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Abstract 

A new method for adaptive refinement of unstructured grids has been devel- 
oped. This method ensures preservation of the element quality and the struc- 
tural anisotropies of the initial grid. The flexibility of unstructured grids in 
combination with the implemented error estimation provides a powerful basis 
for three-dimensional simulation of tiine dependent processes. 

1. Introduction 

Efficient and accurate simulation of transient three-dimensional redistribution pro- 
cesses requires adaptive gridding methods. The  coinputational grid is responsible for 
both t h e  accuracy of t h e  solution as well as for the s in~ulat ion efficiency. In order to  
meet with these requirements throughout a transient simulation, the grid has t o  be 
adapted as the  distribution of the  solution changes. 

One approach t o  solve this problem is to  start with a coarse initial grid and t o  adapt 
the local grid densit,y by means of recursive element refinement. On one hand the  
low required density of the initial grid allo\vs a fast generation and,  on the other 
hand! the recursive refinement can also be carried out efficiently. Thus, the  overall 
computational effort for the grid handling is kept low. 

2. The mixed-element decompositioil met,hod 

Our adaptation algorithm starts from a coarse unstructured grid. which resolves the  
computational domain and may consist of tetrahedrons and octahedrons. In contrast 
to octree based methods (e.g. [I])  the  alignment of the grid elements is not restricted 
to a rectangular bounding box. Thus. also oblique interfaces and boundaries can be  
resolved optimally. The  elements of this initial grid are refined recursively until the  
desired accuracy is reached. As the  diffusion advances further adaptation steps may 
be required. Then already refined elements are either refined again or replaced by 
their parent element t o  achieve the required grid density. 

For a recursive refinement algorithm it is important t.o preserve the  essential grid prop- 
erties, i.e., the grid quality and the  struct,ural anisot,ropies. Therefore we developed 
the mixed element decomposition method: 
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We divide a tetrahedron into four tetrahedra of the same shape and one octahedron. 
The four tetrahedra are located at  the parent's corners and the octahedron is placed 
in the center (Fig. 1). An octahedron is divided into six octahedra of the same shape 
and eight tetrahedra. The six octahedra are located at the parent's corners and the 
remaining tetrahedral parts have a common node in the center (Fig. 2). In order to 
discretize an octahedron, we split it into eight tetrahedron, each of which has one face 
of the octahedron as ground plane and the octahedral center as opposite node. 

To evaluate the effectivity of the method, it is of interest, how much the grid quality is 
decreased by the refinement. In order to compare the element quality of the elements 
generated by the refinement with the element quality of the parent element, we use 
(1) as a measure for the element quality, where V is the volume and h,,, is the 
maximum size of the element (see [2]). 

The first refinement step introduces elements with a new aspect ratio. The elements 
generated by all following refinement steps have either the shape of the tetrahedra 
or the shape of the octahedra which exist after the first refinement step (see Fig. 3).  
Thus, the element quality is affected only by the first refinement step. 

Taking into account the discretization of the octahedron permits a reasonable com- 
parison of the octahedron and the tetrahedron: we compare the element quality of the 
tetrahedral parent with the element quality of the tetrahedra used for discretization 
of the octahedron. It can be shown. that the degradation of the element quality after 
(1) is limited to a factor of 11'2 f o ~  the tetrahedron and 114 f o ~  the octahedron. 

As the refinement is always done locally, unrefined elements may be adjacent to refined 
ones. These neighbouring elements are called incompatible elements. and we define 
the order of incompatibility as the difference of the refinement levels of two adjacent 
elements. In our algorithm the order of incompatibility is restricted to one. A two 
dimensional example of such an incompatible situation is shown in Fig. 4.  In order 
to estimate the grid quality at a compatible node between incompatible elements, we 
use Qn = min(l / , ) /max(x) , where I< are the volumes of all elements incident to this 
node (see [2]). It can be sho\vn. that the degradation of this nodal grid quality is 
limited to a factor of 114 for the tetrahedron and 1 /S  f o ~  the octahedron. 

3. Error Estimation 

For the practical use of the mixed element decomposition method. an error estimation 
was implemented, which is based on a gradient smoothing of a finite element solution 
(see [3]). It allows to compute the gradient error as well as the local dose error. 
We use a linear combination of both as grid density criterion, where the weights can 
be chosen independently. All elements which are not reaching the desired accuracy 
are refined. On the other hand, elements with a very small discretization error are 
replaced by their parent elements (coarsening). 

A proper discretization of the incompatible elements within one parent has to account 
for the Co-continuity condition. which is a commoll requirement for the standard 
finite-element method. The function values for the inco~npatihle node are determined 
by the interpolation equation n7hich is the shape function of the parent element. For 
consistency reasons the matrices for the elements nrhich are incident to the incompat- 
ible node are preassembled locally, and the equations for the incompatible nodes are 
replaced using the interpolation function. This results in a reduced matrix which we 
assemble to the global system matrix. 
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4. Example 

We applied our algorithm to the silicon block of a conventional LOCOS-structure 
(Fig. 5). Firstly, we performed a Boron channel-implant, which we computed by a 
Monte-Carlo ion implantation simulation module[4] with an energy of 2OkeV and a 
dose of l e 1 4 ~ r n - ~ .  Then we adapted the initial grid according to the Boron profile, 
where the discretization error limit was set to 3% for the dose error and to 10% for 
the gradient error. Fig. 6 shows the resulting grid which consists of 9146 elements 
and 4285 nodes. 

5. Conclusion 

The mixed-element decomposition method combines the high flexibility of fully un- 
structured grids and the fast adaptation capability through recursive element refine- 
ment. From the shape preserving property it follows, that our algorithm preserves 
the boundaries and interfaces, and the structural anisotropy of the grid. Additionally, 
the quality degradation caused by the algorithm is limited to a constant factor. Thus, 
our grid adaptation method provides a powerful basis for three-dimensional process 
simulation. 
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Figure 1: Tessellation for a tet,rahedron Figure 2: Tessellation for an octahedron 
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Figure 3: Shape preservation for 
recursive refinement 

Figure 4: Incompatible elements 

Figure 5: Initial grid for corner of the LOCOS structure 

Figure 6: Grid of the silicon block adapted t80 the irnplant,ed Boron profile 




