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As semiconductor technology continues to evolve, numer-
ical modelling of the devices’ electrical behaviour 1s
becoming increasingly important. In this contribution, the
model hierarchy which exists for the description of current
flow in a semiconductor device is briefly reviewed. The
strengths and restrictions of each model are critically
examined. Presently, drift-diffusion based simulation
programs are considered as the workhorse tools in engin-
eering. However, an enormous research effort is going on,
with the aim of improving alternatives such as the hydro-
dynamic model, the spherical harmonics expansion method
and the Monte Carlo technique. Examples of recently
proposed improvements in that field are described.

1. Introduction

S ince 1960, when demonstration of the
practically usable MOS transistor first took
place [1], its development has been rapid. Today,
about 30 vyears later, integrated circuits with
millions of devices per single chip are
manufactured. To minimize the number of
cycles of trial and error in device development,
an improved understanding of basic device
operation has attained a crucial importance. To
meet these needs, many computer aids have
been developed. Programs such as MINIMOS
[2] and PISCES [3] are now essential tools for
the device engineer.

Progress in photolithography and dry etching
techniques have made it possible to define
submicron horizontal features on semiconductor
wafers.  Concurrently, low-thermal-budget
processes allow junction depths of the order of
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10 nm to be achieved. This miniaturization
necessitates an improvement In computer
modelling of the electrical characteristics of small
devices.

On one hand, certain device structures require
three-dimensional models to address geometry-
dependent effects {4-9]. On the other hand,
today’s devices are characterized by large electric
fields in conjunction with steep gradients of the
electric field and of the carrier concentrations. In
many cases, the distances over which the varia-
tions occur are comparable to the carrier’s mean
free path. Under these conditions, the widely
used drift-diffusion model is losing validity.

More sophisticated device models, such as the
hydrodynamic and energy-transport models [9—
15], the spherical harmonics expansion method
[16-19] and the Monte Carlo technique [20-24],
overcome these limitations. However, the
increased physical rigour of a model comes at the
expense of increased CPU times. This is a critical
issue in particular for industrial sites. The effi-
ciency of a device model determines whether it
can be extensively applied in device optimization.

In this paper, we briefly review the state-of-the-
art of the above-mentioned transport models. In
particular, we present improvements of these
models as they have been recently proposed in
the literature.
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All these models are based on the semiclassical
Boltzmann transport equation (BTE):

of F - (¢
ot +u-grad f+ 'R grady f = (a)ou W

where the unknown f = f(k,r,1) is the distri-
bution function. F denotes the external force
field acting on the carriers. The collision term in
(1) has the form of an integral operator:

continuity equations for electrons and holes (4),
(5), and the current relations for both carrier

types (6), (7):

div(e-grad ) = —p (3)
diV]n—q-%:q-R (4)
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the kernel of which is given by the differential
scattering probability S(k, k). A discussion of
the BTE can be found clsewhere [25, 26].

Equation (1) is a time-dependent partial integro-
differential equation in the six dimensional phase
space  (k,r). By the so-called ‘method of
moments’ [27], this equation can be reduced to
an infinite series of equations, in which the k-
dependence is eliminated. Keeping just the zero
and first order moment cquations, in conjunc-
tion with proper closure assumptions, leads to
the basic semiconductor equations described in
the next section. Accounting for one more
moment yields the hydrodynamic model, which
can be found in Section 3. Section 4 deals with
the Monte Carlo method, a numerical method
that solves (1) in a statistical manner.

2. Drift-diffusion based device models

Device modelling based on the self~consistent
solution of the fundamental semiconductor
equations dates back to the famous work of
Gummel in 1964 [28]. Up to now, most of the
device simulation tools used solve this set of
cquations.

2.1 The basic semiconductor equations
The well known fundamental semiconductor
cquations consist of Poisson’s cquation (3)
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Here all symbols have their usual meaning [26].
In the literature, it 1s often argued that because of
the occurrence of the lattice temperature T
instead of individual carrier temperatures, these
equations neglect any hot carrier effects. This
argument is certainly true for the diffusive term.
However, a realistic mobility model has to
account for a mobility reduction at higher clec-
tric fields, and for many materials even velocity
saturation can be assumed. From higher order
transport models, we know that such a deviation
from the ohmic low-field mobility is caused by
heated carrier distribution functions. Therefore,
through a rcalistic mobility model an cssential
hot carricr effect 1s introduced into the drift-
diffusion equations. Impact ionization can be
considered as another hot carrier effect that can
be accounted for phenomenologically in these
equations.

The development of proper models for the
various coefficients made it possible to extend
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the range in which reliable results can be
obtained by solving the basic semiconductor
equations.

2.2 Modelling mobilities

The models for the carrier mobilities have to
account for various scattering mechanisms. In
the following, the material under consideration
is silicon.

In semiconductor devices, mobility reduction
due to scattering on ionized impurities is a
dominant effect. A well established procedure 1s
to take the functional form (8) of the fit provided
by Caughey and Thomas [29] and use tempera-
ture dependent coethicients:

L min
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Here uﬁ,u{; stand for the ohmic mobilities of
the pure semiconductor. Values for all the para-
meters in the mobility expressions of this
section, together with proper models for their
temperature dependence, can be found else-
where [30]. Due to partial ionization of impurity
centres, one might also consider neutral impur-
ity scattering. However, since there is some
uncertainty about the quantitative values for
ionized impurity scattering, it seems question-
able to introduce another scattering mechanism
with additional free parameters.

The electrical characteristic of a MOSFET is
strongly influenced by surface scattering. An
expression verified against measurements reads

[30]
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The depth dependence is given by

ref\2
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The depth parameter y™ is typically 10 nm. The
pressing forces S, and S, are equal to the
magnitude of the normal field strength at the
interface, if the carriers are attracted by it, or
zero, if the carriers are pushed away.

Mobility reduction caused by the electric field
can be well approximated by the expressions
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where F, and F, are the effective driving forces
defined as

’

1
F, = ‘gradlﬁ - grad (n - U7))

1
F, = grad +;-grad(p-U7-p)] (12)

In the high field limit, this model yields saturated
velocities, vy and v;*. Expressions (11) repro-
duce experimental data well [31-33].

2.3 Modelling generation/recombination
The carrier generation/recombination term at
the right-hand side of the carrier continuity
equations comprises several mechanisms.

An adequate model for thermal generation/
recombination is given by the well-known
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Shockley-Read—Hall term [26]

2
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In (14) fin denotes the fraction of occupied traps
in equilibrium, and n, and p; are the equilibrium
carrier concentrations. The doping dependent
empirical model for the carrier lifetimes (15)
accounts for additional generation/recombina-
tion centres at high doping. The parameters are
chosen to fit experimental findings [34].

Auger recombination is modelled by
R = (Coyn+ Coop) - (n-p — ) (16)

with appropriate temperature dependent Auger
coefhicients [35].

As a model for impact ionization, the Chyno-
weth formulation (17) can be used. Although
the actuality of this model [36] has been much
discussed in the scientific community, it still
seems that it fulfils the requirements for device
simulation quite satisfactorily:

Oy p = O - €XP (— ﬂg”) (17)
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The 1onization coefficients then determine the
generation rate according to

—R“:(Xn'|]n’—|-06p-w (18)
q q

The coefhicients of (17) can be modelled
temperature dependent to fit experimental data
[37-39]. A comparison to other models for
mmpact ionization can be found elsewhere [40].
The scatter among the results of the different
models indicates that more effort is necessary in
this area to better understand impact 1onization,
and to obtain a more rigorous description of this
phenomenon.

3. The hydrodynamic model

The hydrodynamic approach extends beyond
the drift-diffusion approach by allowing the
carrier temperatures to differ from the lattice
temperature. Furthermore, coeflicients such as
mobilities and ionization coefficients can be
functions of some higher order moments

[41, 42].

3.1 The basic equations

In the following, we briefly summarize the basic
equations of the hydrodynamic model. Pois-
son’s and carrier continuity equations (3)—(5)
retain their validity. In contrast to the drift-
diffusion model, additional moment equations
are now included, accounting for second order
moments

A(n - _

——(”&w”)+divsn =E-J,-R-w, ‘n-”“"%“’”

(19)

op-w,) Wy — Wy
En £ +divS,=E-J,-R-w,~p- PTwp

(20)
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These equations imply continuity of the energy
fluxes §, and S, for both the electron and hole
distributions. Here 1, and 7,,, are the respective
energy relaxation times, and wy is the average
energy in thermodynamic equilibrium. The
average carrier energies w,, w, are related to the
average velocities v,, v, and the hydrodynamic
temperatures T,, T, by

1, 3

anz'mn'v,%'f—i'kB'Tn (21)
1, 3

wpzi-mp-u§+§-kB-Tp (22)

The energy fluxes have the form

S, = Q, — (wy + ky- T) % (23)
_ I
SP_Qp+(wp+kB'Tp)'; (24)

Critical remarks on, for example, modelling the
heat fluxes Q,,, Q, are made later in this section.
Compared with (6) and (7), in the hydro-
dynamic model the current relations are more
complex:

momentum conservation equations (25) and
(26). Furthermore, it is problematic to obtain a
smooth discretized representation of the Joule
heat E - J, which appears in the energy balance
equations. An attempt to relax this problem has
recently been published [43]. A different inter-
pretation of the energy flux yields a simpler heat
generation term of the form u - F?, where F is
the driving force acting on the carriers. The
advantages seem to be, first, that the vector
components of F can be assembled more easily
at each meshpoint than that of J, and second,
that a scalar product no longer has to be eval-
uated which sensitively depends upon the angle
between the two vectors.

Discretization of the energy balance equations is
by far more ambiguous than that of the carrier
continuity equations. For this purpose, several
attempts to generalize the Scharfetter—Gummel
scheme have been proposed [44, 45].

It has been shown [46] that simulation of devices
at 77K requires modifications of the discretiza-
tion schemes of both the carrier- and energy
balance equations. To avoid artificial driving
forces in equilibrium, a distinction needs to be
made between the hydrodynamic and thermo-
dynamic temperatures.

1. —%ﬁ-(]n'grad)'%zqﬂn‘ (—n-grad(\p) + grad (nk—Bq—T">) (25)
]p+%- (Jp'grad)%z g1, (—p-grad(l//) — grad (rkB;ZTp)) (26)

Before we describe the various models in more
detail, let us consider some numerical aspects
concerning the hydrodynamic approach. Diffi-
culties arise from the increased stiffness of the

We believe that there is still room for improve-
ments of the discretization scheme for the
hydrodynamic equations such that better
convergence properties can be achieved.

221



H. Kosina et al./Device modelling

3.2 Modelling relaxation times

In the following, we address models for energy
relaxation times and mobilities. The latter are
related to the momentum relaxation times by

q'In Q'T)
By =—2", gy =2 (27)

wm; mj

The first class of models, which is widely in use,
assumes the relaxation time to be a function of
the average energy w, as derived from the energy
balance equation. Such an assumption is already
sufficient to reproduce certain non-local trans-
port phenomena such as velocity overshoot.

In [47], the distribution function is first expan-
ded linearly into its first four moments. That
Ansatz cannot only be used in the left-hand side
of the BTE (1), but also in the scattering integral
at the right-hand side. Therefore, in addition to
a set of moment equations, one can also obtain
information about material characteristics.
Mobility and energy relaxation time turn out to
be the following functions of the moments:

1 J. S,

—=a+b-=" 28
He Ji =9
Tyn = const (29)

where 4 and b are constant parameters with
respect to the moments.

If the hydrodynamic equations are reduced to
the homogeneous case, i.e. all spatial derivatives

are set to zero, an energy dependent expression
can be derived from (28):

_ Ky
1+CX‘(W,1—W())

[T (30)
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o contains parameters describing the asymptotic
behaviour for small and large electric fields.
Applications of (30) to the simulation of
MOSFETs can be found elsewhere [48]. It
should be noted that by means of the homo-
geneous hydrodynamic equations, the mobility
after (30) can also be transformed into a field-
dependent expression. The result is then iden-
tical with (11) used in the drift-diffusion equa-
tions.

A different approach was taken in [11]. A main
assumption is that the diffusion coefficient can
well be approximated by a constant. The gener-
alized Einstein relation then reads

kg- T, kp- T
BT-u(T,»: Bq b (32)

D, =

where g is the low-field mobility. In [11], this
expression has been combined with the empiri-
cal Coughey—Thomas relation for the field-
dependence of the mobility

£ N—1/2
o (E) = by - (1 + (’ff ) ) (33)
1, sat

Exploiting the hydrodynamic equations for the
homogeneous case, one obtains the final result

T,
TY =y - —= 34
:un( fl) Ho Tn ( )
mu- iy T 3 kg-py T, To
T,) = T 5 :
(L) = T L T T
(35)

In that model, 7,, exhibits a weak carrier
temperature dependence.

Recently, mobility has been considered as the
more fundamental quantity, which is no longer



Microelectronics Journal, Vol. 26, No. 2/3

discussed in terms of effective mass and
momentum relaxation time, as stated by (27).
There exists a more general definition which
neither relies on the relaxation time approxima-
tion nor on the constant effective mass approx-
imation:

_ (9
=k (dt )coll (36)

In this equation, p relates the velocity to the
average momentum loss rate. It has become
common practice to calculate the macroscopic
mobility according to (36) by means of a more
rigorous transport model, e.g. the Monte Carlo
method [49, 50] or the scattering matrix
approach [51, 52]. This can even be done in a
space dependent fashion for strong non-uniform
conditions, as they are present in small devices.
In that way, it has become possible to examine
basic assumptions underlying the hydrodynamic
model.

It has been investigated [50, 52] whether mobi-
lity is a function of the carrier energy in strongly
inhomogeneous situations. In either of the
works, an nt—n—n' diode served as a test
device, and the p(w) dependence has been
extracted from bulk simulations. It has been
tound that the use of u(w) substantially over-
estimates the true mobility near the channel-
drain junction, the reason being that in this
region the distribution function differs signifi-
cantly from the bulk distribution. The important
observation is that the mobility is not a single-
valued function of the carrier energy.

Moreover, it has been demonstrated [50] that
the mobility model (28), originally derived by
Hinsch [53], works very well in the inhomo-
geneous case. Instead of the carrier energy,
both the drift-velocity and the energy flux are
much better suited to reproduce the true
mobility.

3.3 Modelling heat flux

A well known characteristic of the method of
moments is that the moment equation of order i
always contains an (i + 1)th order moment. In
the case of the energy balance equation, this next
higher moment is of third order

Q= [T e f Gk O

which has the physical meaning of a macroscopic
heat flux density. Here ¢(k) denotes the random
velocity defined as ¢ (k) = u(k) — <u>. To close
the set of moment equations, this higher order
moment somechow has to be related to the lower
order moments. For the heat flux one conven-
tionally assumes Fourier’s law

Q(r) = —x(r) - grad T'(r) (38)

in conjunction with a generalized Wiedemann—
Franz law

() = @ + c') : (I%B)_-a(r) T() (39)

for the thermal conductivity k of the considered
carrier gas.

Equation (38), however, cannot include the fact
that Q may not be zero, even in a homogeneous
system. If a uniform electric field is applied to a
semiconductor, not only the distribution func-
tion of u becomes asymmetric, but also that of
the random velocity ¢. In that case, (37) yields a
nonzero Q.

To model the kinetic heat flux (37) more care-
fully, one can analyse the moment equation of
third order [50, 54]. By comparing the various
terms of the energy flux density, Q can be iden-
tified as
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Q - Qdiff + Qconv (40)

An additional convective component occurs,
which has commonly been neglected in the
hydrodynamic model in the past.

n [52], for a small, one-dimensional test struc-
ture, by means of a rigorous Boltzmann-solver,
both expressions (37) and (38) have been eval-
uated and then compared. It has been shown
that Q contributes significantly to the energy
flux density S, and, more importantly, Fourier’s
law is heavily in error. In the computer experi-
ment reported, even a region with counter-
gradient heat transport has been observed. As a
model for the convective Pelder-like compo-

nent, the following expression has been
proposed:
5 T k"B -T
oy == 11 == .
Q=3 (1-2) 2T (41)

where 1, stands for the energy flux relaxation
time. For the diffusive component, Fourier’s law
can still be used, however, a modified thermal
conductivity is suggested

5 [k
K:E-—-(B> o T (42)
7, 2 \¢q

There have been ongoing discussions in the
literature about the so-called ‘spurious Velocity
overshoot’. This effect is a non-physical spike in
the velocity profile, which is often predicted by
the hydrodynamical model in simple n—i—n
diodes. It has been argued that the erroneous
heat flux given by Fourier’s law is probably
responsible for that non-physical spike.

3.4 Quantum mechanical extensions

The BTE (1) treats carriers as classical particles.
As both k and r are specified simultaneously,
Heisenberg’s uncertainty principle is ignored.
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However, quantum mechanical effects play an
important role for the function of many devices,
e.g. through the inversion layer of a MOSFET,
through the channels of modulation doped FET's
and for the resonant tunneling diode. An equa-
tion capable of dealing with the wave nature of
the carriers is the so-called Wigner—Boltzmann
equation [55]. As it is accessible to the method
of moments, a set of balance equations can be
derived that incorporate ﬁrst—order quantum
corrections. The resulting O(#’) terms allow
particle tunneling through barriers and charge
buildup in potential wells.

Following [56], such a procedure yiclds a set of
equations very similar to the classical hydro-
dynamic equations described above. If we iden-
tify the term n-kg- T, in (25) in accord with
kinetic gas theory as the pressure P of the elec-
tron gas, then the quantum corrections turn out
to change just the definitions of pressure and
energy. The corrections have the form

A
P,,—n kB Tn 5*-—1'2—"1”%6;111(”) (43)
hz
wﬂ:i mn V + kB 24m;A1n(ﬂ)
(44)

In the limit # — O the classical hydrodynamic
equations are recovered. An application of this
model to a one-dimensional simulation of a
resonant tunneling diode has been reported [56].
A two-dimension simulation of very small

MESFETs can also be found [57].

4. The Monte Carlo method

In this section we describe a recently imple-
mented hybrid approach that combines Monte
Carlo and dnft-diffusion analysis. In critical
device regions, the position-dependent coeffi-
cients of an extended drift-diffusion equation are
extracted from a Monte Carlo simulation.
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Additional features which make the code more
efficient are presented. A unique self-consistent
iteration scheme has been developed which
converges faster than all presently known
schemes. It exploits the so-called Monte Carlo—
Drift Diffusion coupling technique, which also
forms the basis of the hybrid method. The
simulator has been used to model submicron
MOSFETs with gate lengths down to 0.15 um.
In addition to the non-local effects occurring in
these devices, the performance of the hybrid
simulation method is analysed.

4.1 Coupling the Monte Carlo and drift-
diffusion models

The hybrid approach can be justified rigorously
from the BTE, since either of the models to be
coupled provide, certainly under different
conditions, a solution to it [58].

From (1) one can directly derive the moment
equation of first order:

1 On- <hkj-v> (dpj)
coll

B4
-5t n or, dt (4)

where the distribution function implied by the
averages 1s still treated as an unknown function.
Summation over repeated indices is assumed.
Here, the right-hand side represents the average
momentum loss rate, which explicitly reads as

d
(é’) = </(hk—hk’)$(k,k’)d3k’> (46)
coll

If we insert the general mobility definition (36)
into (45), and if we interpret the second moment
as energy tensor,

1
Ww:, =

e = - <hk; v (47)

we end up with a current equation of the form

0
JfZCI'”'Hfj'EJ+“ij':97k(2'“’1"«'”) (48)

Due to the similarity of (48) and the conven-
tional drift-diffusion equation, both equations
comprise a drift and a diffusive term; we
consider (48) as an extended dnft-diffusion
equation.

The Monte Carlo technique can now be used to
calculate the coefficients y;; and w;; according to
(36) and (47), respectively. By using these coef-
ficients in (48), the link between the Monte
Carlo particle model and the extended drift-
diffusion equation is established.

The derivation of the coupling coefficients from
the moments outlined above shows the general-
ity of this method. All the physical models
affecting the distribution function which are
accounted for in the Monte Carlo simulator (e.g.
band-structure models or scattering processes)
directly influence the moments, and thus the
coupling coefficients. From a theoretical point of
view, in addition to the approximations inherent
to the Monte Carlo model, no further approx-
imation is introduced when the Monte Carlo
model 1s coupled with (48).

Under conditions far from thermal equilibrium,
(48), together with Monte Carlo generated
space-dependent coefficients, simply reproduce
the Monte Carlo current density. Approaching
thermal equilibrium, the energy tensor becomes
independent of space, and is solely determined
by the lattice temperature, and p reverts to the
low-field mobility pu,. In this manner, the
conventional drift-diffusion equation is recov-
ered. The set of semiconductor equations
incorporating the extended drift-diffusion equa-
tion (48) is therefore capable of describing high-~
energy transport as well as low-field transport in
very small devices.

For numerical implementation it is desirable
to have isotropic coefficients in the current
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relation. In this work, isotropic temperature
and mobility are obtained by the following
approximations of the tensors:

<p>2
= 49
3 (dp/de) )
2 1 AN'
T:g'ﬁ'zwﬁ (50

N is the number of considered space dimensions.

4.2 A new self-consistent iteration scheme

For very short devices, an increasing fraction of
the electron population is in non-equilibrium
conditions. As Monte Carlo treats the average
motion of those electrons in a way which differs
substantially from a standard drift-diffusion
model, the resultant distribution of mobile
charge in real space will also differ. Realistic
results can therefore only be expected by apply-
ing some sort of self-consistent technique. The
standard technique [59] couples the BTE solved
by the Monte Carlo method with a linear Pois-
son equation. This method, though straight-
forward, may lead to stability problems.
Improvements are obtained by a non-linear
coupling scheme [22].

On the basis of the Monte Carlo—drift-diffusion
coupling method, a novel self-consistent solu-
tion strategy can be investigated. Let us consider
the following set of equations:

div(e-grady) =q - (n—p— N¢) (51)
divJ =0 (52)
J=q-n-u-(E+%-grad(n-Ur)) (53)

which includes the extended drift-diffusion
equation. The latter is obtained from (48) if the
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isotropic coefficients are inserted. We have
introduced the temperature voltage related to
the carrier temperature by

kT
q

Ur (54)

In each cycle of the self-consistent iteration loop,
a Monte Carlo simulation has to be performed,
the potential for which is taken from the
previous cycle, and the distributions of g and Ur
serve as the result. Then the critical device
regions are identified by certain criteria [24].
These coeflicients, taken from Monte Carlo just
in the critical device regions, are then extended
analytically over the rest of the simulation
domain. With the y and Uy profiles assembled
in such a way, the coupled set of equations, (51),
(52) and (53), 1s solved. With the updated
potential the iteration cycle is repeated until the
change in the potential is sufficiently small.
Figure 1 shows a flowchart of this algorithm.
The initial potential distribution, w(o), is gener-
ated by a standard drift-diffusion simulation.

This new approach to self-consistency is expec-
ted to yield a high convergence rate. Generally,
the carrier concentration is quite sensitive to
small changes in the potential, due to the
roughly exponential dependence. On the other
hand, the potential strongly depends upon the
space-charge density, which is determined by
the carrier concentration. A procedure that
iteratively calculates ¢ from n (solving Poisson’s
equation) and then n from ¥ (solving the trans-
port problem) will suffer from this strong
coupling, and will thus exhibit a slow conver-
gence rate.

Considering the coefficients used in our iteration
scheme, we find that they depend upon some
kind of first order moments, <v(k)>, (dp/dt),,
and on the second order moment, </ik; - v; (k)>,
but that they definitely do not depend upon the
zero-order moment, n(r). The critical potential
dependence as it exists for n(r) is thus removed
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Fig. 1. Flowchart of the self-consistent iteration scheme.

from the coupling coefficients. Consequently,
there is just a quite moderate coupling between
the iterated quantities, Y and (i, Ur) (see Fig. 1).
This explains the extremely low number of
iterations required, as demonstrated next.

4.3 Results

We have applied the hybrid technique to the
simulation of n-channel MOS-devices. Gate
mask length ranges from 0.75 pum down to
0.15 um. Table 1 summarizes the characteristic
parameters of the devices under investigation. I
denotes the distance between the vertical pn-
Junctions, # 1s the junction depth and t,, is the
oxide thickness. The threshold voltage, Vo, is
determined at room  temperature for
I'ps = 0.05 V. For devices A and B, doping

TABLE 1 Characteristic parameters of the simulated n-
channel MOSFETs

Device Lg Lo t fox Vps  Urn
(um)  (pm)  (um)  (rm) (V) (V)

A 0.15 0121 0039 5 2.0 0.24
B 0.25 0.168 0.125 5 25 0.26
C 0.75 0.604 0.181 15 5.0 0.70

profiles are modelled with process parameters
similar to those described elsewhere [60, 61].

The conduction band is assumed non-parabolic;
models for scattering mechanism are taken from
[62]. Throughout the simulations, for the non-
parabolic correction we use o =0.7 eV*I,
A-L=0.3 nm? (surface roughness parameter,
see [63]) and N = 5-10” as the number of scat-
tering events to be calculated during a single
Monte Carlo simulation.

Quantities such as drain current, drift velocity
and carrier concentrations plotted in this section
are obtained from a solution to the extended
semiconductor equations, (51), (52) and (53).

Figure 2 shows the evolution of the drain
current with the number of iterations for device
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Fig. 2. Convergence rate of the self~consistent coupling
scheme: drain current as a function of the number of itera-
tons for device B at a high gate bias.
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B. An iteration number of zero corresponds to
the initial solution determined by a standard
drift-diffusion simulation. The drastic increase in
the drain current after the first iteration can be
attributed to velocity overshoot. Subsequent
iterations cause the impact of velocity overshoot
on Ip to be reduced, so that the final stationary
value of I lies shghtly above I . In Figs. 3a and
c the evolution of I is shown for the 0.75 um
device at different gate biases. In Fig. 3c, where
Vas = Vbs, an overshoot of Iy can be observed
at the beginning of the iteration. Figures 3b and
d show the relative norms of the increments of
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carrier concentration and electrostatic potential
as a function of the number of iterations. The
norms first decrease rapidly, but are then limited
due to the statistical noise inherent in the Monte
Carlo method. The relative norms of the V-
increments typically taper off below 107>, In all
the simulations we have performed, an iteration
count no larger than five was required to obtain
the final drain current. Any systematic transient
in the relative norms also dies out within this
iteration number. With the new iteration
scheme, the number of costly Monte Carlo—

Poisson iterations is considerably reduced
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Fig. 3. Convergence rate of the self-consistent coupling scheme: drain currents and relative norms of the n- and y-increments
as a function of the number of iterations for device C at different gate biases.
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compared to other coupling schemes reported in
the literature [22, 59].

To figure out the differences between self-
consistent Monte Carlo and self~consistent drift-
diffusion simulations, we have plotted the poten-
tial and the electric field occurring at the Si/SiO;
interface of devices A and B in Fig. 4. In the
Monte Carlo case, in the high field region the
potential profile become smoother (Fig. 4a, c) so
that a significant lower lateral electric field is
predicted (Fig. 4b, d). This effect comes from a
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reduced space charge density in that area, as is
indicated by the reduced carrier concentration
shown in Fig. 6b. When using standard drift-
diffusion simulations for such small devices, one
should be aware first of the tendency to over-
estimate the maximum electric field by some 10%
(e.g. 39% in device A, 35% in device B). Second,
to predict hot carrier-induced phenomena such as
impact ionization, the maximum electric field 1s
not as significant as in long-channel devices. Due
to the narrowness of the field peak, its capability
of producing damage is decreased.
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Fig. 4. Comparison of self-consistent DD (dashed line) and self-consistent MC (solid line) results for devices A and B. (a) and
{b) surface potential; (c} and (d) lateral electric field at the surface.
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In Fig. 5 we compare the surface mobility
obtained from a local model with that from a
Monte Carlo simulation. At the beginning and
end of the depicted lateral distance, mobility is
mainly determined by the high doping levels in
that section.

In the high-field region, where the extended
semiconductor equations massively reproduce
velocity-overshoot (see Fig. 6a), the non-local
mobility (solid line) exceeds the local one
(dashed line). In the example shown in Fig. 5,
the absolute minima differ by 37%. The local
mobility recovers from its minimum to the
same extent as the electric field decreases,
whereas the non-local mobility, which is
degraded due to a hot distribution function,
recovers with some delay, since cooling has to
take place.

As for Fig. 6a, the velocity profile from the local
mobility model (dashed line) is clearly bounded
by the bulk saturation velocity (v, = 107 cmy/s).
The reasons why the carrier concentrations in
the non-local case (Fig. 6b) are lower than in
the local case are twofold. First, due to the
introduction of carrier heating, which is absent
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Fig. 5. Surface mobilities in device B for I = I, = 2.5 V.

Solid line: non-local mobility from a MC simulation.
Dashed line: local (analytical) mobility model.
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in the standard drift-diffusion model, the inver-
sion layer broadens, and thus the surface
concentration lowers. The second contribution
comes from the continuity of the total current,
which is controlled by the situation at the
source-sided part of the channel. Velocity
overshoot in this region 1s not very
pronounced. In the pinch-off region, the
massive overshoot in the wvelocity 1s then
compensated for by an undershoot in the carrier
concentration.
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Fig. 6. Comparison of MC- (solid line) and DD-results
(dashed line) for device B. (a) average velocity at the

surface; (b) surface concentration of electrons.
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5. Conclusion

Most of the device simulations carried out today
are based on the drift-diffusion model. Carefully
chosen models for the coefficients herein make it
possible to obtain reliable results down to half-
micron device sizes. Huge efforts are currently
being made to improve the hydrodynamic and
energy transport models. We have pointed out
that basic assumptions such as an energy depen-
dent mobility or Fourier’s law for the heat flux
can be in severe error in very small devices.
Recently proposed improvements of both the
physical models and the numerical techniques
show us that with the hydrodynamic model,
more accurate and probably more robust simu-
lations become possible. Hybrid approaches have
emerged, that combine computational efficiency
with more demanding methods for the analysis
of a single device. We have presented an imple-
mentation of such an approach connecting the
Monte Carlo and the drift-diffusion models.
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