by both using (arrows

pointing left) and modifying (arrows pointing right) the
components of the system.

138

bugs in manufacturing), ease of use, robust-
ness and continuity of the user interface
properties are the most important features.
Familiar visual elements should be employed
where they are available.

e For device or process engineers who use
TCAD tools more often, flexibility at the task
level is the most crucial issue. It should be
easy to define new, complex simulation tasks
without having to bother with the internal
workings of the TCAD system. Within the
task level environment, the details of simula-
tion sequences should not be simulator-
dependent and should not, as is the case in
shell-based solutions, depend upon the oper-
ating system.

e For specialists in physical modelling or
numerical techniques, the most important
features are openness of the system and a firm
base for customization, calibration and exten-
sion. Full access to the simulation tools and
models must be supported. Furthermore, it
should be possible to integrate existing tools
in a homogeneous user interface without
having to redesign the tools.

e From the framework and application engi-
neers’ point of view, the use of a high level of
abstraction is desirable, as it usually reduces
the effort for using and maintaining the
system.

e For software support groups, besides the
points listed above, maintainability and port-
ability are very important. This includes the
use of open portable subsystems, since the
entire system will be less portable than its least
portable subsystem.

1.3 The applications’ requirements

Seen from the applications’ point of view, there
are numerous requirements which the data level
of a TCAD system must satisfy. A persistent
simulation database is needed where simulation



Microelectronics Journal, Vol. 26, No. 2/3

problem descriptions, histories and results are
stored. A clear, procedural interface must
provide access to the simulation data, and should
convey all physical and nonphysical information
used by the applications. The interface must
contain homogeneous language bindings for all
programming languages which are commonly
used to develop TCAD tools. Moreover, the
interface must be sufficiently operating system-
and machine-independent to achieve easy port-
ability to different platforms.

The procedural interface must be easy to use,
and must contain all foresecable functions which
arise in simulator coupling (like transformation
of coordinate systems, conversion of physical
units; it may provide high-level functions like
interpolation or grid generation). It is desirable
that these functions may be used in an opaque
manner, so that the application engineer can
concentrate on the actual task of the application.
Fast random access to simuladon data and
compact database sizes are crucial for three-
dimensional simulation, so these issues cannot
be neglected when designing a procedural inter-
face and data representation.

1.4 Maintenance and comprehensibility

The size of a typical classical single process or
device simulation program lies in the range of
one to two megabytes of source code. VISTA (as
an example of a TCAD framework) currently
requires more than ten megabytes of code in
different implementation languages (predomi-
nantly C), not including simulators (Fig. 2).

The remarkable size of the code alone indicates
that special care is required to ensurc the
comprehensibility and maintainability of the
system, and that purc software issucs become
much more relevant than in the case of single
simulation tools (regardless of their sophistica-
tion). It is indispensable that the basic structure
and concepts of the system can be learned and
understood with only a moderate expenditurce of
time and effort. Therefore, a major demand is

MByte

SAMPLE 1.8 D 038

SUPREM 4 [: 1.7 C

PROMIS 1.6 l::] 2.1

PISCES 2B [:l 13

MINIMOS 5.2 !:} 13 FORTRAN
5.6 8.8

T T C.LISP,
TA 1O
VIS’ L ___..__-_! FORTRAN

coded manually generated automatically

Fig. 2. Comparison of source code sizes.

that the design and implementation of all
components adhere to a few simple and consis-
tent basic concepts. We will see that these
demands often provide the decisive argument in
critical architectural choices.

2. Architecture

2.1 Review of existing approaches

Several workstation-based systems can be found
which address the 1ssue of multi-tool integration
into a unified user interface, mostly on top of the
X Window system. PRIDE [1], based on
Sunview, exhibits a user interface and task level
architecture which is strongly influenced by the
preprocessing—computation—postprocessing task
model of TCAD. SIMPL-IPX [2] directly uses
Xlib, and features a central interactive graphical
editor which has menu-oriented facilities for
running simulators. In all the above cases,
implicit or explicit assumptions about the design
process have an impact on the (top-down) design
of the software, and restrict design tasks which
can be performed or implemented. A more
flexible and extension-oriented user interface
architecture has been accomplished in PROSE
[3] from UC Berkeley and in the IBM’s
WIZARD user interface [4], which is mainly
due to the use of the generic Tcl interpreter [5]
and Tk toolkit [6]. The need for continuous
extensions and for a concept for tool integration
into a common framework has also been widely
recognized [7, 8], but has hardly been addressed
in existing TCAD systems.

139



S. Halama et al./Viennese TCAD system

Other well-known TCAD systems are an inte-
grated system for statistical VLSI design from
Hitachi [9], the MECCA system from AT&T
[10], or the SATURN system from SIEMENS

[11].

However, only few of these frameworks feature
a data level for simulation data access. Most of
the existing TCAD environments use data
converters to couple simulators using different
data formats. Doing this not only causes the
number of converters needed to rise quad-
ratically with the number of simulators present,
but it also prevents the user from taking advan-
tage of the services provided by a TCAD-orien-
ted data level. Using a data level, simulators can
be split up into separate tools of well-defined
functionality, allowing tool developers to
concentrate on their particular task.

Early implementations of data levels, like the
DAMSEL system from CNS/CNET [12],
feature two-dimensional geometries and simple
data structures for easy usage by existing simula-
tors. Among data levels designed for TCAD
environments are the CDB/HCDB from CMU
[13,14] (with emphasis on horizontal design),
the BPIF implementation from UC Berkeley
[15], or the keyword based ASCII data level of
IDDE [8]. Another data level built on PIF
featuring object-orientedness is the PIF/Gestalt
system from MIT [16].

A recent approach 1s the SWR 1.0 specification
[17,18] (issued by the Semiconductor Wafer Repre-
sentation technical subcommittee of the CAD
Framework Initiative (CFI), an international stan-
dardization committee for electronic CAD)
which defines an object-oriented application
interface for TCAD data access and suggests the
use of a client-server framework architecture.
The intriguing idea of this standard definition is
to separate the physical modelling completely
from tedious tasks such as grid generation,
interpolation or geometry handling by providing
these functions as a black-box server which is

140

accessed by the simulation clients via a proce-
dural interface. This method is very well-suited
for, for instance, the simulation of topography
formation; however, it can be detrimental to
applications with high data throughput or appli-
cations which exhibit performance advantages
thanks to a tight coupling between physical
models and numerical techniques. Furthermore,
the definition of a rather high-level interface —
which implicitly requires a high degree of func-
tionality — is, in combination with the opacity of
a server concept, an impediment to gradual
implementation and maintenance (there is no
layering that would provide milestones for
implementation and verification).

2.2 General guidelines

For the data level, architectural transparency is
essential for gradual implementation and main-
tenance, and to accommodate possible frame-
work architectures, like client-server, master-
slave, parity, shared library, shared memory, or
plain monolithic applications with file-based
coupling. A well-balanced and thorough layer-
ing of the functionality and semantics of the data
level implementation is most important, as this
will allow considerable re-use, e.g. when an
RPC-based client-server interface is introduced
between two layers, or an object-oriented system
is imposed on the top layer.

The user interface is challenged by the inherent
semantic complexity and diversity of informa-
tion flow between the user and the TCAD
system, which is related to the broad physical
background of process and device simulation.
Unfortunately, there is no publicly available
monolithic user interface toolkit which is flex-
ible enough to meet the changing requirements,
while simultancously providing the specialized
functionality to support TCAD information
flow efhiciently.

It must be admitted that the requirements
described in the introduction do not readily
suggest a specific design or architecture for the



Microelectronics Journal, Vol. 26, No. 2/3

TCAD framework. However, taking together
the requirements and the lessons learned from
the prominent examples above, some important
general guidelines for data level, user interface,
and task level can be derived:

e Bottom-up—as the very top TCAD problem
and apphcatlon is hard to narrow down (there
is no ‘generic demgn task’ in TCAD), a
bottom-up approach is favourable. This implies
that not only implementation, but also defi-
nition and design of higher-level tunctionality
and behaviour are shifted towards the end of
the development phase.

e Layering— where possible, implementation
should be done in distinct layers of increasing
functionality and abstraction.

e Separation and orthogonality — the (firm) frame-
work code should be clearly distinguished
from (volatile) TCAD applications. Duplica-
tion of functionality should be avoided.

e Consistency —where possible, the general-
ization of existing concepts within the frame-
work should be favoured over the
introduction of new oncs.

o [nterpret design tasks—the need for defining
and using design task macros in a flexible
(non-taxonomical) manner  suggests a
requirement for full programming capabilities,
the task level programs being executed by a
task level interpreter.

2.3 The VISTA architecture

The Viennese Integrated System for Technology-
CAD Applications [19] 1is an integration and
development framework for process and device
simulation tools. Its development was lcad by
the guidelines stated above. VISTA consists of a
data level part which provides a common library
for accessing and manipulating simulation data
[20], a set of utilities for visualization and high-
level data manipulation, a user interface, and an

interactive shell [21] which integrate all services
(including the simulation tools) on the task
level.

The structure and implementation details of data
level, user interface, and task level will be
described in detail in Sections 3, 4 and 5,
respectively. We have found that comprehcnm-
bility and (mutual) consistency of thesc threc
parts are cxtremely crucial. This is why they
must not be considered as isolated problems and
implementations, but as parts of a whole
problem and implementation.

3. Data level implementation

For the data level, we have decided to start from
the Profile Interchange Format (PIF), as initially
proposed by Duvall [22], and to extend and
modify it to meet the requirements stated earlier.
A binary implementation and a procedural
interface with different levels of functionality is
the optimal solution with respect to the previous
considerations. Since there is no public and efhi-
cient implementation available, we had the
opportunity to implement the application inter-
face from scratch.

The procedural interface to the database serviccs
is called PIF Application Interface (PAI) [23]. 1
makes extensive use of automatic code genera—
tion to achieve platform independence and to
generate the individual language interfaces.

3.1 The VISTA PIF implementation

The ASCII version of the PIF 1s used as an
intersite data exchange format. The binary form
[23] is used as the database storage format of the
data level. Figure 3 shows the logical PIF struc-
ture with corresponding object relationships.
Note that the majority of the simulation infor-
mation is carried in the grey shaded geometry, grid
and attribute constructs, while the objectGroup and
meta objects are important extensions for
TCAD-related data. Both the geometry and the
grid constructs are built out of primitive

141



S. Halama et al./Viennese TCAD system

PIF
PIF objects

PIF object groups

)

Enapshot] @meList j

objectGroup

written| | meta

segmentList A
boundaryList

g

N
userData |

(o

pointList
lineList

facel.ist
solidList

f
o}

L_ A J

PIF geometric objem

PIF primitive geometric objects

N

PIF physical geometric objects

Fig. 3. The logical PIF structurc.

geometric objects (points, lines, faces and solids).
The geometry construct additionally holds a
simulator’s view of a simulation geometry
through segmentList and boundaryList constructs.

The rather generic attribute construct is used for
attaching any kind of information to an object in
an orthogonal way. The attribute Type subcon-
struct describes the meaning (semantics) of an
attribute. The wvalueType subconstruct declares
the type of the attribute values, which can cither
be a scalar type (string, character, integer, float-
ing point) or nested vectors or arrays of scalar
types (note that arbitrary type complexity with
clearly defined semantics can be implemented
without requiring any syntax extensions).

142

There is no artificial conceptual distinction
between lumped attributes (like simple descrip-
tive strings defining the material of a geometric
segment) or fields (like vector quantities defined
over multidimensional grids), which is another
milestone towards a clearly structured archi-
tecture and a simple implementation. Figure 4
shows a material T'ype attribute defined over a
segment, and Fig. 5 shows an electricField attribute
defined over a three-dimensional grid.

The binary format of the PIF uses LISP-conform
constructor nodes (CONS nodes) to map all ASCII
PIF expressions to binary form. To improve
performance and data compactness, several
additional features have been added, such as a
symbol hash table for fast object access by name
and a compressed array storage format for large
arrays which typically occur in TCAD applica-
tions for attributes on grids.

[t is important to note that the PAI defines the
interface for applications, thereby hiding the PIF
syntax from the applications. Although the low-
level PAI routines are strongly related to the PIF

(attribute geometry attribute
(attributeType "MaterialType")
(nameList (ref my_segments (valuelist 1)))
(valueType asciiString)
(valuelList "Silicon")

Fig. 4. Attribute defined on a segment.

(attribute grid_attribute
(attributeType "ElectricField")
(nameLlist (ref my_grid))
(valueType (vector 3 real))
(valuelist 1.2 3.4 6.5

4.4 3.5 4.7

Fig. 5. Attribute defined on a grid.



Microelectronics Journal, Vol. 26, No. 2/3

syntax, as the TCAD application sees just the
surface of the PAI procedural interface, they
have to know only little about the PIF.

3.2 Implementation of PIF application interface
The PAI is split into seven distinct layers with
strict interfaces between each other. The differ-
ent layers are shown in Fig. 6.

Each layer calls only functions of the next lower
layer. This leads to modules with properly sepa-
rated functionality. Each layer is responsible for a
unique storage concept of the whole PIF Binary
File (PBF), with increasing functionality and
abstraction towards the upper layers. The appli-
cation interface works on PBFs (intertool
format); for data exchange with other hosts there
is the PIF ASCII form (intersite format). To
convert PIF files between these two formats
there is the PIF binary file manager (see Section
3.4), implemented as a separate PIF tool on top
of the PAI

User Interface

Task Level Shell (XLISP)

PIF ToolBox

Application

PA1 Application Layer

PAI Interface Layer

PAI Basic Layer

PAl:Caching Layer

PAI Network Layer

PAI File Layer

PAI System Layer

Fig. 6. Layout of the PIF application interface.

The PAI is able to handle simulation data in
three geometric and infinite nongeometric
dimensions. Thus it is possible to read and write
distributed attributes ranging from scalar to N-
order tensor values on one- to three-dimen-
sional grids. All PIF objects can be selectively
and directly accessed with the PAI, either by
handle or by name. The PAI will read only the
necessary parts of a PBF into a cache avoiding
performance drawbacks of most file-based
systems.

3.2.1 System layer

This lowest layer of the PAI is the link to the
operating system, and defines simple access
routines to the file input and output services. In
ANSI C only the buffered file I/O is defined and
standardized, but buffering is not needed by the
PAI since this is done in the caching layer above.
This is the only layer which has system depen-
dent functions, and implements also basic func-
tions for network access (TCP/IP and DECnet).

3.2.2 File layer

The standardized file I/O functions of the system
layer are used by the file layer to handle the
physical [JO of PBFs. It guarantecs that a PBF is
only opened by one application at a time for
writing (file locking). It inhibits multiple write
accesses to one PBF, but allows multiple read-
only accesscs.

3.2.3 Network layer

This optional layer is functionally equivalent to
the file layer but allows instead accesses to PBFs
over the network. To minimize network traffic,
the functions of the file layer are used directly for
all local and temporary PBFs. The network
databases are accessed through a database server
as shown in Fig. 7, which opens, reads, writes
and closes PBFs.

3.2.4 Caching layer
This layer buffers 1/O data to minimize disk and
network accesses. Depending on the application,

143



S. Halama et al./Viennese TCAD system

Application 1 Application 2| ===~ Application n
Cache Cache - Cache
Application 1] | Application 2 Application n

/

/

$

@ local

Network

( Cache
database server

@ local @ local

Fig. 7. Local and network storage.

the size of this buffer can vary from a few
hundred kilobytes to several megabytes. The
advantage of the cache is that data requested by
read operations frequently can be found in the
cache, while write operations can be delayed
until closing of the file, depending on the page
size and total cache sizes and on the page repla-
cement algorithm. The runtime option of
unbuffered write operations ensures consistency
of the PBF during update operations, and allows
one to examine a PBF while a tool is running
and to write to it, which is an invaluable help in
debugging simulators.

3.2.5 Basic layer

This layer is the lowest to implement structured
data nodes. It provides a functional interface for
binary storage of full LISP syntax expressions by
presenting the notion of atoms (primitive data
items like a number, character or string value)

144

and constructor nodes (CONS nodes for list
creation) to the upper layers, as described in
[24]. In contrast to LISP memory storage
concepts, all nodes of the basic layer (and hence
the PIF Application Interface) are originally kept
on file and are just cached through the cachine
layer.

3.2.6 Interface layer

This layer is the implementation of the PIF
syntax, providing administrative, access and
inquiry functions. Through this layer, only
syntactically valid (binary) PIF files can be read and
written (simply speaking, the proper nesting of
PIF constructs is ensured), and all named PIF
objects (like points, lines, faces, attributes) can be
inquired by their name or by handle. As the
procedural interface is directly related to the PIF
syntax, the whole interface layer can be gener-
ated automatically from an abstract syntax
description during the build process of VISTA.

3.2.7 Application layer and language bindings
The application layer is the most important,
primary interface for applications to read and
write simulation data in binary PIF. Many
semantic rules are implemented in the application
layer (in contrast to the interface layer which
only checks the syntax), ensuring interoperability
of applications in the VISTA framework. High-
level functionality and data-manipulation servi-
ces are provided to relieve TCAD tools from
tedious ‘everyday’ work.

FORTRAN interface

As the application layer is coded in C and a
considerable number of proven simulators are
coded in FORTRAN, language bindings for
most application layer functions and all inquiry
functions to FORTRAN are provided. This
binding is strongly dependent on the respective
compilers, since there is no broad standard for
passing parameters from FORTRAN to C.
Fortunately, all required language binding code
is deducible from a formal description, and is
hence generated automatically during the build



Microelectronics Journal, Vol. 26, No. 2/3

phase of VISTA. Adding a new binding for
another platform requires only few additions in
the configuration files.

LISP interface

The LISP interface of the PAI is built directly on
top of the interface layer (bypassing the applica-
tion layer) to exploit the advantages of PIF/LISP
conformity. Syntactically, PIF is a subset of LISP
and a direct binding to the interface layer enables
the use of all the built-in symbolic manipulation
and list manipulation features of the LISP inter-
preter to access and modify PIF data.

3.3 Use of the PAI

The short code example in Fig. 8 shows the C
calls to generate an example of a PIF data struc-
ture. namelist is the handle to the parent nameList
object [25]. The two element array points holds
the indices of the points on which the line is
created. In the Application Layer code example,
Fig. 9, this part of information is gencrated by the
function pallWriteLineList1. In addition to the
reference construct this function generates the
whole lineList construct, as can be seen in Fig. 10.

3.4 PIF binary file manager

As mentioned above, the whole PAI works on
the binary representation of the data for fast
access. For data exchange via eMail or FTP, or
for making binary PIF files human-readable,
there is the ASCII PIF representation holding

/% local variables */
pailbject valuelist, ref;
pailong points[2];

points{0] = 1;
points[1] = 2;
ref = pilCreateRef(

namelist, /% parent nameList construct »/

pointlist, /* referenced peintlist P */

pilCREATE NESTED) ; /* create a new reference construct */
valuelist = pilCreateValueList (

ref, /* parent ref comstruct */

pilDATA INTEGER, /* data type is integer */

points, /% data points indices */

0, 2, /* which values to write */

PpilCREATE NESTED) ; /* create a new valuelist construct */

Fig. 8. Interface layer code example.

the same information. The PIF Binary File
Manager (PBFM) is able to convert the binary to
ASCII PIF, and vice versa. Thus data exchange
between different hardware platforms is possible
by converting PLBs to ASCII PIF on one plat-
form, transferring the ASCII PIF file, and
converting back to the binary format on another
platform.

3.5 Semantic issues and high-level
functionality

The design of the PIF syntax facilitates future
extensions without syntax changes, but
unavoidably introduces ambiguity. The PIF
itself, be it its ASCII or binary form, only defines
a general syntax for expressing physical situa-
tions. Ambiguities arise from the possible multi-
lateral descriptions of the same physical problem
in terms of PIF syntax. Most of these ambiguities
are, however, physical modelling. To unam-
biguously interpret PIF data, there are additional
semantic constraints which applications have to
adhere to (at the cost of some PIF flexibility),
and ambiguity resolution mechanisms built into
the application interface.

/% local variables */
pailbject linelist;
pailong endindices[i];
pailong objdax[2];

endindices[0] = 2;

objax (0] = 1;
objax[1] = 2;
linelist = pallriteLineListi(
parent, /* handle to PIF file »/
“myLine", /= name of the linelist */
1, /% numbexr of lines =/
endindices, /* endindices of the lines */
2, /% number of used points */
pointlist, /* handle to referenced pointlist P */

objdx, /* point indices %/

palCREATE NEV) /* create a new linelist */

Fig. 9. Application layer code example.

(lineList "myLine"
(nameList (ref P (valuelist 1 2))})

Fig. 10. PIF construct produced by example code.

145



S. Halama et al./Viennese TCAD system

There are sometimes severe data conflicts and
gaps to fill between simulators (e.g. a simulator
working on an unstructured grid coupled to a
simulator using a tensor product grid) which are
dealt with in the PIF ToolBox, comprised of
generic PIF tools such as grid generators, inter-
polators and attribute and geometry manip-
ulators. These services are available as high-level
libraries to be used in applications as well as
stand-alone tools on the task level.

3.6 Grid support

A particularly challenging problem 1s the support
of the innumerable different grid types in use
today. A distinction between tensor product and
unstructured grids has been made, because we
did not want to lose an orthogonal grid’s unique
features by decomposing it into rectangles/
cuboids.

For general (unstructured) element-based grids
an object-oriented approach has been taken for
dynamically adding new element and grid types
by just providing a unique name, an interpola-
tion and a decomposition function. Using auto-
matic code generation, these object methods are
threaded into generic PIF ToolBox functions,
thus adding support for the new grid element to
the whole framework. Figure 11 shows some
example elements and how they are referenced
in a PIF grid. After recompiling the PAL, the
new element type i1s known to applications
through a unique constant identifier.

A tremendous advantage is that applications need
not take care of new clement types: reading
attributes defined over a grid can be done with-
out knowledge of the grid, since there is a generic
interpolation facility, based on the element defini-
tions, which is automatically invoked when
requesting an attribute value at a location (x, y).

3.7 Performance evaluation
Besides the goals of classical intertool PIF
mmplementations featuring object-orientedness

(PIF/Gestalt, [16]) or suitability for TCAD

146

(grid grd 1
(pointList pgrd
(valualList ....)
) — interpolTRI3 ()
(£acelList f£grd decomposeTRI3 ()
(nameList

(raf pgrd 1 2 3)))
(attribute elemgrd
(nameList

(ref fgrd))
(attributeType

"alementType")
(valuaType
asciiString)
(valual.ist

"TRI3"

"ms"

2

intexpolTRIE ()
decompos@TRIS ()

i <
interpolTET10()
decomposeTET10 ()

interpolPRISMSG ()
decomposePRISME ()

Fig. 11. Support for unstructured grids.

environments (BPIF, [15]) our implementation
stresses efficiency in terms of runtime perfor-
mance and database compactness. Thus, writing
and reading 10,000 points (in three-dimensional
space) of a PIF pointList takes 0-51 and 0-66
seconds (real time), respectively, on a DECsta-
tion 3100; the database written 1s 250 kB in size.
Therefore, linking a TCAD application to the
VISTA environment is not a performance issue.
In contrast to a client-server approach, the
administrative and communication overhead is
negligible for any application consuming a few
seconds of CPU time — the commonly used
argument, that PIF is not practical because of its
low runtime performance, no longer holds true.

4. Implementation of VISTA user interface

4.1 Structure

The X Toolkit [26] is ideally suited for a very
flexible and highly systematic user interface
architecture. From a set of building blocks (so-
called widgets), all higher-level functions and
applications can be built. The required speciali-



Microelectronics Journal, Vol. 26, No. 2/3

zation for TCAD can be achieved by both
implementing TCAD-specific widgets, or by
assembling multiple widgets into TCAD-speci-
fic user interface components. The object-
orientedness of the X Toolkit coincides with the
desired bottom-up approach, and is very well
suited for future extensions. Nevertheless, a
widget set has to be chosen, from which the
required specific widgets for TCAD purposes

can be subclassed.

The basic structure of the VISTA user interface
is shown in Fig. 12. Basic, generic functionality
is provided by the generic Athena widgets which
arc part of the original MIT X11 distribution
[26]. We have decided to use this widget set
rather than any other open standard for several
rcasons, but mainly because a migration from
these generic widgets to another widget set (like
OSF/Motit [27] or Open Look) is significantly
casier than vice versa. The Athena widget set was
not intended to be sufficient for all purposes, and
thus does not fulfill all the needs of a TCAD
user interface, but it does provide the required
generic functionality, 1t is highly portable, it is
available on virtually every modern workstation
platform, and it is easy to comprehend. In addi-
tion specialized VISTA widgets have been
developed for supporting TCAD-related infor-
mation flow. The VISTA widgets are also
created and accessed via specific functions, so
that they can quite easily be replaced by other
widgets, should the need arise.

For the sake of widget-set independence, a
wrapping layer has been put on top of the widget
sets. All widgets are created and modified via
specific functions rather than via the generic
interface of the X Toolkit, which should facil-

itate future migrations.

The top layer, the VUI (VISTA User Intetface)
library, provides some often needed higher-level
operations, and contains most of the user inter-
face policy which is shared among VISTA appli-
cations. This library takes care that different parts

VISTA Bindings

.

e ™

Athena Widgets

X Toolkit

_ y
Fig. 12. Structure of the VISTA user interface. Shaded
boxes represent extensions to the public domain products
XLISP and the MIT X Window system. The arrows indi-

catc the sequence of function calls between different parts
of the user interface.

of VISTA look alike and behave similarly.
Interactive applications (like visualization clients
or the device editor) have their own VUI-based
user interface, whereas applications requiring no
user interaction (batch-mode tools like simula-
tors or data converters) are provided with a
front-end user interface which is executed by the
XLISP interpreter.

4.2 The VISTA widget set

The VISTA widgets are subclassed from either
X Toolkit Intrinsics or Athena widgets (Fig. 13).
The Canvas, PED, PedGraph and Ruler are parts
of the interactive PIF Editor (PED); the IntValue,

147



S. Halama et al./Viennese TCAD system

RealValue, TextLine and FileSel are widgets for
the specification of integer, real and string values,
and files, respectively; and the SVGraph widget is
a widget for displaying simple vector graphics
plots.

4.2.1 The PIF editor

A data level implementation would be incom-
plete without an interactive graphical editor for
manipulating the geometrical data (device
geometries) stored in the binary PIF. The PIF
editor (PED) is the front-end user interface for
the interactive creation and modification of
geometrical data in one, two and three spatial
dimensions and of all attributes (like the material

type) which define the device structures (see Fig.
14).

The PED makes use of the Canvas, Ruler and
PedGraph widgets, and is itself implemented as a
widget (see Fig. 14). This allows the use of
multiple subwindows for editing one and the
same device geometry, editing of several logical
PIF files in one PED process, and even using the
PED as a component in ‘surrounding’ applica-
tions. Thus, arbitrary additional menus or other

widgets can be added without interfering with
the PED itself.

The PED can work on all PIF files independent
of the specific semantical contents. It is a generic

tool for building a simulator input PIF file from
scratch, for modifying existing device structures,
and for visualizing geometric PIF information.

The hierarchical PIF geometry structure is
supported by ‘snapping’ on existing lower-level
geometrical objects, and by automatically creat-
ing missing intermediate-level objects during
input. Common techniques like background
grid or colouring according to different physical
or logical criteria are used to facilitate the
comprehension and assimilation of the spatial
information.

4.2.2 Vector graphics widget

The XToolkit and Athena widget set do not
provide ‘classical’ two-dimensional  vector
graphics capabilities, which are a firm require-
ment for any CAD discipline. To support plat-
form-independent vector graphics output we
have implemented a minimum-functionality
vector graphics widget (Fig. 15) which is built
directly on the generic Xlib and XToolkit.

The widget remembers all drawing commands
and provides zoom and pan functions for the
user, which henceforth the programmer does
not need to bother with. Callbacks can be
utilized for example to digitize data points. This
widget is used as interactive back-end of
VISTA’s visualization library.

(o] [ ] (=]

Simple

I’*;WH“I“I

(=] ] [m=]

Fig. 13. Widget set used by VISTA. The VISTA cxtensions are shaded, the Intrinsics and Athena widgets used for subclassing
arc blank.

148



Microelectronics Journal, Vol. 26, No. 2/3

PED Version 1.1 i

File |[Display |[Object | [Attribute |[Config ] [Scope

-1.5 -1

-0.%

0 0.5 1 1.5 um

Lol d sl

0,
> MaterialShell

MaterialType:

cdada et pade gty

st lagaladetalebalylad

ST NSRS ANEY FENE NS FU NN ARSI NS RN RNV SN AE N SRR E N e

éegment ~1.02143 0.5

edit material

I

| segment. XG | l

Fig. 14. The PIF editor widget.

The contents of the widget (i.e. the ‘plot’) can be
converted to PostScript format; other converters
can be added easily due to the compact set of
drawing commands which 1s used.

4.2.3 File selection

As it is not provided with the Athena widget
set, we have implemented an advanced file
selection widget (see Fig. 16), which allows
operating system transparent specification of
files (including a GNU Emacs [28] like filename
completion) using a string subwidget, and
operating system independent traversal of the
directory tree and selection of existing fles
using list subwidgets.

The selection of logical PIF files (onc physical
file can contain multple logical PIF files) is
implemented as a so-called widget macro.

4.3 The VUl library

4.3.1 Widget macros

The VUI library contains functions which create
often-used combinations of several widgets in
one step. The widgets are positioned and all
required connections and callback functions are
defined. These widget macros behave as if they
were single widgets (composed of several sub-
widgets). This approach is similar to the OSF/
Motf ‘Convenience Function’ concept [27],
and helps to maintain a unified appearance for
different VISTA applications.

The following examples show some TCAD-
specific widget macros.

The periodic table shown in Fig. 17 15 im-
plemented in C and 1s used by applications to
let the user select ‘pure element’ materials from
a matcrial database which is shared by all

149



S. Halama et al./Viennese TCAD system

/F‘SISOLDU] s

04 0.2 0.4 0.6 0.8 1.0

s

< e
P -

Fig. 15. Vector graphics display widget is used for display-
ing the output of PIF-based visualization tools.

simulation tools. It provides a familiar mcthod
for the identification and specification of single
chemical elements. This widget macro is used,
for example, to ask the user for the bombard-
ing 1on species for the Monte Carlo simulation
of ion implantation.

@] Repair PEr N
Select Repair PBF
uld[ file: | 1ue/d51fusersﬂhalamaxvhome/l
Em device | Nildcard: |%,pbf
= ro
lltho*w ! etched pbf
Spaeer: exiok.,pbf
tests
ghdsf . pbf
litho-1.pbf
mask ,pbf
metal ,pbf
mini,pbf
minimos_doping. pbf
planox,pbf
stripped.pbf
supminin,pbf
supmtmp . pbf

Fig. 16. VISTA file selection widgcet.

150

The symbolic PIF browser widget macro (see
Fig. 18) is generated by a prototype LISP
program. It is a generic intuitive facility on the
task level for the selection of PIF objects and
represents the hierarchical structure of the PIF
file in iconic form. It can be used in any step
which requires the specification of one or more
PIF objects, like for example visualization
(choice of attribute to be visualized), inquiry or
post-processing operations.

4.3.2 Tool control panels

Applications which don’t require user interac-
tion (batch mode programs like most classical
simulators) can very easily be provided with a
‘supply parameters and run’ user interface. As an
example of such a widget macro, the tool
control panel for the Monte Carlo simulation of
ion implantation is shown in Fig. 19. This panel
is created from a formal specification of the tool
and its parameters by an automatic interface
generator, which is implemented in LISP. This
high-level user interface tool, in most cases,
relieves the application engineer from the need
to use XToolkit programming to make new tool
control panels.

5. Implementation of the task level shell

5.1 XLISP

At a first glance, a proper choice for the task level
environment seems to be non-trivial (there are
many options to choose from), but it becomes
almost obvious when the proposed architectural
guidelines and requirements are considered. A
UNIX- (or any other operating system) shell-
based solution does not fulfil the portability
requirement, whereas the use of an integrating
master application (like an interactive device
editor) alone does not offer the desired extension
(programming-) language features. Although a
Tcl/Tk based solution 1s a very common and
promising option [4, 14, 29, 30], it does not
exhibit the important features (especially with
respect to the architectural guidelines) that our
choice has.



Microelectronics Journal, Vol. 26, No. 2/3

[ v R

File||dialoge || Send error
a
Ia Jla Illa IVa VYa Vla VIIa YIIL It Il IIIb I¥b vb  WIb WIIb ¥WIIDI
. —
1 | H He
2 | Li |Be ¥ CIN]JO]F N
3 | Na | Mg Al siJ P | s }cCljer

4 K JCalSc|Ti ]V Jor])bn ) Fe

Co

Ni {CulZn |Ga|[Ge)HAs ) Se]Br| ke

SHR s | Y | 2r MM ) Tc |Ru

Rh

Pd JAg JCd JIn]Sn|Sb|Te| J | ¥Xe

6 [Cs {Bs|Lla |[H [ Ta | W | Re |Os

Pt fAu|He | T1 {Pe] Bi |Pa|RL|Rn

7 | Fr | Re | Ac

La | Ce | Pr | Nd

PmEFuFdTTanﬂ Hﬂ Er I TmT b l Lu

fc | Th | FPa ] U

Fig. 17. Periodic table widget macro lets the user select chemical clements as bulk or implantation material.

The VISTA task level is built on XLISP [31], a
public domain LISP interpreter, which is avail-
able in source code and meets all demands. It is
coded in highly portable and comprehensible C
code, fulfils all softwarc requirements and
provides full programming capabilities. It can be
extended and customized for TCAD purposes
by both adding C-coded primitives or by loading
LISP code at runtime.

Most importantly, LISP is a superset of PIF, so
that architectural homogeneity of the TCAD
system 1s strengthened by this choice. The
conceptual common denominator between
LISP, the PIF (both binary and ASCII), and the
PAI is so significant that the net effort for the
programmier to comprehend the entire system 1is
considerably decreased. Additional synergetic
features are the ability to store task-level LISP
expressions on the data level (by using the PAI
basic layer) and to manipulate PIF information
directly on the task level.

There are several other remarkable LISP-based

implementations of task level environments in
related fields, which lets us believe that XLISP is a

sound choice, like the well-known GNU Emacs
[28] text editor, the generic CAD system Auto-
CAD [32], or Winterp [33] (‘“Widget Interpreter’),
which comes with the MIT X11 distribution.

The applicability of XLISP for the execution of
typical TCAD optimization tasks has already
been demonstrated [34,35]. The programming
language features offered by LISP are an extre-
mely powerful (LISP is, for example, among the
most often used implementation languages for
expert systems) and an cfficient basis for carrying
out complex task flows, like nested optimization
loops. The concept of our task level environ-
ment 1s to present whole simulation tools as
single LISP functions, so that the XLISP inter-
preter can be used for programming with simu-
lator primitives on the task level.

5.1.1 Interaction of framework components

Remembering the casual user, we recognize that
a good link between the TCAD extension
language interpreter, which integrates all system
components on the task level and represents the
main program of the TCAD system, and the user
interface 1s required in a way that the existing

151



S. Halama et al./Viennese TCAD system

[@] Symbolic PIF Browser NS )|

[File] :

“iue/d51/users/hal ama/vhome/minimos_doping,pbf:test.

test
geof

aridhvP

BoronDoping Impuritylescription

Phosphorusloping Impuritylescription

Arsenicloping Impuritulescription

ReceptorDoping  Impurityllescription

DonorBoping Impuritylescription

Fig. 18. The symbolic PIF browser widget macro is created
according to the data contained in a (binary) logical PIF file
and reflects its hierarchical structure.

[8] Monte Carlo lon impiantation GGG

___________ Physical Parameters Reco1ls
Atomic Nr: Number of Recoils Ee
Inplanted Elenent & BORON
mplanted klement v eeeeeee___Implantatyon Window. ___________
Ton tess [it.008 |& amu a 3 un
bose [Toods ] vz [ clgm
Ererss [Z00 ] kev e -
Tilt fngle [ 7 & degrees [ 1]8
Rotate Rngle R T —— Simulator Specific Keys_________

Simuiator Specific Keus

e beOMEtry Input__

file name [etchl,pbf:logical 2

Number of Rotations 9 rot.,
Save (urrent Panel
Load Default Fanel

Fig. 19. This widget macro is the uscr interface for the
PROMIS Monte Carlo ion implantation module.

152

interpreter is simultaneously used for all inter-
preted user interface parts.

But there are also other software components
which need to be accessible from within the
extension language environment, so that a generic
method for linking C-coded functions to XLISP
1s highly desirable. External simulator execu-
tables need to be started, provided with appro-
priate input and their termination needs to be
recognized to trigger subsequent simulation
steps.

To preserve the consistency and simplicity of
XLISP and to provide a homogeneous proce-
dural interface and programming environment,
we had to implement the X Window interface
(VISTA UI Bindings in Fig. 12) for XLISP from
scratch rather than using the Winterp [33]
implementation. As there are other C-coded
parts of the framework which need to be acces-
sible on the extension language level, a generic,
automatic method for linking given functions
with the XLISP interpreter has been imple-
mented.

The code required to implement LISP interfaces
for framework modules which are relevant for
TCAD purposes is currently 335kB  (see
Table 1), but is steadily increasing. There are
only a few functions (indicated by parentheses in
Table 1) which are manually bound to the
interpreter for reasons of consistency and efh-
ciency (see also Section 3.2.7). The vast majority
of the interface code 1s generated automatically
during the build phase of VISTA.

5.2 The callback concept

The object-oriented callback concept of the
XToolkit may be generalized in a very straight-
forward manner, and successfully applied to
those parts of the TCAD framework where a
proper decoupling and high flexibility of the
control flow 1s desirable. It is obvious that this is
of special value for a flexible task level imple-
mentation.



Microelectronics Journal, Vol. 26, No. 2/3

TABLE 1

Number of functions (Nf), number of constants (N.), size of code for

the XLISP interface, and module size of cvery module that is linked with the
XLISP interpreter. Numbers in parcntheses indicate manual binding; all other code

is generated automatically

Module  Description N¢ N, Binding  Code size
xvw Extended Widget Set 105 19 115 kB 531 kB
i User Interface Library 83 3 96 kB 254 kB
ve Global Error System 14 37 20 kB 165 kB
svg Graphics Library 22 10 21 kB 73 kB
ptb PIF Toolbox 8 29 26 kB 190 kB
ver Version Control 0 7 1kB 0kB
vos OS Interface (63) 12 (2) kB 214 kB
pai PIF Application Interface (20 (117) (54) kB 2256 kB
Total 315 234 335 kB 3683 kB

Events coming from the X Window system are
passed to the XLISP interpreter. If a LISP
expression was associated with the activated
widget at creation time, this expression is
evaluated by the interpreter and can be used to
change parameter valucs, trigger other events
like the execution of a simulator, or start the
evaluation of a LISP program or any other
tool.

The same callback concept is also used for the
control of simulator execution. If a simulation
tool terminates, it signals the termination to the
parent process, which again causes an associated
callback expression to be evaluated. Callbacks
can be triggered by the user interface, error
handler, network layer, timer, or by termination
of child processes.

Using the standard prototype

void callBackFunc(object_identifier, client_data,
call_data);

for callback functons (which is already specified
by the X Toolkit) it is possible to use one
unified consistent method for various purposes
throughout the framework, thereby gaining
simplicity and flexibility.

5.3 Simulation flow control

Using LISP as prototyping environment, a
Simulation Flow Control (SFC) module [36] has
been developed which is able to simulate process
step sequences (process flows) automatically. It 1s
responsible for the definition and editing of
simulation sequences, for the automatic execu-
tion of these sequences, for all aspects of tool
invocation, and for the storage and retrieval of
computed results. As the interfaces between all
tools are well defined on the data level as well as
on the tool control level, it 1s possible to replace
any simulator call in a simulation sequence in a
plug-and-play fashion. A prototype interactive
graphical flow editor (see Fig. 20) has been
implemented (also using LISP) which provides
the user with visual programming capabilities for
the definition and modification of the simulation
flow. To simplify the a posteriori analysis of
simulation runs, all intermediate results may
remain available as PIF files.

6. The VISTA tool set

6.1 Simulators

The simulators MINIMOS 6 [37] (for two-
dimensional simulation of MOS transistors) and
PROMIS 2.0 [38] (a two-dimensional process

1563



S. Halama et al./Viennese TCAD system

[@ Simulation Flow Editor i

IEEJ | Edit\ l &eps ‘ I Blocks \ ;;233‘(?;5:

Auelloliusersipichlerivistaffrarmewrk/sfc/sfdidake.sfe

e — — |-
| v O [puock]

17 GATE-OXIDE

¢ M [SRHPLE Firulsotrﬁpic Etching

4 UXIDE-LAYER
>

A
18  TRANSFER-MASK
>

5 RESIST-LAYER
>

. SRMFLE T=atropic Iepozition

¢ [ [5imple Litho Tocl

£ EXPOSE-MASK

Current Selection: (5)

Fig. 20. The simulation flow cditor — a prototype visual programming interface for the simulation flow control (SFC)
module.

simulator for ion implantation and diffusion)
have been integrated into VISTA. Both were
already existing in-housc applications, coded in
FORTRAN. MINIMOS is integrated using a
wrapper approach, whercas PROMIS has been
modularized and makes direct use of the PAL
Similarly, VLSICAP, a two-dimensional finite
element program (in FORTRAN) for capaci-
tance computation and interconnect character-
ization, has been integrated into VISTA, again
making use of the PAI

SAMPLE (coded in FORTRAN, developed at
UC Berkeley) has been integrated for the two-
dimensional simulation of ctching and deposi-
ton. In a wrapper approach (which is always to
be used when the source code of the tool is not

154

available), we had to make use of separate pre-
and postprocessing modules to overcome some

limitations of SAMPLE.

Using the VISTA framework as a development
platform, a new rigorous two- and three-dimen-
sional simulation tool for etching and deposition
[39], and a three-dimensional Monte Carlo
implantation simulator [40] have been imple-
mented at TU Vienna.

[t should be noted that many present developments
of simulation tools are in C, but a major part of
the integrated simulators in wuse is coded in
FORTRAN, which verifies the importance of a
dedicated FORTRAN data level interface.



Microelectronics Journal, Vol. 26, No. 2/3

6.2 Framework tools

VISTA presents some of its services as distinct
tools (separate executables that read or write
PIF files) which are invoked from the task level
shell. These tools are either interactive (like the
PIF editor, the visualization tools, or the mate-
rial database browser), or batch-mode tools (like
a  general-purpose  two-dimensional  gnd
generator, or all converters required for wrap-
ping approaches). All of these tools make full
use of the PAI or other high-level libraries and,
in the case of interactive tools, of the user
interface library. As a considerable part of all
new tools is comprised by VISTA’s libraries,
code re-use and features hike shared libraries are

fully exploited.

Recently, a bidirectional data link to TMA’s
Technology CAD system [41] has been devel-
oped at National Semiconductor. It converts
binary PIF to TMA’s ‘Technology Interchange
Format’ and wvice versa, making use of VISTA’s
high-level data manipulation services. This data
link allows the use of popular TCAD tools like
SUPREM-3, SUPREM-4 and PISCES within
the VISTA framework.

7. Conclusion and future aspects

It is the scope of methods and unpredictable
requirements that makes technology computer-
aided design a challenging discipline. It is this
property that dictates the rigorousness of a
future-oriented TCAD framework. The need
for comprehensibility, on the other hand,
prohibits the (otherwise feasible) creation of a
framework by combining existing solutions.

In VISTA, we have achieved a homogeneous
and comprehensible architecture by favouring
the generalization of existing concepts over the
introduction of new (maybe even better suited)
partial solutions. A bottom-up design has been
used, wherever applicable, to be prepared for
unforeseeable future requirements.

Using PIF as the interchange format of the data
level was the initial choice, which was motivated
by its intrinsic flexibility and open-endedness.
However, the crucial part of the data level is an
efficient application interface like the VISTA PAL

One of the major reasons for using the XToolkit
to implement the specialized user interface
functionality as widgets is that it provides a clear
concept for re-use and for future extensions.
Finally, the well-known advantages [5, 6, 33] of
an interpretive language for composing a user
interface from widget-level building blocks and
the consistency with the data level implementa-
tion have verified that XLISP is the right choice
for VISTA’s extension language interpreter. The
generalized use as ‘main’ program for the task
level, as essential part of the user interface, and as
central facility for CASE-related tasks, contri-
butes significantly to the consistency, maintain-
ability and simplicity of the system. Automatic
code generation (also using XLISP) helps to raise
the level of abstraction on which problems like
language bindings are solved.

7.1 Tool abstraction

The use of high-level tool abstraction methods
for CAD tool management has been demon-
strated through the Cadwell design framework
[42]. We believe that a generalized and unified
concept for the abstract characterization of tools
(even on a low level, down to single functions) 1s
highly desirable, as it can be employed for many
different language bindings. Right now, from an
abstract tool description in LISP syntax, several
pieces of interface code (generating a main
program which takes care of argument-passing
for a given function, thereby forming a stand-
alone executable, for instance) can be generated
automatically. The same tool abstraction could
in the future also be used to describe a tool for
optimizers or other sequencing or analysis tools.

7.2 Visual programming interfaces

Visual programming capabilities are very valu-
able for the efficient support of any user. Almost

155



S. Halama et al./Viennese TCAD system

every non-trivial task in TCAD is to a consid-
erable extent data-flow oriented. The whole task
is defined by the arrangement of modules and
the flow of data between them, which also
implies the sequence of tool execution. A
prototype of a simulation flow editor (see Fig. 20)
has been implemented, which will yield feed-
back for further work in this field.

Again, both the callback concept (for module
activation) and the tool abstraction concept (for
module description) can be used for the imple-
mentation of a final visual programming widget,
thereby preserving system simplicity from the
programmer’s point of view. A generalized visual
programming facility is especially desirable for
building specific applications through intuitive
assembly of several generic functions or
modules. We have tried to implement all new
parts of VISTA (especially the visualization and
the PIF ToolBox functions) using generic and
orthogonal approaches. Visual programming will
then equip the process/device engineer with
programming power without the need to do
actual programming work. It can be expected
that a visual programming interface will signifi-
cantly contribute to the ease of use of the TCAD
framework.

7.3 Object-oriented design representation

In a TCAD environment, it would be conve-
nient to represent devices to be simulated as
objects belonging to a device class hierarchy and
with methods attached to them. Thus a device
would ‘know’” how to simulate itself, i.e. its class
would have methods attached which call the
appropriate simulator. To achieve this, the
design representation of the data level has to be
fully object-oriented, and the procedural inter-
face has to provide means to build class hier-
archies and attach methods to classes. Since PIF
provides a LISP-like syntax it is ideally suited to
extend it with such object-oriented features. A
C++ language interface would present those
features to applications. Methods attached to PIF
objects would be coded in C++ and made

156

available to the extension language through the
Tool Abstraction Concept. However, since only
a minority of today’s TCAD applications are
written in C++, there is presently no strong
need for such an interface.

Acknowledgements

The VISTA project has been sponsored by the
research laboratories of Austrian Industries-AMS
at Unterpremstitten, Austria; Digital Equipment
Corp. at Hudson, USA; Siemens at Munich,
FRG,; and Sony at Atsugi, Japan, and by the
‘Forschungsforderungsfonds fiir dic gewerbliche
Wirtschaft, project 2/285 and project 2/299, as
part of ADEQUAT (JESSI project BT1B),
ESPRIT project 7236 and project 8002.

We are very grateful to A. Gabara (University of
California, Berkeley, California), N. Khalil
(Digital Equipment Corporation, Hudson,
Massachusetts), E. Masahiko, M. Mukai and
P. Oldiges (Sony Corp., Atsugi, Japan),
H. Masuda (Hitachi Device Development
Center, Tokyo, Japan), L. Milanovic, G. Nanz,
C. Schiebl, R. Strasser and M. Thurner
(Campusbased Engineering Center, Digital
Equipment Corporation G.m.b.H, Vienna,
Austria), M. Noell (Motorola APRDL, Austin,
USA), H. Read (Carnegie Mellon University,
Pittsburgh, Pennsylvania) and K. Traar and
G. Punz (Siemens AG, Vienna, Austria) for their
patience and support, for their efforts in instal-
ling and testing VISTA, and for their contribu-
tions and criticisms.

References

[1] M.R. Simpson, PRIDE: An integrated design envir-
onment for semiconductor device simulation, IEEE
Trans. Computer-Aided Design, 10(9) (1991) 1163—
1174.

[2] E.W. Scheckler, A.S. Wong, R.H. Wang, G. Chin,
J.R. Camanga, A.R. Neureuther and R.W. Dutton,
A udility-based integrated system for process simula-
tion, [EEE Trans. Computer-Aided Design, 11(7)
(1992) 911-920.



(3]

[4]

Microelectronics Journal, Vol. 26, No. 2/3

A.S. Wong, Technology computer-aided design frameworks
and the PROSE implementation. PhD thesis, University
of California, Berkeley, 1992.

R.W. Knepper, ].B. Johnson, S. Furkay, J. Slinkman,
X. Tian, EM. Buturla, R. Young, G. Fiorenza,
R. Logan, Y.S. Huang, R.R. O’Bricn, C.S. Murthy,
P.C. Murley, J. Peng, HH.K. Tang, G.R. Srinivasan,
MM. Pelella, D.A. Sunderland, J. Mandelman,
D. Lieber, E. Farrell and M. Kurasic, Technology
CAD at IBM. In Fasching ef al. [43], pp. 25-62.

[5] JK. Ousterhout, Tcl: An embeddable command

language, 1990 Winter USENIX Conference Proceedings,
1990, pp. 133-146.

[6] J.K. Ousterhout, An X11 toolkit based on the Tecl

language, 1991 Winter USENIX Conference Proceedings,
1991, pp. 105-115.

[7] J. Mar, Technology CAD at Intel, in Fasching ef al.

(8]
(91

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[43], pp. 63-74.

P.A. Gough, An integrated design environment for
semiconductors, in Fasching ef al. [43], pp. 131-146.
H. Matsuo, H. Masuda, S. Yamamoto and T. Toyabe,
A supervised process and device simulation for statis-
tical VLSI design, Proc. NUPAD 11, 1990, pp. 59-60.
P. Lloyd, HK. Dirks, EJ. Prendergast and K.
Singhal, Technology CAD for competitive products,
IEEE Trans. Computer-Aided Design, 9(11) (1990)
1209-1216.

H. Jacobs, W. Hinsch, F. Hofmann, W. Jacobs,
M. Paffrath, E. Rank, K. Steger and U. Weinert,
SATURN - A device engineer’s tool for optimizing
MOSEET performance and lifetime, Proc. NUPAD
111, 1990, pp. 55-56.

C.H. Corbex, A.F. Gerodolle, S.P. Martin and A.R.
Poncet, Data structuring for process and device
simulations, IEEE Trans. Computer-Aided Design,
CAD-7 (1988): 489-500.

D.M.H. Walker, Ch.S. Kellen, D.M. Svoboda and
AJ. Strojwas, The CDB/HCDB semiconductor
wafer representation server, IEEE Trans. Computer-
Aided Design, 12(2) (1993) 283-295,

D.M.H. Walker, ] K. Kibarian, Ch.S. Kellen and A J.
Strojwas, A TCAD framework for development and
manufacturing, in Fasching et al. |43], pp. 83—112.
AS. Wong and AR. Neureuther, The Intertool
Profile Interchange Format: a technology CAD
environment approach, IEEE Trans. Computer-Aided
Design, 10(9) (1991) 1157-1162.

D.S. Boning, M.L. Heytens and A.S. Wong, The
Intertool Profile Interchange Format: an object-
oriented approach, IEEE Trans. Computer-Aided
Design, 10(9) (1991) 1150-1156.

SWR Working Group of the CFIJTCAD TSC,
Semiconductor Wafer Representation  Architecture, CAD
Framework Initiative, Austin, Texas, USA, 1.0
edition, 1992.

[18]

[19]

[20]

[21]

(24]
[25]
[26]
[27]

[28)
[29]

[30]

D. Boning, G. Chin, R. Cottle, W. Dietrich,
S. Duvall, M. Giles, R. Harris, M. Karasick,
N. Khalil, M. Law, M.J. McLennan, P.K. Mozum-
der, L. Nackman, S. Nassif, V.T. Rajan, D. Schrider,
R. Tremain, D.M.H. Walker, R. Wang and
A. Wong, Developing and integrating TCAD appli-
cations with the semiconductor wafer representation,
Proc. NUPAD IV, 1992, pp. 199-204.

S. Halama, F. Fasching, C. Fischer, H. Kosina,
E. Leitner, Ch. Pichler, H. Pimingstorfer, H. Puch-
ner, G. Rieger, G. Schrom, T. Simlinger,
M. Stiftinger, H. Stippel, E. Strasser, W. Tuppa,
K. Wimmer and S. Selberherr, The Viennese Inte-
grated system for Technology CAD Applications. In
Fasching et al. [43], pp. 197-236.

F. Fasching, W. Tuppa and S. Selberherr, VISTA —
The Data Level. IEEE Trans. Computer-Aided Design,
13(1) (1994).

S. Halama, F. Fasching, H. Pimingstorfer, W. Tuppa
and S. Selberherr, Consistent user interface and task
level architecture of a TCAD system, Proc. NUPAD
IV, 1992, pp. 237-242.

S.G. Duvall, An interchange format for process and
device simulation, IEEE Trans. Computer-Aided
Design, CAD-7(7) (1988) 741-754.

F. Fasching, C. Fischer, S. Selberherr, H. Stippel,
W. Tuppa and H. Read, A PIF implementation for
TCAD purposes, in Fichtner and Aemmer [44],
pp. 477-482.

P.H. Winston and B.K.P. Horn, Lisp, Addison-
Wesley, 1989.

PAI Release 1.0, Institute for Microelectronics,
Technical University Vienna, Austria, 1992.

PJ. Asente and R.R. Swick, X Window System
Toolkit, The Complete Programmer’s Guide and Specifica-
tion, Digital Press, 1990.

OSF/Motif Programmer’s Guide, Release 1.1, 1991.

R. Stallman, GNU Emacs Manual, 1986.

A. Neureuther, R. Wang and J. Helmsen, Perpective
on TCAD integration at Berkeley, in Fasching ef al.
[43], pp. 75-82.

P.Lloyd, C.C. McAndrew, M J. McLennan, S. Nassif,
K. Singhal, Ku. Singhal, P.M. Zeitzoff, M.N. Darw-
ish, K. Haruta, J.L. Lentz, H. Vuong, M.R. Pinto,
C.S. Rafferty and I.C. Kizilyalli, Technology CAD at
AT&T, in Fasching et al. [43], pp. 1-24.

D.M. Betz, XLISP: An Object-Oriented Lisp, Version
2.1, 1989.

AUTOCAD Release 11 Reference Manual, publication
ACTIRM.E1, 1990.

N. Mayer, WINTERP: An object-oricnted rapid
prototyping, development and delivery environment
for building user-customizable applications with the
OSF/Motif Ul Toolkit, Technical report, Hewlett-
Packard Laboratories, Palo Alto, 1991,

157



S. Halama et al./Viennese TCAD system

[34]

[35]

[36]

(37]

[38]

[39]

158

H. Pimingstorfer, S. Halama, S. Selberherr,
K. Wimmer and P. Verhas, A technology CAD shell,
in Fichtner and Aemmer [44], pp. 409-416.

H. Masuda, H. Pimingstorfer, H. Sato, K. Tsuneno,
K. Ichikawa, H. Tobe, H. Miyazawa, M. Nakamura,
K. Kajigaya, O. Tsuchiya and T. Matsumoto, Applied
TCAD in mega-bits memory design, in Selberherr
et al. [45], pp. 21-24.

Ch. Pichler and S. Selberherr, Process flow repre-
sentation within the VISTA framework, in Selberherr
et al. [45], pp. 25-28.

H. Kosina and S. Selberherr, A hybrid device simu-
lator that combines Monte Carlo and drift-diffusion
analysis, IEEE Trans. Computer-Aided Design, 13(1)
(1994).

K. Wimmer, R. Bauer, S. Halama, G. Hobler and
S. Selberherr, Transformation methods for nonplanar
process simulation, in Fichtner and Aemmer [44],
pp. 251-256.

E. Strasser and S. Selberherr, A general simulation

(40]

(41]

method for etching and deposition processes, in
Selberherr ef al. [45], pp. 357-360.

H. Stippel, S. Halama, G. Hobler, K. Wimmer and S.
Selberherr, Adaptive grid for Monte Carlo simulation
of ion implantation, Proc. NUPAD IV, 1992, pp. 231~
236.

V. Axelrad, Y. Granik and R. Jewell, CAESAR: The
virtual IC factory as an integrated TCAD user envir-
onment, in Fasching et al. [43], pp. 293-307.

[42] J. Daniell and S.W. Director, An object oriented

[43]

[44]

(45]

approach to CAD tool control. IEEE Trans. Compu-
ter-Aided Design, 10(6) (1991) 698-713.

F. Fasching, S. Halama and S. Selberherr (eds.), Tech-
nology CAD Systems, Springer-Verlag, 1993.

W. Fichtner and D. Aemmer (eds.), Simulation of
Semiconductor Devices and Processes, Vol. 4, Hartung-
Gorre, 1991.

S. Selberherr, H. Stippel and E. Strasser (eds.), Simu-
lation of Semiconductor Devices and Processes, Vol. 5,
Springer-Verlag, 1993.



