1208

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

VISTA—User Interface, Task
Level, and Tool Integration

Stefan Halama, Member, IEEE, Christoph Pichler, Student Member, IEEE, Gerhard Rieger, Student Member, IEEE,
Gerhard Schrom, Member, IEEE, Thomas Simlinger, and Siegfried Selberherr, Fellow, IEEE

Abstract— Succeeding an earlier paper [1] on the data level,
the Viennese Integrated System for Technology CAD Applications
(VISTA), an integration and development system for Technology
CAD, is presented. Starting with a short overview of TCAD
methodology and existing integrated systems, portability and
comprehensibility are postulated as key considerations and an
application-framework architecture is proposed. The design of
VISTA’s user interface and task level, presented next, adheres
strictly to these guidelines. To enable the cooperation of indepen-
dent simulation tools, an automatic triangulation-based service
is provided by VISTA to resolve inconsistencies in wafer repre-
sentations. A final example shows how three different simulators,
integrated by the framework are used to simulate a planarized,
trench-isolated 0.25 um CMOS process.

I. INTRODUCTION

A. TCAD Methodology

CAD methodology consists of two parts. These are the

application and the development of methods for the
computer aided design of semiconductor technology. The
development of these methods is driven by the dependence
of TCAD on fabrication technology [2]. When seeking to
improve the common lag of TCAD (with respect to cur-
rent semiconductor technology) one must shift the attention
from the commonly emphasized application aspects of TCAD
methodology to its development aspects.

New capabilities are provided within a TCAD system by
extending existing applications (which has often caused an
unsound growth of code and has eventually lead to mainte-
nance problems) by developing new tools, or by integrating
additional, existing applications which implement the required
functionality.

The time between the request for new simulation capabilities
and their actual availability is comprised of several time
factors, each corresponding to a phase of a typical TCAD
tool development process:

+ problem formulation;
+ physical modeling;

Manuscript received December 6, 1994; revised May 1, 1995. The
VISTA project has been sponsored by the research laboratories of Austrian
Industries—AMS, Unterpremstitten, Austria; Digital Equipment, Hudson,
MA; Siemens, Munich, FRG; and Sony, Atsugi, Japan, and by the
“Forschungsforderungsfonds fiir die gewerbliche Wirtschaft,” Project 2/285
and Project 2/299, as part of ADEQUAT (JESSI Project BT1B), ESPRIT
Project 7236, and by ADEQUAT II (JESSI Project BT), ESPRIT Project
8002. This paper was recommended by Associate Editor S. G. Duvall.

The authors are with the Institute for Microelectronics, Technical University
Vienna, A-1040 Vienna, Austria.

IEEE Log Number 9414151.

« initial tool implementation;

« maintenance (improvement of robustness, porting, debug-
ging);

* tool calibration;

+ tool integration on the data and task level (which may
require significant efforts to improve the inter-operability
with other tools);

« user interface adaptions for ease of use; and

* acceptance, acquaintance, and learning phase of end users.

Apart from the time required for understanding and abstract
modeling of physical problems, major causes for unforseeable
delays are rather general software problems, which are not
specific to TCAD.

From a historical perspective, the evolution of TCAD started
with single applications (so-called point tools) that were im-
plemented independently by different ool developers. Tradi-
tional point tools are process and device simulators which
solve specific, isolated TCAD problems and which have been
designed without envisioning the software environment in
which they will be used. Later, these process and device
simulation tools have been integrated with other services
(like visualization, interactive design editing facilities, and
a tool control level) to form Technology CAD Systems. An
overview of existing TCAD systems is given in [3] and [4]. To
support the users in the application of the methods provided,
most of these TCAD systems are equipped with converter-
based tool coupling, homogenizing user interfaces and TCAD-
specific task level environments (often focused on tasks like
optimization). Although a significant improvement of TCAD
is perceptible, most of these application-oriented integrative
efforts do not address the software-related difficulties which
slow down the creation process and limit the responsiveness
of TCAD.

B. TCAD Levels

A notion commonly found in TCAD and Electronic Design
Automation ([5]) uses so-called levels which correspond to
different views of integrated multitool systems. The data
level is the home of the wafer (and sometimes process)
representation, it provides the database for tool coupling. The
tool level is where the simulation functions reside. The task
level is a homogeneous control environment where operations
and flows are defined and executed. The presentation level is
the interface through which the user interacts with the TCAD
system. The architectures of TCAD systems in use do not

0278-0070/95$04.00 © 1995 IEEE

HALAMA et al.: VISTA —USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

LiST OF TCAD SYSTEMS AND TOOL INTEGRATION APPROACHES, IN ALPHABETICAL ORDER OF INSTITUTIONS

TABLE 1

[Name [Institution | Status | Data level | Task level [Presentation Level | References |
MECCA AT&ET int. prod. awk/sed, C++ UNIX Shell, Tel Tk [43; 44; 16]
PREDITOR CMU experimental, | CDB/HCDB Tel Tk, Motif [45; 20; 46]
pdFab commercial
“Superviser” Hitachi int. prod. Converter “Superviser” 47]

VATS IBM int. prod. VATS/DB WIZARD (Tcl) WIZARD (Tk) 17]
EASE Intel int. prod. PIF predecessor, UNIX Shell, Motif 2; 48; 49]
PIF derivative FASST/TEL
CAFE MIT internal BPIF/Gestalt MIT PFR [50] [51]
P&D Workbench NEC int. prod. MEDLEY+ DAIJOBDA [52
ESCORT
UNISAS Oki int. prod. GCOS UNICOL 53]
IDDE Philips UK int. prod. ASCII PIF derivative | none Apollo DIALOGUE 54; 55|
PRIDE Philips USA | int. prod. ASCII PIF derivative | none SunView 56; 7]
SATURN Siemens int. prod. SATURN UNIX Shell none 57; 18]
MASTER Silvaco commercial SSF none DeckBuild 58
STORM ESPRIT production DAMSEL none STORM-UI IDAS 59
Alladin, SEWB Stanford ind. prototype | SWR 60
CAESAR TMA commercial TIF Module/Step CAESAR 61; 62}
ITS TI int. prod. none none Motif 63|
“System controller” | Toshiba int. prod. ASCII topography interface programs | none 64
VISTA TU Vienna production PAI/PIF XLISP Xvw + VUI 65; 66; 67; 68]
PROSE UC Berkeley | internal BPIF, SWR Tel Tk + VEM 69; 9; 70]
SIMPL-IPX UC Berkeley | internal Converter (BTU) none SIMPL-DIX 8; 71]

perfectly match this conception, but the correspondence is

1209

(INT.: INTERNAL, PROD.: PRODUCTION, IND.: INDUSTRIAL)

tive demands (such as orthogonal functionality, ease of use,

strong enough to be used as a basis for the characterization of customizability, configurability, robustness) we consider most

existing implementations.

C. Existing TCAD Systems

Some of the existing Technology CAD systems have
evolved from Electronic CAD (ECAD) or computer integrated
manufacturing (CIM) systems. Hence the distinction between
advanced ECAD,! extended CIM, and dedicated TCAD
systems is sometimes not trivial. Most of the systems in use
are not publicly available, and neither is the documentation of
their architecture and implementation. Nevertheless, using the
sparse published data, we have compiled a brief overview.

In Table I internal means that the system is not used outside
the institution listed. Production means that the system is
known to be in use somewhere. Commercial means that the
system is commercially available. Blank fields indicate lack
of reliable information.

Each of the systems listed exhibits a different architecture
and emphasizes certain aspects of TCAD. Although remark-
able achievements in terms of current TCAD application,
most of the systems suffer from a common neglect of the
development side of methodology.

D. Qualitative Requirements

The main purpose of the TCAD systems listed is the
integration of multiple simulation tools. A detailed, compre-
hensive, and stable a priori specification of the functional-
ity and services required for multitool integration (on the
data, task, and presentation level) and for tool development
is hardly possible, mainly owing to the strong dynamics
of TCAD methodology. However, remembering the desired
improvement of the methodology creation process, a more
general, qualitative guideline for design and implementation
of a TCAD system may be given. Among the many qualita-

L A review and classification of ECAD systems is given in 5],

important the following.

1) Portability: For general application software, but espe-
cially for sophisticated and expensive technical appli-
cations, like CAD systems which run on workstations,
the need for operating system independence is widely
acknowledged. However, in existing approaches this
requirement is often disregarded for the sake of reduced
implementation effort. Especially in TCAD, where a
broad spectrum of workstations and mainframe plat-
forms are in use, a high degree of operating-system
independence is essential.

Comprehensibility: The intrinsic semantical complex-
ity of TCAD indicates that special care will have to
be exerted in order to create a system which is still
understandable (for both users and programmers) with
an acceptable expenditure of time and effort. Conceptual
integrity [6], as the most important design consideration
for controlling system complexity, should be fostered
by favoring the generalization of existing concepts over
the introduction of new ones. It is desirable that both
design and implementation of all system components
adhere to a few simple and consistent concepts. With
point tools, neglecting conceptual integrity may just
lead to superfluous complexity and to fragile software.
An entire TCAD system lacking conceptual integrity,
should its implementation succeed, will very likely be
unusable.

2)

Too often, functionality is overemphasized at the cost of soft-
ware quality. A typical, unfortunate implementation method
is to build large software systems from existing, optimal, but
independently developed components. Despite the optimality
of the constituents, the integrity of the sum is violated by
the multitude of concepts introduced (most often this happens
without notice).

1210

E. The Application Framework Architecture

The users of TCAD methodology are fairly satisfied when
the most frequently used TCAD point tools are coupled and
are accessible via a homogeneous control environment. From
the prevailing application-driven perspective of TCAD, it does
not matter how this tool integration is achieved. Hence, in
most cases of existing systems, the tools used have been tied
together with human efforts only, as this has been the fastest
approach toward the desired integrated system.

The major aim of a TCAD framework, on the other hand,
is not just a static integration of a (limited) set of tools,
or presently increased simulation capabilities, but rather a
permanent improvement of the the production process of new
TCAD methods. We firmly believe that only a system with
a dedicated application-framework architecture can reduce ef-
fort and time required for tool integration, tool implementation,
and maintenance.

An application-framework architecture divides the whole
system into one framework and several applications. The
framework contains all reusable, generic, and persistent parts,
whereas the applications contain specialized and compara-
tively volatile functionality. For TCAD, typical applications
are classical point tools which perform specific simulations,
and the framework is comprised by all integrating and sup-
porting software and technology-independent services like
visualization, graphical editing of device structures, data level
implementation, and task control environment. An improve-
ment of the TCAD methodology creation process is expected
from the reduction of application complexity due to the reuse
of framework parts. Unfortunately the term framework is too
often used in TCAD to denote an integrated system where, of
course, applications can be added somehow, but which does
not at all exhibit an application-framework architecture. The
data/tool/task/presentation layering (which is independent of
the application-framework architecture), on the other hand, is
commonly seen in most TCAD systems.

F. Outline

We have implemented the Viennese Integrated System for
TCAD Applications (VISTA), an integration and development
system with a dedicated application-framework architecture.
The data level of VISTA was presented in an earlier paper
[1]. In the remainder of this article we will describe the ar-
chitectures and implementations of the user interface (Section
II) and the task level (Section III) of VISTA and discuss a
typical challenge of tool integration, namely inconsistencies of
wafer representations in different tools and how this problem
is addressed by VISTA (Section IV). Using a planarized
CMOS process as an example, the cooperation of independent
applications within the framework is demonstrated (Section
V). A final discussion (Section VI) summarizes essential points
of this paper.

II. USER INTERFACE

Independent of the type of application, users nowadays
expect a comfortable presentation of all services provided
by a computer system. As an accompanying effect of this

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

trend, graphical user interfaces are judged rather by their visual
appearance than by their practical utility or by their efficiency
of assisting the programmer systematically in providing new
functionality for the user.

In TCAD, the users’ expectations include a homogeneous
intuitive graphical user interface which covers the data level,
the task level, and all integrated applications. A challenging
discrepancy between the obvious demand for ease of use and
the semantical complexity of TCAD tasks and tools may be
anticipated.

In addition to the general need for portability and com-
prehensibility, a multitude of criteria apply specifically to the
design of a TCAD user interface. The appearance should
be extensively configurable to foster the acceptance of users
already acquainted with a certain “look and feel” of an
existing ECAD/CIM environment. The user interface must
be flexibile enough to accommodate functional extensions for
the unforeseeable variety of new TCAD capabilities. On the
other hand, these extensions should not require changes in
user interface principles and elements so that a casual user
perceives a maximum continuity.

Despite claimed standards for window systems and pre-
sentation level toolkits, window system software seems to
be prone to the same progress as workstation technology.
For example, four rather differing window systems (VWS,
DECwindows, Motif, and Windows NT) have been featured
by Digital Equipment’s Workstations within just five years
(1989-1994). Although a reliable standard system would be
highly welcomed by the application programming community,
there is yet no stability in sight.

Several workstation-based systems can be found which
feature the integration of multiple tools into a unified
user interface, mostly based on the X Window system.
PRIDE[7], based on SunView, exhibits a user interface and
task level architecture which is strongly influenced by the
preprocessing —computation — postprocessing task model of
TCAD. SIMPL-IPX[8], based directly on Xlib, features a
central interactive graphical editor which has menu-oriented
facilities for running simulators. In both cases, implicit or
explicit assumptions about the design cycle have had an impact
on the (top-down) design of the software and restrict the design
tasks which can be performed. A more flexible and extension-
oriented user interface architecture has been accomplished in
PROSE[9], which is mainly due to the consequent use of the
generic Tcl interpreter[10] and Tk toolkit[11].

A. Architecture

A sufficiently standardized and reasonably well-established
de-facto multiplatform basis used in many integrated TCAD
systems is the X Window system [12], which we have chosen
to build upon. The structure of the VISTA user interface is
shown in Fig. 1. The bottom layer is the X Toolkit[13], an
object-oriented subroutine library, designed to simplify the
development of X Window applications. The X Toolkit defines
methods for creating and using so-called widgets, which appear
to the user as pop-up windows, scrollbars, text-editing areas,
labels, buttons, etc. Basic functionality is provided by the

HALAMA et al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

. VULiibnry

VISTA Widges' " |
fe=———>| Athena Widgets l
Intrinsics |

X Toolkit

r Xlib J

Fig. 1. Structure of the VISTA user interface and parts of the task level.
Shaded boxes represent VISTA components and arrows indicate the sequence
of function calls between different parts of the user interface.

generic Athena widgets, which are included in the MIT X11
distribution.

In addition, specialized VISTA widgets have been devel-
oped as TCAD-specific user interface elements. A widget-
wrapping layer has been put on top of these widgets in order
to achieve a certain widget-set independence. All widgets are
created and modified via specific functions rather than via the
generic interface of the X Toolkit. This should facilitate the
potential migration of the user interface onto another widget
set or onto any other platform similar to the X Toolkit, should
the need arise.

The top layer of the VISTA user interface, the VUI (VISTA
User Interface) library serves two purposes. It provides some
often needed higher-level operations and contains most of the
policy which is shared among VISTA applications. In other
words, the VUI library takes care that all parts of VISTA look
alike and behave similarly.

B. The VISTA Widget Set

The Athena widgets are a lean, generic, low-functionality
widget set (they serve as an example for the usage of the X
Toolkit and are part of the X release). They were originally
not intended to be used in professional applications and
thus do not meet the needs of a TCAD user interface, but
they do provide the required basic functionality, they are
highly portable, they are available on virtually every modern

1211

Fig. 2. The widget set used by VISTA. The VISTA extensions are shaded,
the Intrinsics and Athena Widgets used for subclassing are blank.

workstation platform, and they are easy to comprehend. We
have decided to use this concise and ductile widget set as base
for our implementation because currently no well-established
high-level standard toolkit can be found that would suffice
for TCAD purposes without requiring the same significant
extensions as the Athena widgets.

The VISTA widgets are subclassed from either X Toolkit
Intrinsics or Athena widgets (Fig. 2). The Canvas, PED,
PedGraph, and Ruler are parts of the interactive PIF Editor
(PED), the IntValue, RealValue, TextLine, and FileSel are
widgets for the specification of integer, real, string values,
and files, respectively, and the SVGraph widget is a widget
for displaying simple vector graphics plots.

A TCAD data level implementation would be incomplete
without an accompanying interactive graphical editor for ma-
nipulating all geometric data stored in the binary PIF. The PIF
EDitor (PED) is the front-end user interface for the interactive
creation and modification of geometrical data in one, two and
three spatial dimensions and of all attributes (like the material
type) which define the device structures (see Fig. 14). The
PED can work on all PIF files independent of their semantics.
It is a generic tool for building a simulator input PIF file
from scratch, for modifying existing wafer structures, and for
visualizing geometric PIF information.

The PED uses the Canvas, Ruler, and PedGraph widgets
and is implemented as a widget itself. This allows the use
of multiple subwindows for editing one and the same device
geometry, editing of several logical PIF files in one PED
process and even using the PED as a component in “sur-
rounding” applications. Thus, arbitrary additional menus or
other widgets can be added without interfering with the PED
itself. The PIF data is held in a memory-resident intermediate
representation which is slightly extended with respect to the
binary PIF to allow for efficient interactive manipulations. The
top-level execution control of the PED is implemented as an
extensible and configurable automaton which filters all user
input and triggers appropriate actions.

The LISP interpreter which is used as the basis of VISTA’s
task level programming environment (Section III) is reused
as extension language for the PED, allowing the addition of
LISP-coded macros. The use of LISP as extension language
for an interactive geometry editor has already proven to be a
successful strategy for interactive geometrical CAD [14].

The X Toolkit and Athena widget set do not provide “clas-
sical” two-dimensional vector graphics capabilities, which
are a firm requirement for any CAD discipline. To support

1212

simple platform-independent vector graphics output we have
implemented a minimum-functionality vector graphics widget
(SVGraph Fig. 2, Fig. 13) which is built directly on the
generic Xlib and X Toolkit. The widget remembers all drawing
commands and provides zoom and pan functions for the user,
which henceforth, the programmer does not need to bother
with. Callbacks can be utilized, for example, to digitize data
points. This widget is used as an interactive interface to
VISTA’s visualization library.

C. The VUI (VISTA User Interface) Library

The VUI library contains functions which create often-used
combinations of several widgets in one step, arrange them, and
set up all required connections and callback functions. These
widget aggregates behave as if they were single composite
widgets and are indistinguishable from the user’s point of
view. This is similar to the OSF/Motif “Convenience Func-
tion” concept [15], and helps to maintain a unified layout and
behavior for all VISTA applications.

The VUI library currently defines two types of main widget
arrangements, the chat shells and the dialog shells. Chat shells
are used for longer lasting user interactions and contain a
standardized menu bar with pulldown menus. Dialog shells
are for short (typically pop-up) inquiries and contain a button
box on the bottom for alternative answers. These two types
of widget arrangements are commonly found among most
window systems and applications. Specialized dialogs like the
selection of logical PIF files are supported by single VUI
functions.

D. Presentation Level Interfaces

The presentation level must allow access to all data, tools,
and tasks. Hence interfaces between the presentation level and
data, tool, and task levels must exist. A common architec-
tural feature found among many TCAD systems is the tight
connection between user interface and task level environment.

In VISTA, the connection between user interface and task
level environment (detailed in Section III-C) is implemented
by a full-function VUI and widget wrapper programming
interface (denoted “VISTA Bindings” in Fig. 1) for the XLISP
interpreter (XLISP is the basis of VISTA’s task level). Using
these function bindings, the task level interpreter serves as im-
plementation environment for the presentation level integration
of all batch-mode tools that don’t need user interaction and are
accessed by the user indirectly via the task level. The “LISP Ul
Macros” in Fig. 1 are user interface code which is executed by
the XLISP interpreter and, e.g., produces tool control panels,
either for direct invocation or for editing tool parameters
via the VISTA Simulation Flow Control (SFC) module. An
example tool control panel is shown in Fig. 3. Most tool
control panels are created from formal specifications of the
tools by simple interface generators implemented in LISP. This
relieves the application engineer from the need to use low-level
X Toolkit programming to create new tool control panels. The
separation of the user interface code from the (rather complex)
tool itself is an important means to stabilize and unify the

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

\

[@] Monte Carlo lon Implantation]

e eeu—Physical Paraneter Recolils,
ftomic Nr: Number of Recoils De

Inplanted Elosent []S RN _Implantation Hindow__ .- _
Ton Hass 11,008 |© amu u L’___gg um
Dose [1ov13 |G 1/on"2 z [:Z]g un
Energy 9 kev x [:gg un
Tilt fngle 3 degrees X2 E]g un

Simulator Specific Keys
Geometry Input oo —_—

File name |stchl.pbfslogical 2

Rotate Angle 3 degrees

Musber of Rotations [0]G rot.

Save Current Panel
Load Default Panel

%E}

Fig. 3. Widget aggregate (tool control panel) for editing the parameters of
a PROMIS Monte Carlo ion implantation step.

user interface behavior and to relieve the application from the
burden of the user interface implementation.

Interactive applications, like visualization clients or the PED
are considered part of the presentation level and access the
VUI library and widgets directly (the user interface is compiled
and linked).

The presentation/data level interface of VISTA is essentially
comprised by the PED, the PIF browser, and the visualization.
The front-end data interface PED (described above) focuses
at editing geometries contained in the data level and is
implemented (in C) as a widget. The symbolic PIF browser
(see Fig. 4) presents the logical structure and hierarchy of the
PIF file in iconic form and allows the inquiry and selection
of PIF objects. It is used as a generic intuitive facility in
applications which require PIF object selection. The PIF
browser is implemented as a LISP program which is executed
by the task level shell.

VISTA’s built-in visualization is the back-end interface
between presentation level and data level. The visualization is
organized as a modular library working on purely geometric
data consisting of sets of primitive geometrical objects (so
called “simplexes”). A major consideration for this design was
to provide a sufficient spectrum of simple interfacing options
to export visualizable data for other (preferred) visualization
systems. The visualization of simulation data is performed by
translating the PIF into a simplex representation, successively
applying operations such as isosurface extraction, cutting,
slicing, projection, coloring, and by displaying the resulting
plot with the SVGraph widget. Results of this visualization
procedure can be seen in Figs. 12 and 13.

III. TASK LEVEL

For a TCAD task level environment, proper design and
choice of an implementation platform are not trivial, but
become clearer when the proposed qualitative requirements
are remembered. A UNIX- (or any other operating system)
shell based solution does not fulfill the portability requirement,
whereas the use of an integrating interactive master application

HALAMA et al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

Symbolic PIF Browser |-

.

Jusr/users/vista/vistastools/vlsicap/exa/exi/ 1 inux/EXL.pbf

IZ] vep._points
vep_lines
EI vep_faces
[E vcp_segnents

@ vep_boundaries
(1]

E] vep_grd0ol_fcl

E vep_grdool_ptl

vep_grd001_att ElementType
vep_grd002

!E vep_grdoo2_fel

E vep_grdoo2_ptl

vep_grd002_att ElementType

vep_grd003
‘E vep_grdoo3_fel

Fig. 4. The symbolic PIF browser

(like a device editor), which is sometimes found in TCAD
systems, does not offer enough flexibility for task definition
and tool access.

Looking at existing systems in CAD areas, it seems obvious
that an interpreter is the classical approach for the task
level environment (121, [5], [9], [14], [16]-[18]). Both single
interactive actions and more complex flow control can be
executed in an interpreting environment.

A conceivable, rather modern alternative is an entirely
object-oriented concept where both CAD data and simulation
tools are objects (as in [19]) and the task flow to be performed
is deduced from their properties and relationships and by
methods and rule inference from a design goal or inquiry. At
a closer look, however, the two concepts are not mutually
exclusive. In fact, the use of an interpreter is merely an
implementation-oriented architectural choice which does not at
all preclude the later introduction of object-oriented concepts.

Especially for Technology CAD, the immediately available
programming language features offered by an interpreter are
of great value for defining task level macros and arbitrarily
complex control flows which involve the execution of several
applications, without the need to construct complex object
systems before any practical problems can be solved.

A. XLISP

Although there are many TCAD systems which successfully
use Tcl/Tk [10], [11] as task level interpreter and user interface
(see, e.g., [16], [17], [20}, [21]), VISTA’s task level environ-
ment is predominantly based on XLISP [22], a comprehensible
and compact LISP interpreter. The highly portable C source

1213

code of this public-domain product is freely available. It can be
extended and customized for TCAD purposes by both adding
C-coded primitives and by loading LISP code at run time.

The appropriateness of this choice is also confirmed by
several other remarkable, LISP-based implementations of task
level environments in related fields. Examples are the well-
known GNU Emacs [23] text editor which uses LISP as
extension and top-level implementation language, the generic
CAD system AutoCAD [14] which derives much of its success
from third-party applications implemented in the SCHEME-
like extension language AutoLISP, or Winterp [24] (“Widget
Interpreter”), an experimental user interface prototyping en-
vironment which is part of the MIT X11 distribution. Other
integrated CAD systems which allow for the definition of
complex, data-driven control flows often use LISP as major
implementation language [19], {25].

A required task-level (LISP) function can be implemented as

+ a LISP coded function loaded at run time;

« a C coded function which is linked with the LISP inter-

preter; or
« an external application, implemented as a separate exe-
cutable.

Whatever implementation method is used does not make a
difference at the interpreter level, the operation (the task atom)
is always presented as a single LISP function.

B. Task Level Interfaces

For all batch mode tools (these are applications that do
not require user interaction) the task level interface and the
presentation integration (according to [26] and [27], that is the
provision of applications with a homogeneous user interface)
are implemented within a single context. LISP functions are
used to create a layer of virtual applications on the task level
for one or more physical applications (executables). Fig. 5
shows two characteristic examples. The user interface for
these virtual applications is implemented in the task level
programming environment, leaving the physical applications
entirely unaffected.

An example for a one-to-many mapping (“Application A” in
Fig. 5) is a device simulator, where for every desired type of
device characterization a function that performs the required
simulation step and extracts the requested parameter is im-
plemented (“Virtual Applications W” and “X” in Fig. 5). For
process simulation the situation is inverted. Several physical
applications are run consecutively under control of a single
presentation (VISTA’s Simulation Flow Controller [28]).

This kind of presentation level/tool level mapping is only
possible with a dedicated task level that separates the applica-
tions from the presentation level. This is both an indispensible
prerequisite for the integration of “foreign” tools (the source
code often can not, or should not be changed), and a smart
strategy to strengthen continuity and portability of the tool /
user interface. Furthermore, the intermediate task level layer
allows the user interface to be tailored to design tasks instead
of application peculiarities.

Relationships between tools, user interface code, and task
level interpreter can be seen in Fig. 1. The XLISP interpreter

1214

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

Presentation Level

Virtual Virtual Virtual Virtual Task Level
pplication W Application X Application Y Application Z
I (XLISP)
Tool Level
Application A Application B1 Appl n B2 Application C
Fig. 5. A set of physical applications is mapped to a set of virtual applications on the task level.
(defun pbfm (&rest args) ; define function pbfm XLISP
(let ({cmdline (apply #’vos::cmd-args args))) ; convert argument list
(vos::irun ; Tun subprocess Simulator 1
(vos::create-vospec :name "pbfm") ; symbolic executable "pbfm", Start 1
cmdline H argument list,
:bg T))) as parallel subprocess
Fig. 6. LISP interface code defining the virtual application pbfm (the task
level view of the PIF Binary File Manager). Simulator 2
Start2
(vui::create-editable-tile ; creates a popup file selection dialog
vui::current-menu-button within a pulldown menu
"PIF->PBF" using this button label
(vos: :get-curdir) starting in the current directory Pipe
Uk, pif" symbolic wildcard
xvw: :ALLOW-EVERYTHING allowing change of directory and such Pi
#' (lambda (wdg cld cad) callback function i
(pbtm ’a 'k H runs pbfm with certain arguments
(vui::get-file-value wdg))) ; on the selected file
nil) i unused client data
Termination
Fig. 7. LISP user interface macro defining a file selection dialog for running Callback 1
the virtual application pbfm on a selected ASCII PIF file.
runs the simulator as parallel subprocess. The definition of the
respective virtual application(s) and graphical interfaces are e
contained in LISP Macros (entirely decoupled from the actual

tool code), which are loaded into and interpreted by XLISP.

Fig. 6 shows the LISP interface code which implements
the tool level / task level interface for the PIF Binary File
Manager (PBFM, [1]). Fig. 7 lists the LISP code which uses a
VUI dialog creation function vui::create-editable-file to define
a pop-up dialog which will call the function pbfin (a virtual
application) when the user confirms the selection of a file
matching the (system-independent) symbolic wildcard ”*.pif”.
All vos:: functions are part of an operating system layer which
is used to encapsulate system-dependent features and to allow
fully system-independent programming.

C. Implementation Details

The object-oriented callback concept of the X Toolkit has
been generalized in a very straightforward manner and suc-
cessfully applied to those parts of the TCAD framework where
a strict decoupling of functional modules and high flexibility
of the control flow is desirable. It is obvious that this is of
special value for a flexible task level implementation.

Events coming from the X Window system are passed to the
XLISP interpreter. If a LISP expression has been associated
with the activated widget at creation time, this expression is
then evaluated by the interpreter and can be used to change

Fig. 8. Timing diagram of two (independent) simulations which are run in
parallel under control of the XLISP interpreter.

parameter values, trigger the execution of a simulator or start
the evaluation of a LISP program.

The same callback concept is also used for the control of
simulator execution. If a simulation tool terminates, it signals
the termination to the parent process, which again causes an
associated callback expression to be evaluated. Callbacks can
be triggered by the user interface, error handler, network layer,
or by the termination of child processes.

Many computationally extensive design tasks, like statistical
computations, exhibit intrinsic parallelism and can hence be
effectively and easily parallelized using the callback technique.
Whenever there is no data dependency (which is the case for,
e.g., stationary multiple operating point analysis) the simula-
tions can be done in parallel and “only” need to be distributed
on different workstations or servers and synchronized at the
end. Fig. 8 shows two (simulation) processes which are run
in parallel. The termination of simulation process 1 causes
the termination callback 1 to be executed and can be used to
trigger the computation of the next step.

To preserve the simplicity of XLISP and in order to provide
a homogeneous procedural interface and programing environ-

HALAMA ef al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

1215

| [0S [VLSTCAR] [Cont g

o }{Framework]| Tgsk-Contro;J[Wrappers |[PrOMIS

node s

" Active Jo
. comman
“.local etch ./planaf

'bfffusi;ﬁ‘:_?hg»' E
vContinuat:i.én':step,b ‘ :
Temperature change . -
: . Pre_ssui:e :3 utll. .

Pressure change :

Diffusion 'Condit’:lpns:: [Gas_Tlow

Ambionts [THERE]

" Ambient-dopand ‘conc. » -
% Chlorine in gas [::Eg %

Plot commands_.._

 Movie :plot.- commands [—:_:]
Dump solution [jg :

Additional Sot(:mqs

- Editing object of type NP-TS4-diff

Fig. 9. Screen dump of a VISTA session with the simulation flow editor, the simulation flow control module and the VISTA main panel.

ment, we had to implement the X Window interface (VISTA Ul
Bindings in Fig. 1) for XLISP from scratch. As there are other
C-coded parts of the framework which need to be accessible on
the extension language level, a generic, automatic method, for
linking given C functions with the XLISP interpreter has been
implemented which creates the major part of the task level
interface code. This so-called Tool Abstraction Concept (TAC)
yields highly homogeneous and coherent code and relieves
the provider of such functions from tedious and error-prone
programming work.

In addition to the reuse in the PED, the XLISP interpreter
is also used as basis for VISTA’s integrated make utility
Vienna MAKE (VMAKE). The TAC and other code generators
which facilitate application and framework implementation are
controlled by VMAKE. VMAKE parses source code to verify
certain coding and documentation conventions (like, e.g., the
proper use of VISTA’s global error system) and to extract
dependency information.

D. Simulation Flow Control

The Simulation Flow Control (SFC) module (presented in
greater detail in [28]) of VISTA is a high-level utility of
the task level responsible for the definition, management,
and execution of simulation sequences. The main field of

application is the reproduction of fabrication processes which
usually involves several independent process simulators. The
task flow is stored in a simulation flow description using
symbolic names to call virtual applications. Process flows are
assembled from single tasks or from predefined sequences
comprised of several steps by means of an interactive graphical
Simulation Flow Editor (SFED).

Fig. 9 shows a typical VISTA session where the SFED is
used to edit the process flow. The parameters of the last step
of an example simulation flow presented in Section V (using
a TSUPREM-4 wrapper) is being edited. The parts of the user
interface shown are all created and executed by the task level
shell.

The SFC stores, upon request, the results of intermediate
steps for later analysis. The task functionality of the SFC
include dependency analysis, interfaces for process parameter
variation, and lot splits. The SFC is entirely coded in LISP (cf.
“SFC/SFED” in Fig. 1) uses the callback concept for simulator
synchronization, and is executed by the XLISP interpreter.

IV. TOOL INTEGRATION

The main motivation for TCAD systems is the integration of
different simulators. It is of course always possible to integrate

1216

another tool into an existing set of tools, the decisive criterion
to assess the support offered by the framework is the initial
effort and the maintenance effort involved in the integration.
Another criterion for a proper application framework archi-
tecture is whether adaptions of already integrated tools are
required when other, new tools are integrated or changed.

A. Generic Services, Tool Focus, and Inter-Operability

From a software point of view, a significant amount of
TCAD methodology is technology-independent. This generic
functionality must be provided as part of a framework, usually
in form of libraries and applications. The scope of these ser-
vices ranges from integrated CASE tools for application devel-
opment, scientific visualization, interactive geometry editing
facilities, to more traditional, “enabling TCAD methodology”
like grid generation, interpolation, and many more.

There are many situations in TCAD, especially when cou-
pling different simulators, where interesting semantic problems
occur on the data level. Among the most intriguing challenges
are potential inconsistencies between the geometry of the
simulation domain and one or more grids with attributes
defined on them, altogether describing the current state of a
wafer subdomain.

When simulators are allowed to use their own wafer state
abstraction (which must be done to let the tools focus on
their specific task and to facilitate the integration of foreign
tools), they will produce and affect only the data relevant
to the specific problem they are modeling. Hence, certain
inconsistencies are inevitable, and are not a consequence of
misbehaving applications or of an insufficient data represen-
tation or architectural concept.

In addition to a standardized representation [1], additional
functionality is required to map the different tool-specific
wafer models to a common, unabridged but concise inter-tool
wafer view, in order to bridge the gaps between simulators.
The framework must provide these means for resolving con-
flicts and inconsistencies so that simulators can work together
constructively without having to care for potential grid- and
geometry-related conflicts they may create.

B. Some Common Problems

o Problem 1. Tool A produces a result on a nongeometry-
conforming grid and tool B needs a geometry-conforming
grid as input.

« Problem 2. Tool A produces a result on a single grid
that spans multiple segments (with different materials)
and tool B needs one grid for each segment.

« Problem 3. Tool A creates a result attribute that must
be merged with an existing attribute which describes the
previous wafer state (e.g., additional Boron doping by
ion implantation) to produce a new, valid wafer state.
Should the old or the new grid be used to represent
the superposition of the attributes? This choice of the
target grid is nontrivial. Especially when different spatial
regions are affected, a grid-merge is desirable.

« Problem 4. (A variation of problem 3) Tool A creates a
result attribute that must be merged with the wafer state
on a grid type different from the wafer state grid.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

« Problem 5. Tool A alters the geometry of the wafer state,
but does not update the attributes and grid defined on the
altered geometry.

« Problem 6. The wafer state is defined for a much larger
area (and so are grids and attributes) than the subdomain
that shall be simulated by tool A. A subgeometry (a
single segment or a rectangular subdomain) is fairly easily
constructed, but the grid and attributes on this subdomain
may be required as input for the tool.

There are many more grid-related problems and conflicts
that do arise when multiple state-of-the-art simulation tools
are used to simulate practical device fabrication steps. Some
of these problems can be solved by interpolation services.
The problems 1-6 listed above, however, can not be solved
satisfactorily by interpolation alone. Moreover, the continued
interpolation before and after each simulation step is a dan-
gerous sink of accuracy and should be avoided when feasible
alternatives exist.

C. The VORONOI Re-gridding and Interpolation Service

The set of different problems listed above can be summa-
rized in the following generic problem statement.

Given a geometry consisting of multiple segments, a set
of grids of different types with or without spatial overlap
which do not necessarily conform to the geometry, and for
every grid one or more attributes of different types defined
on it, create a set of segment-conforming grids, one grid for
every segment, with one attribute for every attribute type that
is (re-)constructible for that segment. Grid points should be
reused to avoid unnecessary interpolation.

To solve this generic problem rigorously, a framework
tool (VORONOI [29]) has been implemented. The generic
re-gridding problem can be substructured in several smaller
(also very generic) problems which lead to fairly independent
functional modules that perform operations on common data.

The key idea to overcome any of the grid/geometry consis-
tency problems rigorously is to treat grid and geometry points
equally by merging the set of geometry points and the set of
grid points and by finally (re-)triangulating the resulting point
cloud using a constrained Delaunay triangulation.

The basic re-gridding algorithm is as follows.

1) Read all geometry points, edges, and segments. Read all
grid points, but ignore the mesh.

2) Refine geometry edges by inserting additional points,
so that the resulting, refined geometry edges are De-
launay edges and will be produced by the subsequent
triangulation.

3) Remove all edge information. Perform a Delaunay Tri-
angulation of the resulting point cloud.

4) Partition the resulting triangular grid into segment-
conforming partial grids.

5) Interpolate missing attribute values.

Note that by adding only boundary refinement points to
the input grid point cloud, any excess interpolation inside the
segments is avoided. Due to the grid merge and refinement step
some of the target grid points have unknown attribute values.
In the Output step, these missing values are constructed

HALAMA et al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

CPUtime /s
% Triangulation x

o Boundary Refinement X
10

ox

0.1 ¢

©

1217

passing gate

1 (isolation trenches)

2 (n-well)

3 (p-well)

— — 4 (ga[e trenches)

of Triangles g d

100000

Fig. 10. CPU time measured for boundary refinement and triangulation as a
function of the number of created triangles.

0.01 1

1000

| I
10 100 10000

from all known attribute values by solving either the Laplace
equation or the biharmonic equation on the merged grid,
where all grid points with known values serve as Dirichlet
“boundary” condition.

For the actual Delaunay Triangulation step, a divide-and-
conquer algorithm[30] has been implemented, extended by the
robust treatment of important special cases, like regular (tensor
product) subgrids.

All search and point location operations performed by
VORONOI during the Boundary Refinement and Triangu-
lation step are based on a so-called bucker point quadtree[31],
which is responsible for the efficiency O(N log(N)) of all
critical steps (where N is the total number of final vertices).

Fig. 10 shows the measured performance of the computa-
tionally expensive steps boundary refinement and triangula-
tion. Realistic input data with a variety of geometries and input
grid point clouds have been used. CPU time measurements
have been performed on a PC 486 (66 MHz, 16 MBytes
RAM), Linux, GNU C compiler. In all practical cases, the
total CPU time for re-triangulation is approximately one to
two orders of magnitude less than the CPU time for numerical
simulation steps such as etching, deposition, diffusion, Monte
Carlo implantation, or oxidation.

V. TOOLS AND FRAMEWORK APPLIED

A major challenge of multitool TCAD lies in the robust re-
production of increasingly complex manufacturing processes.
This challenge is particularily prevalent in fabrication pro-
cesses with a tight interaction between structuring and doping
techniques, like planarization and trench isolation processes. A
fully planarized, trench-isolated 0.25 ;» m CMOS has been pre-
sented by Wen et al. [32], [33] and is used here to demonstrate
the coupling of several specialized process simulation tools
by means of the VISTA framework. These point tools have
been developed independently, focus on different simulation
problems and use entirely different abstractions and internal
representations of the wafer state.

5 (nMOS SD)

6 (pMOS SD)

Fig. 11. Final CMOS structure and symbolic mask information

Phasphorus

>le+18
le+1?7
le+16
le+15
le+14
le+13
le+12
] le+11
le+10
1e+09
le+08
<le+07

A PR AL LA L BN I A B L N
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
X / um

Fig. 12. N-well doping profile after etching the trench for the planarized
poly gate (result of step 24).

The Monte Carlo simulation module of PROMIS [341, [35]
is used for the simulation of all ion implantation steps. It is a
traditional FORTRAN simulator and has been integrated into
VISTA directly using the PIF Application Interface (PAI) [36].
It reads only the device geometry and produces the resulting
doping profiles on a single, nongeometry-conforming tensor
product grid which covers the bounding box of the entire
device geometry.

TSUPREM-4 [37] is used to simulate the diffusion steps
only. It has been integrated by means of a wrapper which
converts the wafer state from VISTA PIF to TIF (TMA’s Tech-
nology Interchange Format) and vice versa. TSUPREM-4 re-
quires and produces doping information on several boundary-
conforming triangular grids, one for each geometry segment.

The simulator ETCH [37], newly developed using VISTA
as implementation basis, utilizing high-level libraries [38], is
used for the simulation of etching and deposition steps. It reads
only the geometry and produces a new, modified geometry. As
ETCH uses a cellular data model to perform purely geometric

1218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995
[Scali%”Vleupolnt HRereed—Htolorsl
Phosphorus-Conc-1 1/cm”3
o
= @ >fe+18
© ¢
s ',:;—/‘ le+17
N ie+16
[ea]
:n‘I:'_ le+15
o] fe+1s
" ! le+13
T T LA S
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 je+12
x /U
; 1e+11
ie+10
1e-+09
1s+08
—-<1e+07
Fig. 13. xpif2d showing a detail of the n-well and a nearby passing gate structure (result of step 28).

operations, it can not change the wafer state mesh accordingly.
Hence, after etching and deposition steps, the (old) wafer state
mesh does not match with the new geometry produced.

Due to the current lack of an integrated lithography sim-
ulator, the auxiliary tool SKETCH is used to define simple
manhattan wafer geometries as an unphysical emulation of
spin-on, exposure, and mask strip steps.

The VORONOI re-gridding and interpolation service is
used by the simulation flow control (SFC) module to achieve
and maintain consistency between grid and geometry, and to
convert the structural and doping information between tool-
specific and wafer-state compliant forms.

Table II shows the simulation steps executed by the SFC.
This “virtual process” is a simplification of the real fabrication
process. The virtuality of the simulation enables us to, e.g.,
“expose and develop” a nitride mask directly (step 10). The
desired final device structure is shown in Fig. 11, together with
the 1-dimensional (cross-sectional) mask information used in
steps 3, 11, 16, 22, 30, and 35.

Under control of the SFC, VORONOI is automatically
called after each step which modifies the geometry only

without consistently adapting the grid and after each step that
adds a new grid to the current wafer state. In the practical
application, VORONOI is run even more often in order to
maintain a consistent wafer state. Compared to the effort
of the actual simulation steps, the CPU time required for
re-triangulation and interpolation is negligible.

Fig. 12 shows the phosphorus doping of the n-well after
the trenches for the MOS gates and for the passing gates
have been etched. This etch step has removed part of the
geometry at the wafer surface. The doping in the void has
been automatically removed by VORONOI and the grid has
been made geometry-conforming to produce a consistent wafer
state after completion of step 24.

Fig. 13 is a screen dump of the xpif2d visualization
client showing the final planarized geometrical structure of
the nMOS transistor along with the phosphorus concen-
tration (after step 28). The visualization uses the vector
graphics widget of the VISTA user interface described
earlier.

The PED (PIF editor) is used to visualize and analyze the
triangular grid created by VORONOI and the geometry of the

1219

HALAMA et al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

lDlw]os"ChJ.ct. |mu-mm Eanﬂg]

4 42 44 45 4.8
1 L) 1 | | 4 | { {

3.2 3.4 36 38

1 1.2 1.4 16 16 2 22 2,4 2.6 2,8 3
1 1, 1 1 | | 1. | | | | | |

0 62 0.4 05 08
{ I { 1 N |

1 =06 -0,4 0,2

;

OSSR RIED PROPPERIIORGSOIOOD

3 NI S e S A

VNN OO GUDNT 06 QDGO SIS0 M0 GO0 (et
..umfé.&ieff&cqi WS90 ING AR
SN SN a‘.a‘-abcnages“u‘.a‘.a@.f
VONMAAISLNMNEINGNGNNGAR PANMHAG PN
INUTR GG UYAIA I BUN Y G MR Y R 1y
LAY D L I A A PR AT A
NN I LIRS IGEYNIG OD 7 MGGV
AQNRY VAN IR I GSH
L T AL L L L
M § ggow«vcma%aanaaaa—.ga,_,w.wg 5

BRI, o 1) o N QS R 480 00 103V i Gt

A A L R A PR L A T

R L L o I R R A KRR
S RUTBRLUTOIILIIID DY IN% es.‘%......z :
P T A A AT T §

R T N N T LT
oav\.Qggoagqggazggoz 3-.33,62_

a..ipi.sato.se?..ee?i2-.$e32i
‘33;35;233?32.“55@5@3‘-5.

4 321_:...33?:\3..gzggﬁa\.qu
NIRRTV S e I
L L LN N T A L DI

...9@{33‘5‘-\@2#@Geoeeoeoﬁ Y HIYY

VLRI GRS LIS GAMN NN L0 RS

ARG IA VRGBS U0RGSGLHNSNG

SGHLIN S NGOG I NAAGIIHOS DN ML AN
R N e L N T

b QUMMM S UWIN 0Ied %oy N Tt U Bg Yy

A..a...g.,?:(.;.ebcaa?qfa3}.‘3:.:@?,5:4?«a?‘..5 /8
M be ik e T AN AR LI AL DTS
QU NN Nl S S W Q0 G M o G QN 1Y

AGRGHID GV I AN MM
.aI;\B?Seveegeq‘.«.ear‘..@eer.:\. GOVELRNAIN
NGNS amegief‘ooee?;33.\.;?‘\39 ;

A R AP NP RKPRRY

N R N RS R AR DR A AP ARREEY
e LN T A L RO
R L A KL P LR KR A
VSN GASEAMNGS G050 M SLIHNME S AMD N
A U L L N L
eSOl St SR I 5@233.‘
L TUERPPIUTOR d

QUL NAY

B N SOG4 NG

SN 5

-1.2
-1.4
-1.6
-1.8
2.2
2.4

2.6

-2.8

=3

auto

[zoom_

result of step 31).

(

triangulated by VORONOI

s

gment

Fig. 14. PED showing the entire CMOS structure with the grid on the silicon se

framework is inevitably large and complex. This functionality-

A screen dump is shown in

CMOS structure after step 31.

Fig. 14.

be counteracted by qualitative

demands, like conceptual integrity

induced complexity can only

VI. DISCUSSION

B. VISTA

A. The Application Framework Architecture

With VISTA we have put emphasis on these qualitative

It is only due to the dedicated application-framework ar-
chitecture that the simulation tools integrated into a TCAD demands for all design and implementation decisions. Platform

system can still focus on a specific technological problem
and even use entirely different methods and internal problem
representations. The rapid evolution of these simulators is

independence has been one of the major design requirements

for VISTA. Table IIl shows a list of currently supported

computer architectures and operating systems. The only re-

quirement for porting VISTA to another modern computer

gy-

technolo

>

The generic

tion technology.

1cal

by fabr

driven

ANSI C and FORTRAN

and the X Toolkit. Common operating system-

dependent features like pipes are wrapped in an operating

system layer.

to-

platform is the existence of close

compilers

independent functionality of the framework helps to bridge

’

the gaps between the simulators and provides the device and

process engineer with a more stable
tation of simulation capabilities.

homogeneous represen-

]

(including high level services such

]

8
the user interface

altogether present a considerable amount of technology-

3

[

L}

The data level [1]

as VORONOI

4

Whereas the users of an integrated TCAD system will

not necessarily notice architectural shotcomings of the soft-

and the task level

>

1.

29

(

]

[

both tool developer and tool integrators will expe-
rience the retarding effect of the (prevailing) application-

driven TCAD system approach. It is hence vital for the

>

ware

To make this system more compre-

hensibe for methodology creators (tool developers and tool

independent functionality.

integrators), we have tried to maintain conceptual integrity

by favoring the generalization of existing concepts over the

introduction of new ones.

TCAD framework that it addresses properly not only the

application of methodology,

but also the entire creation process

of TCAD methodology. This definitely includes support for

To achieve the framework functionality provided by VISTA,
it would have been much easier and faster to glue together

tool integration and tool development. Due to its generic

functionality and indispensable rigorousness such a TCAD

1220

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

TABLE 11
PROCESS SIMULATION FLow FOR THE 0.25pm. FuLLY
PLANARIZED, SHALLOW TRENCH ISOLATED CMOS PROCESS

step | simulator SFC operation parameters

1 SKETCH create-subdomain 781", 5.6 x 2.5um

2 SKETCH spin-on ”Resist”, 0.2um

3 SKETCH expose Mask 1

4 SKETCH strip-material ”Exposed”

5 ETcH plasma-etch misc. etch rates, 320 seconds
6 SKETCH strip-material "Resist”

7 ETCH iso-depo ”8102", 60 seconds at 125nm/s
8 SKETCH spin-on "Resist”, 0.25um

9 ETCH iso-etch misc. etch rates, 330 seconds
10 [SxETCH spin-on "Si3N4"Z 1um

11 SKETCH expose Mask 2

12 SKETCH strip-material ”Exposed”

language and for the implementation of VISTA’s integrated
make utility VMAKE, instead of integrating another ready-to-
use component. We have decided to build directly on the X
Toolkit and Athena widgets not only for portability reasons,
but also because the callback concept can be generalized and
reused for the control flow on the task level and in many
other places.

One may contend that TCAD has reached a software com-
plexity where only a thorough understanding and a consequent
support of the methodology creation process can mitigate a
latent crisis. We believe that the architecture and facilities
of VISTA are a small step into that direction. We hope that
VISTA as development and integration framework and as
TCAD system will help to improve the reuse of expensive
engineering work and facilitate and speed up the creation of

13 | ProMIs monte-carlo-implant { "Phosphorus”, 5 - 10'! /em?, 60keV
14 | SKETCH strip-material "Si3N4”

15 | SkeTCH spin-on "Si3N4"3, luym

16 | SKETCH expose Mask 3

17 | SKETCH strip-material ” Exposed”

18 | Promis monte-carlo-implant ["Boron”, 510 /em?, 60keV

19 [SkETCH strip-material "Si3N4”

20 | TsuPREM-4 | diffusion inert, 3.5 minutes at 1000°C

21 SKETCH spin-on "Resist” 0.5um

22 | SKETCH expose Mask 4

23 | SKETCH strip-material ”Exposed”

24 | ETcH plasma-etch misc. etch rates, 200 seconds

25 | SKETCH strip-material "Resist”

26 | ETCH iso-depo "Si02”, 60 seconds at 1.Inm/s ¢
27 [SKETCH spin-on "Poly”, 0.25um °)

28 Ercr iso-etch misc. etch rates, 310 seconds

29 | SKETCH spin-on "Gi3N4”, 1um

30 SKETCH expose Mask 5

31 SKETCH strip-material ”Exposed”

32 | ProMis monte-carlo-implant | " Arsenic”, 2.5 - 107 /cm?, 33keV
33 SKETCH strip-material ”S13N4”

34 SKETCH spin-on "Si3N4”, 1um

35 | SKETCH expose Mask 6

36 | SKETCH strip-material "Exposed”

37 | ProMis monte-carlo-implant ["Boron”, 2.5 - 10'¢/cm?, 30keV
38 | SKETCH strip-material "Si3N4”

39 | TsUPREM-4 | diffusion inert, 1 minute at 970°C

TABLE 1III
SUPPORTED HARDWARE PLATFORMS AND OPERATING SYSTEMS

computer operating system
DEC AXP 3000,7600 | Open VMS 1.5
DEC AXP 3000 OSF 1.3

Apollo DN10000
Decstation 3000,5000
HP/Apollo 9000/700
IBM RS6000

PC 386, PC 486

PC 386, PC 486
Sparc Station

VAX, VAXstation

Apollo DOMAIN 10.3
Ultrix 4.2, Ultrix 4.3
HP/UX 8.05, HP/UX 9.0
AIX 3.1, AIX 3.2
Interactive Unix 3.0
Linux 0.99pl13

SunOS 4.1

VAX/VMS 5.5

well-established and near-optimal partial solutions. We couid,
e.g, have used GNU Make [39] as configuration management
utility, Tcl [10] for the task level, and C++ for an object-
oriented data level interface. Besides exposing the system
to uncontrollable version changes and potential portability
problems, the resulting system would use several incoherent
concepts where a single concept would have sufficed. For
example, we have initially choosen LISP as task level language
as it conforms to the PIF. This conceptual conformity opens
up potential features such as the storage of task level objects
in the PIF database or the direct manipulation of PIF data on
the task level. The XLISP interpreter which forms the basis
of the task level has been reused for the PED’s extension

TCAD methodology.

(1]
{21

(3}
(4]

(5]
(6]
{71

(8]

9]

[10]
1]
[12]
[13]
[14)
[15]
[16]

{17

[18]

REFERENCES

F. Fasching, W. Tuppa, and S. Selberherr. “VISTA—The data level,”
IEEE Trans. Computer-Aided Design, vol. 13, pp. 72-81, Jan. 1994.

J. Mar, “Technology CAD at Intel,” in Technology CAD Systems, F.
Fasching, S. Halama, and S. Selberherr, Eds. New York: Springer-
Verlag, pp. 63-74.

F. Fasching, S. Halama, and S. Selberherr, Eds., Technology CAD
Systems. New York: Springer-Verlag, 1993, pp. 63-74.

S. Halama, F. Fasching, C. Fischer, H. Kosina, E. Leitner, P. Lindorfer,
Ch. Pichler, H. Pimingstorfer, H. Puchner, G. Rieger, G. Schrom, T.
Simlinger, M. Stiftinger, H. Stippel, E. Strasser, W. Tuppa, K.Wimmer,
and S. Selberherr, “The Viennese Integrated System for Technology
CAD Applications,” Microelectron. J., vol. 26, no. 2/3, pp. 137-158,
Mar. 1995.

S. Kleinfeldt, M. Guiney, J. K. Miller, and M. Barnes. “Design method-
ology management,” Proc. IEEE, vol. 82, pp. 231-250, Feb. 1994.

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA: Addison-Wesley, 1982.

M. R. Simpson, “PRIDE: An integrated design environment for semi-
conductor device simulation,” IEEE Trans. Computer-Aided Design, vol.
10, pp. 1163-1174, Sept. 1991.

E. W. Scheckler, A. S. Wong, R. H. Wang, G. Chin, J. R. Camagna,
A. R. Neureuther, and R. W. Dutton, “A utility-based integrated system
for process simulation,” IEEE Trans. Computer-Aided Design, vol. 11,
no. 7, pp. 911-920, 1992.

A. S. Wong, “Technology computer-aided design frameworks and the
PROSE implementation,” Ph.D. dissertation, EECS Dep., Univ. of
California, Berkeley, 1992.

J. K. Ousterhout, “Tcl: An embeddable command language,” in 1990
Winter USENIX Conf. Proc., 1990, pp. 133-146.

, “An X11 toolkit based on the Tcl language,” in 1991 Winter
USENIX Conf. Proc., 1991, pp. 105-115.

R. W. Scheifler, J. Gettys, and R. Newman, X Window System: C Library
and Protocol Reference. Bedford, MA: Digital, 1988.

P. J. Asente and R. R. Swick, X Window System Toolkit, The Complete
Programmer’s Guide and Specification. Bedford, MA: Digital, 1990.

Autodesk AG, AUTOCAD Release 11 Reference Manual, Publication
ACIIRM.E1, 1990.

OSF/Motif Programmer’s Guide, Release 1.1.
Prentice-Hall, 1991.

P. Lloyd, C. C. McAndrew, M. J. McLennan, S. Nassif, K. Singhal,
Ku. Singhal, P. M. Zeitzoff, M. N. Darwish, K. Haruta, J. L. Lentz, H.
Vuong, M. R. Pinto, C. S. Rafferty, and I. C. Kizilyalli, “Technology
CAD at AT&T,” in Technology CAD Systems, F. Fasching, S. Halama,
and S. Selberherr, Eds. New York: Springer-Verlag, 1993, pp. 1-24.

R. W. Knepper, J. B. Johnson, S. Furkay, J. Slinkman, X. Tian, E.
M. Buturla, R. Young, G. Fiorenza, R. Logan, Y. S. Huang, R. R.
O’Brien, C. S. Murthy, P. C. Murley, J. Peng, H. H. K. Tang, G. R.
Srinivasan, M. M. Pelella, D. A. Sunderland, J. Mandelman, D. Lieber,
E. Farrell, and M. Kurasic, “Technology CAD at IBM,” in Technology
CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. New
York: Springer-Verlag, 1993, pp. 25-62.

W. Jacobs, “The SATURN technology CAD system,” in Technology
CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. New
York: Springer-Verlag, 1993, pp. 147-162.

Englewood Cliffs, NJ:

HALAMA er al.: VISTA—USER INTERFACE, TASK LEVEL, AND TOOL INTEGRATION

[19]

[20]

[21]

(22]
(23]
[24]

[25]

[26]

[27]

(28]

{29}

[30]
[31]
[32]

[33]

[34]

{35]

[36]

[37]

[38]

[39]

[40]

(41}

[42]

{43]

[44]

(45]

J. Daniell and S. W. Director, “An object oriented approach to CAD tool
control,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 698-713,
June 1991.

D. M. H. Walker, J. K. Kibarian, Ch. S. Kellen, and A. J. Strojwas, “A
TCAD framework for development and manufacturing,” in Technology
CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. New
York: Springer-Verlag, 1993, pp. 83-112.

A. Neureuther, R. Wang, and J. Helmsen, “Perspective on TCAD
integration at Berkeley,” in Technology CAD Systems, F. Fasching, S.
Halama, and S. Selberherr, Eds. New York: Springer-Verlag, 1993,
pp. 75-82.

D. M. Betz, XLISP: An Object-Oriented Lisp, Version 2.1, 1989.

R. Stallman, GNU Emacs Manual, Oct. 1986.

N. Mayer, “WINTERP: An object-oriented rapid prototyping, develop-
ment and delivery environment for building user-customizable applica-
tions with the OSF/Motif UI Toolkit,” Hewlett-Packard Laboratories,
Palo Alto, CA, Tech. Rep., 1991.

K. Funakoshi and K. Mizuno, “A rule-based VLSI process flow val-
idation system with macroscopic process simulation,” IEEE Trans.
Semicond. Manufact., vol. 3, no. 4, pp. 239-246, Nov. 1990.

A. 1. Wasserman, “Tool integration in software engineering environ-
ments,” in Software Engineering Environments, no. 467 in Lecture Notes
in Computer Science. New York: Springer-Verlag, pp. 137-149.

1. Thomas and B. A. Nejmeh, “Definitions of tool integration for
environments,” IEEE Software, vol. 9, no. 2, pp. 29-35, Mar. 1992.
Ch. Pichler and S. Selberherr, “Process flow representation within
the VISTA framework,” in Simulation of Semiconductor Devices and
Processes, vol. 5, S. Selberherr, H. Stippel, and E. Strasser, Eds.. New
York: Springer-Verlag, 1993, pp. 25-28. .

S. Halama, The Viennese Integrated System for Technology CAD Ap-
plications—Architecture and Critical Software Components, vol. 64
of Dissertationen der Technischen Universitit Wien. Vienna, Austria:
Osterreichischer Kunst- und Kulturverlag, 1994.

F. P. Preparata and M. 1. Shamos, Computational Geometry. New
York: Springer-Verlag, 1985.

H. Samet, The Design and Analysis of Spatial Data Structures.
ing, MA: Addison-Wesley, 1990.

D. S. Wen, W. H. Chang, Y. Lii, A. C. Megdanis, P. McFarland, and
G. Bronner, “A fully planarized 0.25 pm CMOS technology,” in Proc.
Symp. VLSI Technol., 1991, pp. 83-84.

B. Davari, C. W. Koburger, R. Schulz, J. D. Warnock, T. Furukawa,
W. Jost, W. G. Schwittek, J. K. DeBrosse, M. L. Kerbaugh, and J. L.
Mauer, “A new planarization technique, using a combination of RIE and
chemical mechanical polish (CMP),” in Int. Electron Devices Meeting,
1989, pp. 61-64.

G. Hobler, S. Halama, W. Wimmer, S. Selberherr, and H. Potzl,
“RTA-simulations with the 2-D process simulator PROMIS,” in Proc.
Workshop Numerical Modeling Processes Devices Integrated Circuits
NUPAD 111, Honolulu, HI, 1990, pp. 13-14.

H. Stippel, “Simulation der ionen-implantation,” Dr.technicae disserta-
tion, Dep. Elec. Eng., Technische Universitit Wien, Vienna, Austria,
1993.

Technology Modeling Associates, Inc., TMA TSUPREM-4, Two-
Dimensional Process Simulation Program Version 6, Dec. 1993.

E. Strasser and S. Selberherr, “A general simulation method for etching
and deposition processes,” in Simulation of Semiconductor Devices and
Processes, vol. 5, S. Selberherr, H. Stippel, and E. Strasser, Eds. New
York: Springer-Verlag, 1993, pp. 357-360.

F. Fasching, “The Viennese integrated system for technology CAD
applications~ Data level design and implementation,” Dr.technicae dis-
sertation, Dep. Elec. Eng., Technische Universitit Wien, Vienna, Austria,
1994.

R. Stallman and R. McGrath, GNU make, Version 3.63, Jan. 1993.

W. Fichtner and D. Aemmer, Eds., Simulation of Semiconductor Devices
and Processes , vol. 4. Hartung-Gorre: Konstanz, 1991.

S. Selberherr, H. Stippel, and E. Strasser, Eds., Simulation of Semi-
conductor Devices and Processes, vol. 5. New York: Springer-Verlag,
1993.

Proc. Workshop Numerical Modeling Processes Devices Integrated Cir-
cuits NUPAD III, Honolulu, HI, 1990.

P. Lloyd, E. J. Prendergast, and K. Shinghal, “Technology CAD for
competitive products,” in G. Baccarani and M. Rudan, Eds., Simulation
of Semiconductor Devices and Processes, vol. 3. Bologna: Tecnoprint,
1988, pp. 111-126.

P. Lloyd, H. K. Dirks, E. J. Prendergast, and K. Singhal, “Technology
CAD for competitive products,” IEEE Trans. Computer-Aided Design,
vol. 9, no. 11, pp. 1209-1216, 1990.

D. M. H. Walker, C. S. Kellen, and A. J. Strojwas, “The PREDITOR

Read-

[46]

[47]

(48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

(561

(571

(58]

[591

[60]

[61]

(62}
[63]

(641

(651

(66}

[67]

1221

process editor and statistical simulator,” in Proc. VPAD, 1991, pp.
120-121.
D. M. H. Walker, Ch. S. Kellen, D. M. Svoboda, and A. J. Strojwas,
“The CDB/HCDB semiconductor wafer representation server,” IEEE
Trans. Computer-Aided Design, vol. 12, pp. 283-295, Feb. 1993.
H. Matsuo, H. Masuda, S. Yamamoto, and T. Toyabe, “A supervised
process and device simulation for statistical VLSI design,” Proc. Work-
shop Numerical Modeling Processes Devices Integrated Circuits NUPAD
111, Honolulu, HI, 1990, pp. 59-60.
S. G. Duvall, “An interchange format for process and device simulation,” -
IEEE Trans. Computer-Aided Design, vol. 7, pp. 741-754, July 1988.
J. Mar, K. Bhargavan, S. G. Duvall, R. Firestone, D. J. Lucey, S.
N. Nandgaonkar, S. Wu, K. S. Yu, and F. Zarbakhsh, “EASE—An
application-based CAD system for process design,” IEEE Trans.
Computer-Aided Design, vol. CAD-6, pp. 1032-1038, June
1987.
D. S. Boning, M. L. Heytens, and A. S. Wong, “The intertool pro-
file interchange format: An object-oriented approach,” IEEE Trans.
Computer-Aided Design, vol. 10, pp. 1150-1156, Sept. 1991.
D. S. Boning, M. B. Mcllrath, P. Penfield Jr., and E. M. Sachs,
“A general semiconductor process modeling framework,” IEEE Trans.
Semicond. Manufact., vol. 5, pp. 266-280, Nov. 1992.
N. Tanabe, “Technology CAD at NEC,” in Technology CAD Systems,
F. Fasching, S. Halama, and S. Selberherr, Eds. New York: Springer-
Verlag, 1993, pp. 237-254.
K. Nishi and J. Ueda, “Technology CAD at OKI,” in Technology CAD
Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. New York:
Springer-Verlag, 1993, pp. 255-274.
P. A. Gough, M. K. Johnson, P. Walker, and H. Hermans, “An integrated
device design environment for semiconductors,” IEEE Trans. Computer-
Aided Design, vol. 10, pp. 808-821, June 1991.
P. A. Gough, “An integrated design environment for semiconductors,”
in Technology CAD Systems, F. Fasching, S. Halama, and S. Selberherr,
Eds. New York: Springer-Verlag, 1993, pp. 131-146.
M. R. Simpson, “PRIDE: An integrated design environment for semi-
conductor device simulation,” in Proc. NUPAD 111, Honolulu, HI, 1990,
. 57-58.
]Ifl? Jacobs, W. Hansch, F. Hofmann, W. Jacobs, M. Paffrath, E. Rank,
K. Steger, and U. Weinert,” SATURN—A device engineer’s tool for
optimizing MOSFET performance and lifetime,” in Proc. Workshop
Numerical Modeling Processes Devices Integrated Circuits NUPAD /18
Honolulu, HI, 1990, pp. 55-56.
P. J. Hopper and P. A. Blakey, “The MASTER framework,” in Tech-
nology CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds.
New York: Springer-Verlag, 1993, pp. 275-292.
J. Lorenz, C. Hill, H. Jaouen, C. Lombardi, C. Lyden, K. De Meyer, J.
Pelka, A. Poncet, M. Rudan, and S. Solmi, “The STORM Technology
CAD System,” in Technology CAD Systems, F. Fasching, S. Halama, and
S. Selberherr, Eds. New York: Springer-Verlag, 1993, pp. 163-196.
R. W. Dutton and R. J. G. Goossens, “Technology CAD at Stanford
University: Physics, algorithms, software, and applications,” in Tech-
nology CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds.
New York: Springer-Verlag, 1993, pp. 113-130.
V. Axelrad, Y. Granik, and R. Jewell, “CAESAR: The virtual IC
factory as an integrated TCAD user environment,” in Technology CAD
Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. New York:
Springer-Verlag, 1993, pp. 293-307.
V. Axelrad, “CAESAR 1.1 Released,” Technology Modeling Associates,
Inc., Palo Alto, CA, Tech. Rep. 1, 1994,
K. S. V. Gopalarao, P. K. Mozumder, and D. S. Boning, “An integrated
technology CAD system for process and device designers,” IEEE Trans.
VLSI Syst., vol. 1, pp. 482-490, Dec. 1993.
K. Kato, N. Shigyo, T. Wada, S. Onga, M. Konaka, and K. Taniguchi,
“A supervised simulation system for process and device design based
on a geometrical data interface,” IEEE Trans. Electron Devices, vol.
ED-34, pp. 2049-2058, Oct. 1987.
H. Pimingstorfer, S. Halama, S. Selberherr, K. Wimmer, and P. Verhas,
“A technology CAD shell,” in Simulation of Semiconductor Devices
and Processes, vol. 4, W. Fichtner and D. Aemmer, Eds. Konstanz:
Hartung-Gorre, 1991, pp. 409-416.
F. Fasching, C. Fischer, S. Halama, H. Pimingstorfer, H. Read, S.
Selberherr, H. Stippel, W. Tuppa, P. Verhas, and K. Wimmer, “A
new open techology CAD system,” in M. Ilegems and M. Dutoit,
Eds. 2Ist European Solid-State Device Res. Conf—ESSDERC’91, vol.
15 of Microelectronic Engineering. Amsterdam: Elsevier, 1991, pp.
217-220.
S. Halama, F. Fasching, H. Pimingstorfer, W. Tuppa, and S. Selberherr,
“Consistent user interface and task level architecture of a TCAD

1222

[68]

[69]

[70]

(71}

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 10, OCTOBER 1995

system,” in Workshop Numerical Modeling Processes and Devices for
Integrated Circuits NUPAD 1V, Seattle, WA, 1992, pp. 237-242.

S. Halama, F. Fasching, C. Fischer, H. Kosina, E. Leitner, Ch. Pichler,
H. Pimingstorfer, H. Puchner, G. Rieger, G. Schrom, T. Simlinger,
M. Stiftinger, H. Stippel, E. Strasser, W. Tuppa, K. Wimmer, and
S. Selberherr, “The Viennese integrated system for technology CAD
applications,” in Technology CAD Systems, F. Fasching, S. Halama, and
S. Selberherr, Eds. New York: Springer-Verlag, 1993, pp. 197-236.
A. S. Wong, D. S. Boning, M. L. Heytens, and A. R. Neureuther, “The
intertool profile interchange format,” in Proc. NUPAD III Honolulu, HI,
1990, pp. 61-62.

A. S. Wong and A. R. Neureuther, “The intertool profile interchange
format: A technology CAD environment approach,” IEEE Trans.
Computer-Aided Design, vol. 10, pp. 1157-1162, Sept. 1991.

R. H. Wang, A. Gabara, and A. R. Neureuther, “BTU—Berkeley Topog-
raphy Utilities for linking topography and impurity profile simulations,”
in Proc. NUPAD IV 1992, pp. 237-242.

Stefan Halama (S’89-M’93) was born in Vienna,
Austria, in 1964. He studied communications en-
gineering at the Technical University of Vienna
where he graduated with the degree of “Diplomin-
genieur” in 1989. He was then with the “Insti-
tut fiir Mikroelektronik” on VISTA as Researcher,
where he finished the doctorate degree in electrical
engineering with the dissertation “The Viennese
Integrated System for Technology CAD Applica-
tions—Architecture and Critical Software Compo-
nents” in 1994.

Since 1987, he has worked as Independent Software Engineer in computer
aided design. His current work is focused on grid generation and its application
in simulation, tool integration, surveying, and geographic information systems.

Dr. Halama is a member of the Society of Industrial and Applied Mathe-
matics (1992) and the Association for Computing Machinery (1994).

Christoph Pichler (5°93) was born in Vienna,
Austria, in 1966. He studied electrical engineering
at the Technical University of Vienna, where he
received the degree of “Diplomingenieur” in 1991.

During his studies, he held several summer
trainee positions at electrical engineering companies
in Austria and Switzerland. In November 1991, he
joined the Engineering Design Research Center
at Carnegie Mellon University in Pittsburgh,
PA, where he worked on rapid prototyping and
automation in manufacturing. He joined the “Institut

fiir Mikroelektronik” in November 1992, where he is currently working

towards the doctoral degree. His scientific interests include engineering
design, semiconductor technology, and system integration.

Gerhard Rieger (S'91) was born in Vienna, Aus-
tria, in 1963. He studied electrical engineering at the
Technical University of Vienna, where he received
the degree of “Diplomingenieur” in 1991.

He joined the “Institut fiir Mikroelektronik” in
December 1991, where he is currently working
towards the doctoral degree. His current research
interests include tool integration, user interfaces, and
programming languages.

Gerhard Schrom (8’00-M’91) was born in
Modling, Austria, in 1963. He studied electrical
engineering at the Technical University of Vienna,
where he received the degree of “Diplomingenieur”
in March 1992. During his study he was working
on software development projects in the CAD field.

He joined the “Institut fiir Mikroelektronik” in
April 1992, where he is currently working towards
the doctoral degree. His research interests include
device and circuit simulation, circuit design and
synthesis, signal and image processing, and TCAD
framework aspects.

Thomas Simlinger was born in Modling, Austria,
in 1963. He studied communication engineering
at the Technical University of Vienna, where he
received the degree of “Diplomingenieur” in 1992.

He joined the “Institut fiir Mikroelektronik” in
October 1992, where he is currently working to-
wards the doctoral degree. His scientific interests
include algorithms and data models, device model-
ing, and physical aspects in general. -

Siegfried Selberherr (M’79-SM’84-F’93) for a photograph and biography,
see p. 1114 of the September 1995 issue of this TRANSACTIONS.

