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Abstract 

This paper gives an overview about our research on three-dimensional pro- 
cess simulation. Today's activities are worldwide still suffering from a lack of 
appropriate geometric modeling, robust gridding, accurate and verifiable phys- 
ical models as well as computationally efficient numerical algorithms. Possible 
solutions to some of these problems are demonstrated on the basis of our three- 
dimensional process simulation tools. 

1. Introduction 

The development of today's semiconductor devices often requires to  investigate three- 
dimensional problems, where in many cases numerical simulation delivers useful in- 
formation. For the reliability of such hints the accuracy of the simulation results is 
crucial. The  effects occurring at  intrinsic three-dimensional topologies, like corners 
etc . ,  are gaining importance with shrinking device dimensions. Thus, consideration 
of the third dimension within the  simulation is a must for both process and device 
simulation. 

In contrast t o  three-dimensional device simulators which are  available from universi- 
ties as well as from commercial sources. the  situation in process simulation is quite 
different: Today it is not possible to  perform a complete three-dimensional simulation 
of a whole process. Impressive work on topography simulation resulted in excellent 
programs for surface evolution during etching and deposition processes [l] [2]. An 
engineering workstation is sufficient for this kind of simulations. Also programs for 
ion implantation based on Monte Carlo methods are available [3] [4] [ 5 ] .  Where the 
first versions consumed CPU-times beyond one week (on an HP9000-i35), recent 
developments allow to compute realistic three-dimensional results over night in the  
amorphous mode, respectively one day for the  crystdlline mode. Despite these encour- 
aging results, simulation of a whole process fails 012 ~ i i i s s ~ ~ i g  diffusion and oxidation 
simulators. Although some three-dimensional simulators have alreadv been  resented " 
[6] [7], the  complex structures of realistic devices cannot be handled by them because 
of the lacking grid flexibility. 

Therefore development of fully flexible three-dimensional diffusion and oxidation sim- 
ulators is highly recommended. However. the problems involved are quite complex. 
Modern devices have more or less arbitrary geometries which are difficult t o  handle, 
and the simulation of thermal activated processes requires the solution of coupled. 
nonlinear partial differential equation systems. This just can be achieved efficiently 
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by use of adaptive gridding techniques as well as highly efficient algebraic methods. 
Additional challenges lie in the simulation of thermal oxidation. where the diffusion 
equations and the mechanical equation have to be taken into account. The resulting 
changes of the geometry reveal high demands to the gridding unit, and additionally 
the stiff mechanical equations expense the solution of the linear systems. This ex- 
tremely high complexity within one application has scared of many researchers from 
tackling the problem. 

Besides the numerical and geometrical problems, the quantization of the parameters 
required by the differential equations accounts for a great deal of controversy. Even 
for one-dimensional diffusion processes, where the profiles can be measured with sat- 
isfying accuracy, the range of the proposed diffusivities is quite large. The situation 
is even worse for the properties of the point defects: Since it is impossible to measure 
point defect distributions directly, these are usually quantified due to their effects 
on the dopant distribution. E.g., the initial distribution is chosen, in order to reach 
the desired influence on dopant diffusion using a certain set of coupling coefficients. 
These coupling coefficients have to be determined by calibration of the coefficients, 
which in turn is influenced by the initial condition. Thus, the missing orthogonality 
allows to produce almost any result. 

Furthermore, it has been pointed out [a], that the lack of multi-dimensional measure- 
ment techniques inhibits the calibration of corresponding multi-dimensional simula- 
tion tools. On the other hand process simulation seems to be the only possibility to 
obtain multi-dimensional profiles, because of the insufficient measurement techniques. 
One may speculate that once we will have reliable one-dimensional physical models, 
their usage within multi-dimensional simulators will allow to predict doping profiles 
much more accurately than any measurement technique. 

Finally, achieving a complete simulation of a three-dimensional process-flow demands 
highest flexibility in data management. Data exchanging between different simulators 
using different data representation forms for geometries (e.g. cellular based, octree 
based or polygonal based) and profiles stored at different grid types account for a 
large additional effort which is necessary to couple different, simulators effectively. As 
an example, the generation of a tetrahedral grid for a device geometry computed by a 
topography simulator such as [I] needs first to convert the cellular based geometry to 
a polygonal based one. Then the polygonal surface has to be adapted in order to fulfill 
some conformity conditions and grid points within the solids have to be computed 
before the tetrahedrization algorithm can be applied. Furthermore, optimization of 
the grid in terms of element quality and minimum node count requires some kind of 
optimization loops. All those steps suffer on the enormous amount of data and the 
structural complexity to be dealt with. 

Our work regarding t,he three-dimensional process simulation resulted in several pro- 
cess simulation modules: In Section 2 we present our simulator for surface evolution 
and the coupling with physical models for etching and deposition processes. Section 3 
deals with the ion implantation module and recent improvements there. In Section 4 
we present our module for diffusion processes, and finally, Section 5 contains an out- 
look on our attempts to tackle three-dimensional oxidation simulation. 
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2. Topography Simulation 

Over t ime a variety of surface evolution algorithms has been studied to build three- 
dimensional topography simulators. Among them many algorithms have been re- 
ported for resist development in lithography simulation [9] [ lo]  (111 [12], only a few 
methods have been proposed for the simulation of etching and deposition processes [2] 
[13] 1141 [Is] .  Basically there are two types of algorithms used for three-dimensional 
topography simulation. Volume-removal methods divide the material being etched 
into a large array of rectangular prismatic cells. Each cell is characterized as etched, 
unetched or partially etched. During etching cells are removed one-by-one according 
to the  local etch rate  and the  number of cell faces exposed to the etching medium. 
These algorithms have been successfully used in three-dimensional lithography simu- 
lation [9] [lo].  Volume-removal methods can easily handle arbitrary geometries, but 
unfortunately they suffer from inherent inaccuracy, because they favor certain etch 
directions as was found by many researchers [9] [16]. The  second type of surface 
evolution algorithms represents the  surface of the material being etched by using a 
mesh of points which are connected by line segments t o  form triangular facets [2] [16]. 
Depending on the  implementation either the mesh points or the  facets are moved ac- 
cording to the local etch rates. A mesh management is necessarv to  maintain the  

V " 
mesh as it  moves in time. In general, these algorithms deliver highly accurate re- 
sults, though with potential topological instabilities such as erroneous surface loops 
which result from a growing or etching surface intersecting with itself. T h e  surface 
loops must be  located and removed t o  conserve memory and maintain efficiency of 
the simulation tool [I 71. 

2.1. A General Method for Surface Advancement 

Extensive work in the  past has resulted in a general method for surface evolution 
in three-dimensional topography simulation [ I ]  [18] [19]. This method is based on 
morphological operations which are performed on a cellular material representation 
considering the simulation geometry as black and white image (material and vac- 
uum). T h e  resulting surface advancement algorithm allows arbitrary changes of the  
actual geometry according to a precalculated etch or deposition rate  distribution and 
can support very complex structures with tunnels or regions of material which are 
completely disconnected from other regions. Surface loops resulting from a growing 
or etching surface intersecting with itself are  inherently avoided. 

The  material is represented using a n  array of square or cubic cells, where each cell is 
characterized as etched or unetched. Additionally. a material identifier is defined for 
each cell, therefore material boundaries need not be explicitly described as shown in 
Fig. 1. 

The surface boundary consists of unetched cells that  are in contact with fully etched 
cells. Cells on t h e  surface are exposed to the etching medium or to  t h e  deposition 
source, and etching or deposition proceeds on this surface. A linked surface cell list 
stores dynamically array addresses and rate  information of exposed material cells. To 
advance the  surface a structuring element whose spatial dimensions are related t o  the  
local etch or deposition rate  is applied for the  exposed cells. Usually, for anisotropic 
two-dimensional simulation t h e  structuring element is an ellipse with constant ratio 
of major t o  minor axis which is applied in the  direction of the  local etch or deposition 
rate vector as shown in Fig. 2, for isotropic movement of the surface point the  applied 
structuring element changes into a circle. 

Depending on the  simulated process either material cells are removed or added which 
are located within t h e  structuring element. In case of deposition the structuring 
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Figure 1: The material representation. The considered surface cell is dark shaded, 
the number in the cell denotes the material identifier. 

Figure 2: The structuring element for anisotropic surface advancement. 
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element is centered at  the midpoint of the considered surface cell, whereas in case of 
etching the structuring element is applied at the midpoints of neighboring cells which 
are located adjacent to the exposed cell sides of the surface cell. For anisotropic three- 
dimensional surface advancement structuring elements are ellipsoids, for isotropic 
movement of surface points structuring elements are spheres, although there is no 
algorithmic restriction on the shape of the applied structuring elements. After each 
time step the exposed boundary has to be determined. Therefore all cells of the 
material array are scanned. Material cells are surface cells if a t  least one cell side is 
in contact with a vacuum cell. The exposed sides of the detected surface cells finally 
describe the material surface at a certain time step. 

2.2. Modeling of Etching and Deposition Processes 

Many topography processes are affected by the shape of the surface. Successful two- 
dimensional simulation programs for etching and deposition processes use macroscopic 
point advancement models that consider information about particle fluxes and surface 
reactions to calculate etch or deposition rate distributions along the exposed surface 
[20] [21] [22]. This approach is extremely desirable, since a variety of process models 
for etching and deposition in the literature already exists and quantities such as etch 
or deposition rates are easily measurable in semiconduct,or technology. 

To determine the rate contributions of incoming particles both in etching and depo- 
sition the simulator must be capable to calculate the resulting particle flux incident 
at a surface point. Therefore a spherical coordinate system with polar angle 29 and 
azimuth angle cp is assumed and the region above the wafer is divided up into several 
surface patches (N, x Ns)  as shown in Fig. 3. 

Figure 3: The calculation of the incident particle flux. 

The incident flux is then integrated over those patches of the hemisphere which are 
visible from the surface ~ o i n t  7. To determine if a surface ~ a t c h  is visible from a ~ o i n t  
on the surface a shado; test has to be performed along' a given direction whlch is 
within the cellular structure simply the matter of following a discretized line of cells 
from the surface cell to the boundary of the simulation area. If any cell on this line 
is a material cell, then the surface cell is shadowed. The calculation of the visible 
solid angle R = R (I9,(4) with dR = s i n p d p  d19 (the radius of the hemisphere may 
be normalized to one) is then reduced to a series of shadow tests. The number of 
shadow tests required at a surface point corresponds to the number of patches of the 
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hemisphere. As this number is a constant (typically 90 x 45 (NP x N s )  patches are 
used), the time required to calculate the visible solid angle for the entire surface is 
proportional to the number of surface points. 

Some processes such as ion milling or crystal etching show a strong dependence on 
the local surface orientation. The cellular material representation does not provide 
this information inherently, but the calculation is rather simple. At each exposed side 
of a surface cell a normal vector can be defined as shown in Fig. 4. 

Figure 4: The calculation of the local surface orientation. 

The surface normal at a given surface point is then calculated by summing up the 
normal vectors of surface cells within a certain vicinitv to that surface voint. For 
practical simulations surface cells that are located within a sphere are considered, a 
sphere radius of typically 10 to 15 cells gives highly accurate results. 

Etch Models: As a basic concept we consider a linear combination of isotropic and 
anisotropic reactions of directly and indirectly incident particles to calculate the re- 
sulting velocity vector of a surface point. The isotropic reaction is mainly a chemical 
reaction affected by a reactive gas, in which the reactive particles have short mean 
free paths and move randomly. The anisotropic reaction is a physical or chemical 
reaction, where the particles have long mean free paths compared to the device di- 
mensions, and angular particle fluxes must be taken into account. A general process 
model which accounts for various physical mechanisms like directional etching due 
to incident ions, etching due to reactive neutrals, and etching caused by reflected or 
re-emmited particles can be expressed by: 

R T  1 c o s a d R ,  
H-R 

with: 
Fi(fl) = exp(-d2/ 2 u2 )  / N; , (3) 

$(a) = a, cos a + a2 cos2a + a3 cos4a,  (4) 

Fn(R)  = cosm (8) / hin ? (5) 

FT(fl) = 1 :  (6) 
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where vi,, and vd;, describe the surface velocity at  a surface point along the surface 
normal, R;,, denotes an isotropic etch rate caused by reactive particles of a plasma 
whose mean free paths are short compared to characteristic device dimensions. The 
particles are moving randomly, therefore the etch rate has no orientation or flux 
dependencies. R; is the etch rate, Fi is the flux distribution, and Si is the sputter 
yield due to directly incident ions. R, and F, are the etch rate and angular flux 
distribution for reactive neutrals, Di is a damage parameter which accounts for the 
enhancement of the chemical etch rate of neutral particles by the presence of directly 
incident ions that damage the surface. R, and F, describe etching due to reflected 
particles. a denotes the angle between the incident direction and the surface normal 
and R describes the visible solid angle of the considered surface point. 

Deposition Models: Deposition modeling is based on the original work of Blech who 
developed a model for describing two-dimensional profiles of evaporated thin films 
over steps [23]. This model is directly applicable to three-dimensional simulation. In 
three dimensions the components of the growth vector can be calculated by: 

u , ( i )  = R~ / ~ ~ ( 0 )  cos sin 19 d o .  (7) 
R 

v,(?) = Rd J Fd(R) sin p sin d dR , 
R 

where Rd denotes the deposition rate on a flat wafer without shadowing and Fc((R) is 
the angular flux distribution function of incoming particles. A general cosine-based 
flux distributioil function may be expressed [2] as: 

Fd(R) = cosn(A d )  / N , for d 5 n/2A otherwise 0. (10) 

The parameter A restricts the angle of incoming particles, the parameter N allows 
over-cosine and under-cosine distributions. 

2.3. Conversion of the Cellular Geometry Represent.ation 

The surface advancement algorithm based on the cellular inaterial representation 
allows a very stable simulation of arbitrary three-dimensional device structures. Un- 
fortunately, many other simulators can not handle this geometry representation form 
directly. They require a polygonal geometry representation as input, where the simu- 
lation geometry is described by a number of polygons (in most of the cases triangles). 

To convert the cellular geometry representation we use the so called Marching Cube 
Algorithm which was proposed by Lorensen and Cline [24]. This method determines 
the surface in a logical cube which is created from eight adjacent cells of the mate- 
rial array. According the eight vertices of such a logical cube. there are exact 256 
ways a surface can intersect the cube which can be further reduced due to different 
symmetries to 15 different patterns. Some of the possible patterns are shown in Fig. 5 .  

The algorithm first determines the surfa.ce for one logical cube then moves (or marches) 
to the next cube. Marching through the whole material array will construct the polyg- 
onal geometry representation. 
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Figure 5: Some of the possible patterns of the Marching Cube Algorithm. 

One disadvantage of the Marching Cube Algorithm is that it produces a very large 
number of triangles which must be reduced afterwards to conserve memory and 
computational efficiency. We apply a decimation algorithm proposed by Schroeder 
et a1.[25]. In this algorithm multiple passes over all vertices in the mesh are made. 
During a pass, each vertex is a candidate for removal and, if it meets the specified 
decimation criteria, the vertex and all the triangles that use the vertex are removed. 
One such decimation criterion for a vertex is the distance to an average plane which 
can be calculated using the triangle ilorillals of adjacent triangles to the vertex of 
interest. The resulting hole after removing the vertex and the triangles in the mesh is 
patched by a local triangulation. The vertex removal process repeats until some ter- 
mination condition is met. Usually the termination criterion is specified as a percent 
reduction of the original mesh. 

2.4. An Example 

Fig. 6 shows the typical barreling phenomenon which results in ion enhanced plasma 
etching due to high energetic ions that increase the etch rate where they hit the 
surface (mainly at the bottom of the trench) and due to reactive neutrals which also 
attack the sidewalls. The picture also shows the well known aperture effect (etch rate 
decreasing due to limited delivery of ions and radicals) resulting in a deeper trench 
where the mask size opening is larger. 

The chemical etch rate for this example was R, = 0.65 nmls with Di = 6.0 and the 
etch time was 400 s. The parameter of the particle distribution functions were a = 2.0 
and m = 1.0. 
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Figure 6: Ion enhanced plasma etching of trenches showing the barreling phenomenon 
and the aperture effect. 

3. Monte Carlo Simulation of Ion Implalltation 

Introducing controllable amounts of dopant impurities into substitutional sites of 
a semiconductor crystal predictably modifies its electrical properties. During the 
past fifteen years, ion implantation has progressed steadily from its initial use as a 
alternative to diffusion to its present dominating role in the manufacture of VLSI and 
ULSI circuits. The reason is that we can achieve better control and reproducibility of 
concentration and depth. Further important features are its flexibility and ability to 
form almost arbitrary doping profiles, e.g. buried layers, and the favorable factor that 
ion implantation is a low-temperature process. Since modern annealing methods such 
as rapid thermal annealing (RTA) do not alter the implanted profile very much, the 
initial profile mainly controls the final result and thus, its determination has become 
an important task. 

The Monte Carlo simulation of ion implantation [4] [5] [26] [27] [28] [29] [30] is rapidly 
gaining acceptance due to its capability of simulating channeling and damage accumu- 
lation phenomena in arbitrary multi-dimensional structures. A well-known disadvan- 
tage of the Monte Carlo approach is its considerable demand for computer resources 
to obtain results with satisfying statistical accuracy. 

3.1. Point-Location and Material Detection: The Octree 

The Monte Carlo method is based on tracing a large number of trajectories of individ- 
ual ions on their way through the target until they find their final position. Therefore 
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one crucial aspect of this approach is to  determine the  spatial location of the ion 
within the three-dimensional simulation area (point-location and material detection). 
To keep the computational effort within reasonable limits we use an octree for dis- 
cretization of the  geometry. This scheme provides a fast solution of the  point-location 
problem by mapping the structure into a hierarchical tree representation [31] [32]. 

The octree method originates from graphical image processing (331 [34] [35], although 
in this connection the contrary task, namely to combine areas with the same proper- 
ties, is desired. Nevertheless this method can be suitably adopted for ion implantation 
where one big area must be subdivided into smaller zones. In any case the  zones shall 
be  as large as possible t o  achieve the fastest solution. 

To meet this requirement the whole geometry is included i11 one cube (root cube). 
This cube is then subdivided into eight subcubes. if it is not composed entirely of 
the same material. This procedure is recursively continued for every subcube until 
either the desired accuracy of the discretization is reached - which is measured by 
the length of the edges of the  cube - or no more intersections of this cube with the  
polygons defining the target geometry exist (leaf cube). A t  the end each leaf cube is 
related t o  exactly one material (Fig. 7).  

root 

Figure 7: Discretization of a geometry using an octree. 

To determine the  location of an ion. just a simple test of the  coordinate against the  
related coordinates of the sidewalls of the  cube is required, because the cubes of the  
octree are all aligned with the  coordinate axes. 

3.2. Amorphous Computation Mode: The Superposition hilethod 

For the Monte-Carlo simulat,ion we let the  ions start a t  equidistant lateral positions 
(no correlations between trajectories). The  nunlber of particles to be simulated is 
a major concern as the simulation t ime will be proportional to  this quantit,y. A 
major part of CPU-t ime is used for the evaluation of the ion-target interaction. T h e  
fundamental idea t o  reduce the simulation t,ime is t o  use each ion trajectory several 
times t o  determine the  history of ions entering the target (Fig. 8) .  This superposition 
law holds if t he  history of all ions is independent as it is the case for amorphous 
targets [30]. 

The following algorithm is justified by the  superposition law: 
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1. subdivide the width of the simulation area into subwindows (we use the 
lateral standard deviation to determine the width of such a subwindow) 

2. calculate !V physical model trajectories in an infinite target for each ion-material 
combination 

3. make copies of this trajectory and move them to corresponding points of each 
subwindow 

4. follow each trajectory copy and check if any boundary is crossed. In this case 
the used model trajectory is changed according to the new material. 

Subwindows 
/" i 4\ 

I I 

One 

Trajectory > 
Figure 8: Construction of trajectories from one "physical" ion trajectory. 

The simulation will be approximately equivalent to a conventional simulation with 
N . Nw particles. 

However, the colnputation time required for the necessary geometry checks for the 
point-location remains uneffected (see Section 3.1). 

3.3. Crystalline Computation Mode: The Trajectory Split blethod 

In order to maintain the performance of ULSI circuits. it is important to form very 
shallow Source-Drain junctions and to reduce the thermal budgets. Thus, improved 
models for ion implantation are needed 1361 1371 and the traditional assumption of 
random targets (see Section 3.2) is not longer applicable 1381. 

The traditional Monte Carlo approach for crystalline targets is based on the calcu- 
lation of a large number of "distinct" ion trajectories, i.e. each trajectory is usually 
followed from the ion starting point at the surface of the target up to the stopping 
point of the ion. Since the majority of ion trajectories ends at the most probable pen- 
etration depth inside the structure. the statistical representation of this target region 
is good. Regions with a dopant concentration several orders of magnitudes smaller 
than the maximum (in the following me call these areas '.peripheraln) are normally 
represented by a much smaller number of ions (typically lo4 times lower than at  the 
maximum). This results in an insufficient number of events at low concentration areas 
and leads to statistical noise that cannot be t,olerated. 
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For that reason and inspired by S.-H. Yang [39] we developed the trajectory split 
method [3] (401 for the Monte Carlo simulation of ion implantation on the basis of 
[41]. Our algorithm drastically reduces the computational effort and is applicable for 
two and three-dimensional simulations. 

The fundamental ideas of our new simulation approach are to locally increase the 
number of calculated ion trajectories in areas with large statistical uncertainty and 
to utilize the information we can derive from the flight-path of the ion up to a certain 
depth inside the target. For each ion, the local dopant concentration Clot is checked 
at certain points of the flight-path (checkpoints). At each checkpoint we relate Clot 
to the current maximum global concentration C,a,,c,,nt by calculating the ratio 
C~oc/Cmax,current The result is compared with given relative concentration levels (we 
define ten levels at  0.3, 0.09, 0.027, ..., 0.3"). Only if the current local concentration 
falls in an interval below the ~revious  one. a traiectoru svlit voint is defined at  this 

" X  . 
checkpoint. Therefore our approach is a self-adaptive algorithm because more split 
~ o i n t s  are defined at areas with unsatisfying statistical accuracy. Additional traiec- " " 
tory branches are suppressed, if an ion moves from lower to higher local concentration 
levels. We store the position of the ion, its energy as well as the vector of velocity and 
use this data for virtual branches of ion trajectories starting at this split point. In 
this way, the peripheral areas of the dopant concentration are represented by a much 
higher number of ion trajectories and the statistical noise is reduced. 

Several implementations of this method are conceivable and efficient. IVe developed 
three different strategies [40] one shown in Fig. 9. Such a virtual trajectory branch is 
calculated with the same models and parameters as a regular trajectory: but it, starts 
at the split point with initial conditions obtained froin the regular ion. To obtain the 
correct concentration, a weight is assigned to each branch. The different realizations 
of the virtual trajectories result from the thermal vibrations of the target atoms [42]. 

Direction of the Regular Ion 

w. .. Weight 1 1.0 

~3-05.000 trajectories. no splitting. CPU: 5 ' 2 5  

rt* 5.000 trajectories, SRS. 3 splitsbranch. CPU: 7'23" 

13+35.000 trajeclories. SRS. 4 splitsibranch. CPU. 7'42" - Relative Local Concentrat~on CIC,",,, [I]  

Computation Sequence: ----- - - - - - - .  

Figure 9: Topological structure of the Figure 10: Two-dimensional point re- 
split-level related split method, the sponse of phosphorus implant, statistical 
weight of each branch, and the sequence accuracy and CPU time of split-level re- 
of its calculation lated split method 

To assess the statistical accuracy of the results obtained from the conventional and 
from the trajectory split methods, we define a mean-square deviation from a reference 
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distribution. For that reason we carry out a conventional simulatioll with such a high 
number of ion traject.ories (1.000.000) that statistical fluctuations are negligible in the 
concentration area considered. As an example, we perform a Monte Carlo simulation 
of a phosphorus implant at  50keV into (100) oriented single-crystal silicon covered by 
2.5nm of oxide to obtain point response distributions. 

We present the deviation data for the recursive split-level related split method [40] 
in Fig. 10 calculated with 5,000 distinct ion trajectories. The relative concentration 
in this figure is defined as the ratio of C/Cm,x,,er, where Cm,x,,ef means the maximum 
concentration of the reference distribution. The com~utational  effort is a ~ ~ r o x i m a t e l v  

L A  

proportional to the number of distinct ion trajectories and the additional overhead 
due to trajectory splits is only 25% to 35%. 
Further important advantages of the trajectory split method are its lower sensitivity 
to the local concentration and the opportunity to individualize its error behavior. 
Increasing the number of splits per each branch, cf. Fig. 10; and/or initializing more 
than one virtual branch at each split point leads to a significantly smaller error in 
peripheral areas without effecting the statistic in other regions. In other words there 
is a chance of optimizing the relation between CPU time and required statistical 
accuracy for a particular problem. 

It should be mentioned that our new strategy is also best suited to compute the 
collision cascade of a displaced target atom ("recoil"). Depending on the ion energy 
and the atomic mass ratio of the ion and the recoil some collisions cause a considerable 
number of recoils which lead to a statistical "over-representation" of such events. The 
new method offers the possibility to optimize the recoil statistic by a random deletion 
of recoil trajectories at such places and by splitting them at peripheral areas of the 
collision cascade. 

3.4. An Example 

The Source-Drain doping in minimum-size transistor designs is an intrinsically three- 
dimensional problem. Furthermore, in modern shallow-junction processing channeling 
may affect the device performailce [43]. Thus, an ion implantation into a field oxide 
corner of a conventioilal LOCOS st.ructure is best suited to demonstrate the merits 
and the applicability of the superposition method and the trajectory split method, 
respectively. 

For the simulations we used a phosphorus implant of 5 . 1 0 ' ~ c m - ~  at 40keV. Fig. 11 
shows the geometry of the conventional LOCOS. The screening oxide thickness is 
lOnm and the ion beam was tilted for -7' in the xy-plane. To investigate the chan- 
neling effects we cut the LOCOS geometry by a horizontal xz-plane lOnm below 
the silicon/silicon-dioxide interface. Fig. 12 and Fig. 13 show the amorphous and 
crystalline mode simulation results for the conventional LOCOS. 

From these results follows that, in the active region the dopant concentration near the 
silicon surface is significantly decreased whereas the doping at the periphery (along 
the bird's beak) remains uneffected due to the dechanneling property of the thicker 
oxide in that region (z GOnm). 

The required computational effort for such a rigorous three-dimensional simulation is 
approximately proportional to the exposed area (implantation window) and depends 
on the energy of the ions. On a HP 9000-735/100 workstation our example takes about 
15 hours using the superposition method and about one day using the trajectory split 
method. Compared to conventional strat.egies the speed-up is about a few orders of 
magnitudes for the amorphous mode and about five for the crystalline mode. 
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Figure 11: Corner of the conventional LOCOS structure 
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Figure 12: Concentration of phosphorus Figure 13: Concentration of phosphorus 
in cm-3 lOnm below the silicon surface in c n ~ - ~  lOnm belo\v the  silicon surface 
(conventional LOCOS gco~net~*!* is cut b! (conventional LOCOS geometry is cut by 
a horizor~tal xz-plane. alnarpllo~rs rnodr) a horizontal sz-plane. crystalline mode) 
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4. Diffusion Processes 

The solution of the  coupled nonlinear differential equations coming up from diffusion 
processes usually is done by means of the Finite Element Method respectively the 
Finite Box Method. Both require a grid. which has to resolve t h e  geometry and the  
doping profiles in order t o  achieve a proper discretization. This grid plays the  keyrole 
for solution efficiency, because it determines both the  condition and the  size of the 
soarse eauation svstems. For three-dimensional simulations the  size of the svstems is 
the  major hurdle, because t,he numerical solution effort follows in the very best case 
approximately n3I2 with n as the  number of unknowns. Therefore t h e  grid has to  
be optimized in order to  fulfill the required accuracy requirements using a minimum 
number of nodes. 

We divide our gridding activities into two parts: generation of an initial grid and 
adaptation of the  grid according to t h e  changed accuracy requirements as the diffusion 
advances. For initial grid generation we have developed a tetrahedrization module, 
based on the Delaunay criterion. In order t o  adapt the grid throughout the  diffusion 
simulation t.he mixed-element decomposition method has been utilized [44]. 

4.1. Grid Generation 

Grid generation plays a keyrole in three-dimensional process and device simulation. 
The amount of d a t a  forces the  grid generator to  keep the  optimal balance between 
accuracy and efficiency. T h e  geometry has to  be partitioned into the smallest number 
of elements. which still allows accurate solving of the  governing equations. These 
elements have to fulfill certain quality requirements and the gridding process should 
work entirely automatically. Anothel challenge lies within a typical TCAD situation, 
where many s imula to~s  have t o  interact Tools m ~ g h t  generate their own grids which 
are not valid as an input for subsequent tools. In order to  avoid unnecessary re- 
interpolation of attributes defined on a grid and to minimize gridding efforts after 
each simulation step the  ideal grid generator should also have the  capability t o  read 
and modify existing grids. For instance, a grid output  from one tool has to  be  made 
geometry conform before it can be input to  the next tool [45]. 

We use the  concept of a "place nodes and link" algorithm [46]; which in our opinion 
offers the best means to  deal with the above mentioned tasks. Grid nodes first have 
to be placed according to local and global grid densities, after which they are linked 
to yield the grid elements. Note that this is the only approach which allows the input 
of already existing grid nodes. Thus, grid nodes of different grids can be merged, 
or previously generated grids can be refined by adding additional grid nodes. The 
geometry can be arbitrarily complex. the boundary points of t,he geometry are a direct 
input to  the grid generator. Conformity of the  grid with the boundary of the geometry 
will be discussed in the next section. Many disadvantages of octree-based methods 
which intrinsically place the grid nodes can be avoided. For instance, the limited 
flexibility in node placement and t,he sensitivity to  alignment of the geometry with 
the octree. Even if 2-4-8-Trees [47] are used, anisotropic grid density specifications 
cannot generally be  fulfilled. Finally, the need for special gridding techniques near 
boundaries to  avoid staircase-like representations of the geometry makes the  use of 
octree-based methods less favourable. 

After the linking step, t h e  resulting tetrahedral grid elements have to meet the de- 
sired quality requirements. There are two degrees of freedom horn one can change 
this element quality. Both node p lacement  and the typmof t e t r u h e d r z z a t ~ o n  have a 
crucial influence. Unfortunatelv, they are not entirely independent of each other, 
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thus, an optimization loop becomes necessary. After the tetrahedrization, the node 
placement might have to be changed or grid nodes might have to be inserted and 
the tetrahedrization Drocess has to be r e~ea ted .  Even if the tetrahedrization Drocess 
is in some sense optimal (e.g. Delaunay tetrahedrization) elements of poor quality 
cannot be avoided beforehand. In three dimensions the aspect ratio of a simplex can 
be defined as the ratio of the radii of the circuinscribed sphere to the inscribed sphere 
[48]. Typical elements with poor aspect ratios are 1491: 

Needle: A tetrahedron with a very long and a very short edge. 

Cap: A tetrahedron, where the radius of the circumsphere is much larger than the 
longest edge. 

Sliver: A tetrahedron consisting of four nearly coplanar points, which are evenly 
spaced on a great circle of the circumsphere. 

Especially in two dimensions interesting dependencies between various optimization 
criteria (no large angles, no small angles, height) and the Delaunay triangulation have 
been shown [48]. Essentially, Steiner points are added to the initial point set (Steiner 
triangulation) and the Delaunay triangulation of the modified point set is used. Con- 
sidering a fixed point set in two dimensions the Delaunay triangulation is known to 
maximize the minimum angle. In three dimensions the Delaunay tetrahedrization 
(DT) minimizes the maximum radius of a minimum-containment. sphere [50]. The 
minimum-containment sphere is the smallest. sphere that contains the tetrahedron. It 
can be identical to the circumsphere. The need for a general, numerically robust tool 
to compute the DT for a fixed point set becomes evident. In fact, the DT is the only 
tetrahedrization which is dual to the well known Voronoi diagram. Thus, if the Box 
integration method is applied, the DT becomes a necessa.ry tool to avoid negative 
control volumes. 

4.1.1. Boundary Conformity 

If a general tetrahedral Delaunay grid is required to be conform with the boundary, 
the boundary has to be represented by a surface triangulation where each triangle 
fulfills the Delaunay criterion. If and only if at least one empty sphere passing through 
the three points of a boundary triangle exists, the boundary triangle is a Delaunay 
triangle. This sphere can have any size. For the Box integra.tion method a stronger 
criterion has to be satisfied. 

Boundary  refinement cri terion: The smallest sphere passing through the three 
points of a boundary triangle may not contain any other point. 

The step in which the input boundary triangles (generally not Delaunay) are modified 
according to this criterion is called boundary refinement. This is a complex two and a 
half dimensional problem (Literature mostly covers the one and half dimensional case, 
[45][48][51][52]). Multiple domains pose no difficulties. The boundary refinement step 
has to be applied to the interfaces as well. Our boundary refinement module uses 
a combination of flipping boundary triangles (sometimes also called edge-swapping) 
and inserting additional boundary points to satisfy the above stated criterion: If two 
adjacent boundary triangles are coplanar and violate the criterion, their common 
edge can be flipped without having to insert a point. This technique greatly reduces 
the number of additional inserted points. (A discussion of such local transformations 
can be found in [53].) Inserting points only becomes necessary along edges of the 
geometry or in the case of (parallel) planes with small distance compared to the size 
of the triangles. 
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4.1.2. Delaunay Tetrahedrization 

We implemented an incremental tetrahedra construction algorithm (Fig. 14). It can 
be imagined as "advancing front" that pervades the input geometry. The domain on 
the backside of the front is entirely tetrahedrized and the domain on the front side not 
at  all. The great advantage of this algorithm is how rigorous it deals with complex 
input geometries (e.g. multiple connected). It only tetrahedrizes the interior of the 
geometry, because the advancing front will be stopped by the surface triangulation of 
the boundary. (As opposed to other algorithms, where a convex hull is tetrahedrized 
and a subsequent segmentation step is necessary which distinguishes interior and 
exterior elements.) 

Figure 14: Incremental algorithm 

A typical problem for DT algorithms are degeneracies due to cospherical point sets. 
(If more than four points are located on the perimet,er of an empty sphere, the point 
set is said t o  be cospherical.) The implemented algorithm allows any number of 
cospherical points and will not have to add points to deal correctly with these cases. 

Another difficulty lies in finite-precision arithmetics. Topological point connectivity 
evolves from numerical calculations. Thus. numerical errors manifest in topological 
inconsistencies. The degree of freedom in choosing the point connectivity is spent to 
satisfy the Delaunay criterion. 111 order to guarantee a topological correct tessellation 
the Delaunay criterion need not always be satisfied. X small tolerance c has to 
be granted. Sugihara and Iri discussed this topic for t h r  two-dimensional Voronoi 
diagram in [54]. Our implementation solves this problem. It detects topological 
inconsistencies that would occur due to a sole adherence to the Delaunay criterion 
and overrides the criterion by E .  The algorithm uses an octree point location method 
and runs in O(n log n )  time (Fig. 15). 

0 0 0 0 0 "  
- 0 0 0 0 0  

r ( 0 0 0 . .  
number of 

- 0 0  ., 0 tetrahedra 
r( 

Figure 15: Time complexity ( H P  9000-7:35/100) 
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So far the  point connectivity describing the linking of the grid nodes was of concern. 
However, in the  three-dimensional space the face connectzvi ty  plays an important role. 
One face (triangle) connects the two spaces on each side. In the  presence of cocircular 
points in three dimensions (more than three points which are located on an empty 
circle) the two half spaces on each side of the plane containing the cocircular points 
can be connected via triangles in more than one way. If on one side of the  plane the  set 
of cocircular points is triangulated in a different manner than on the  other side, the  
result is inconsistent face connectivity. Note that  the  cocircular point set implies the  
existence of two neighboring sets of cospherical points. The  question arises whether 
it is possible to  tetrahedrize a cospherical point set, if its convex hull contains a fixed 
and given triangulation of cocircular points. Fig. 16 depicts a case where the  specified 
face connectivity cannot be achieved by any tetrahedrization of the  interior. This is 
a similar problem to the  un-tetrahedrizable polyhedron mentioned in [48]. It can be  
solved by local transformations of the tetrahedra, which are connected to the plane 
containing the  cocircular point set. 

Figure 16: Impossible face-connectivity 

4.2. Adaptive Gridding Strategy 

Once an initial grid is available which resolves the geometry, it has t o  be adapted t o  
the implanted doping profiles and the adaptation has to  be redone as the  diffusion 
advances and the local discretization errors exceed their limits. Several grid updates 
are necessary throughout a whole simulation. Thus, a fast adaptation algorithm is 
needed in order to  keep the computational overhead for the grid management low. 
Therefore, we use a recursive element decomposition method. 

For recursive refinement algorithms it is indispensable to  preserve the grid quality, 
i.e., the unavoidable degradation of the grid quality has to  stay within a limit which 
is independent of the  number of refinements. If we can find a refinement method 
which keeps the element shape, the above requirement is fulfilled automatically. Un- 
fortunately for tetrahedra no such method exists. However, it is possible t o  define a 
two-level splitting method, which preserves the  element shape during multiple refine- 
ment. 

We divide a tetrahedron into four tetrahedra of the same shape and one octahedron. 
The four tetrahedra are located at  the parent's corners and the remaining part has 
octahedral shape (Fig. 17) .  An octahedron cve divide into six octahedra of the  same 
shape and eight tetrahedra. The S I X  octahedra are located at  the parent's corners 
and the  remaining parts have tetrahedral shape (Fig. 18) In order to  discretize an 
octahedron, we split it into eight tetrahedron. each of n h ~ c h  has one face of the  
octahedron as ground plane and the  octahedral center as opposite node. 

The  first refinement step introduces elements with a new aspect ratio. The  elements 
generated by all following refinement steps have either the shape of the  tetrahedra or 
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Figure 17: Tessellation for a tetrahedron Figure 18: Tessellation for an octahedron 

Figure 19: Shape preservation for recur- Figure 20: Incompatible elements 
sive refinement 

the shape of the octahedra which exist after the first refinement step (see Fig. 19). 
Thus, the element quality is affected only at the first refinement step. Taking into 
account the discretization of the octahedron perillits a reasonable comparison of the 
octahedral child of the tetrahedron: we compare the element quality of the tetrahedral 
parent with the element quality of the tetrahedra used for the discretization of the 
octahedron. It can be shown, that the degradation of the element quality according 
(11) is limited to a factor of 112. A similar comparison of the tetrahedral child with 
the octahedral parent results in a maximum degradation factor of 114. 

As the refinement is always done locally. unrefined elements may be adjacent to 
refined ones. These neighboring elements are called incompatible elements: and we 
define the order of incom~atibilitv as the difference of the refinement levels of two 
adjacent elements. In our 'algorith;x the order of incompatibility is restricted to one. 
A two dimensional example of such an incompatible situation is shown in Fig. 20. 
In order to estimate the grid quality at  a compatible node between incompatible 
elements, we use (12), where V,  are the volumes of all elements incident to the node 
[ 55 ] .  It can be shown. that the degradation of this nodal grid quality is limited to a 
factor of 114 for the tetrahedron and 118 for the octahedron. 

4.3. Discretizat,ion Method 

For the practical application of the mixed-element, decomposition method, we imple- 
mented a finite element method in order to solve (13): where Ck are the quantities to 
solve and Jk are the according fluxes. The quantities are coupled by the coefficients 
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~ k l ,  which allow modeling of generation and recombination, and by the coefficients 
crkl, which couple the fluxes of the different quant,ities. 

1=1 

for k =  1, . . . ,  NQ 

As discretizing element we use the tetrahedron with linear shape functions. The 
octahedrons coming from the mixed-element deconlposition method are split into 
eight tetrahedrons for discretization. The weak form of (13) results from the method 
of Galerkin-weighted residuals 1561 and is integrated by means of Gaussian integration 
using one integration point in the center of the tetrahedron. 

In order to estimate the discretization errors. \Ire use a gradient smoothing method [56]. 
This method uses the shape functions of the elements for a continuos approximation 
of the piecewise constant gradient of the solution. By twofold integration of the gradi- 
ent difference along an element the local dosis error of the solution is computed. The 
decision about local grid refinement respectively coarsening is based on a weighted 
combination of the local dosis error related t,o the local dosis and the local dosis error 
related to the global dosis. The weights allow to control the grid density at  high 
concentration levels nearly independently from the grid density at low concentration 
levels. 

The discretization in time uses the standard finite differences method according the 
Backward-Euler scheme. Error estimat.ion is used in order to test the accuracy of the 
previous time step as well as to predict the size of the next time step. The estimation 
is based on a parabolic approximation of the piecewise linear evolution of the solution 
at  each node. By means of extrapolation the size for the new time step is estimated. 

4.4. Solution Strategy 

For solution of the nonlinear ecluation systems. ire imple~nented a damped New- 
ton iteration scheme for the coupled equations. To achieve quadratic convergence, 
we extend the element matrices to the full Frechet derivative of the nonlinear func- 
tional. The resulting linear equation systems are solved iteratively by means of a 
BICGStab-solver [57]  with an incomplete Gad-elimination for preconditioning. For 
a particular time step the initial condition for the Newton iteration scheme is obtained 
by quadratic extrpolation of the solution of the previous time steps. This technique 
reduces the number of Newton iterations by one for each time step. 

Once the grid is adapted to the initial doping profiles, it is successively modified 
after each time step according to the adaptation criteria. All elements are checked 
upon their discretization error and are either refined or replaced by their parents. 
On inserting of new nodes. the solution values are interpolated by a third order 
interpolation function. which satisfies the continuity condition for the gradients. 

4.5. An Example 

To demonstrate the benefits of the adaptive gridding algorithm, we computed a diffu- 
sion step for a Boron channel-implant in a. coilr~entioilal LOCOS-struct.ure at 1000 " C 



156 E. Leitner et al.: 3D TCAD at TU Vienna 

and an annealing time of 30min. Figure 11 shows the coarse initial tessellation of 
the simulation region where the field oxide is on tow of the silicon bulk. The channel " 
implant has been computed by Monte-Carlo ion implantation [3] with an energy of 
20keV and a dose of l e l 4 ~ m - ~ .  The initial grid has been adapted to the initial profile 
for a discretization error limit of 1% relative to the total implanted dosis. The grid 
for the silicon region with the distribution is shown in Fig. 21 and consists of 9534 
nodes and 19259 elements. 

As the diffusion advances the steep gradients are smoothed and therefore, the grid was 
reduced continuously by the automatic adaptation algorithm. Thus, the final grid at 
the end of the simulation consists of only 8093 nodes and 15636 elements (Fig. 22). 
For the needed 34 time steps the program consumed a CPU-time of 41 minutes on 
an HP 9000-7351100 workstation and used approximately 32MB of memory, which 
shows, that fully three-dimensional diffusion simulation with a controlled discretiza- 
tion error is feasible. 

Figure 21:  The implanted Boron profile in the Silicon region 

5 .  Oxidation 

The physics of thermal oxidation results in a high number of coupled differential equa- 
tions (typically 6-10 for a three-dimensional simulation). Even for two-dimensional 
simulations the equation systems resulting from a coupled solution are very large. The 
standard methods using Newton methods or decoupled iteration schemes combined 
with iterative solvers for the linear systems require significant amounts on computa- 
tional resources. Therefore. we investigated other (preferably matrix-free) algorithms 
and found the multigrid ~~ le rhod  feasible for osidation problems. 
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Figure 22: Boron profile after :301nin. annealing at 1000 ' C 

\Ve are currently evaluating the eficiency of multigrid methods for mechanical equa- 
tions, and the results seem very promising. We compared different, methods in order 
to solve the mechanical stress/strain equations, including the nonlinearity coming up 
from large displacement. For a problem with about 16000 unknowns, where the it- 
erative solver diverged on solving the linear system, the GauBsolver consumed about 
2 min CPU time and 60 MB memory on an DEC-Alpha workstation for one matrix 
inversion within the Newton scheme ~vhich needed 5 iterations. resulting in 10 min 
overall CPU time. The multigrid algorithm was able to solve the whole nonlinear 
problem within about 30 sec and needed just 8 14B memory. 

Another advantage of the multigrid method is, that the solution effort is growing 
just linearly with the number of nodes. This feature makes the multigrid method 
appearing best suited for use in three-dimensional process simulation with coupled 
stresslstrain equations, where high node counts are unavoidable. 

6. Conclusion 

Despite the large variety of problems coming up from three-dimensional process sim- 
ulation, several steps can already be si~nulated reasonabl!.. Topography simulation 
of etching and deposition processes and ion implantation simulation deliver accurate 
results and consider the physical effects sufficiently. The development of diffusion and 
oxidation process simulation tools is still at the beginning. However, we have shown 
reasonable solutions to the grid adaptation and grid generation problem, which allows 
us to perform simulation of dopant diffusion with a controlled discretization error and 
reasonable demands on computational resources. 



158 E. Leitner et al.: 3D TCAD at T U  Vienna 

Furthermore, the coupling of different simulators is a must. The problems arising 
from different data representation formats have been pointed out and solutions for 
converting polygonal to cellular based geometries and vice versa have been shown. 
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