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Abstract
A rigorous three-dimensional simulation method for nonplanar sub¬
strate lithography is presented. The light propagation within the
photoresist is calculated using the Maxwell equations. Our method
relies on a Fourier expansion of the electromagnetic held and extends
the two-dimensional differential method [1][2].

1. Introduction

Among all technologies photolithography holds the leading position in pattern
transfer in today's semiconductor industry. The large cost and time necessary
for experiments make simulation an important tool for further improvements.
However, the reduction of the lithographic feature sizes towards the actinic
wavelength places considerable demands onto the physical modeling. Our
three-dimensional method is based on a numerical solution of the Maxwell
equations and therefore gives a physically rigorous description of nonplanar
topography effects as necessary for sub-micrometer-photolithography.
The simulation model can be summarized as follows. The exposure state of the
resist is described by the photoactive compound (PAC). Part of the incident
photons are absorbed and destruct the PAC. Thereby the resist's optical prop¬
erties are modified. According to Dill's so-called 'ABC-model the dependency
between the PAC and the electromagnetic (EM) field is modeled by coupled
nonlinear partial differential equations [3]. Because the bleaching rate is small
compared to the frequency of the EM field, we apply a quasi-static approxi¬
mation. Hence, we assume a steady-state field distribution within a time step,
i.e. the EM field is time harmonic, e.g. £(x,¿) Re{Efc(x)e~^a;í}, and obeys
the Maxwell equations in the form of

curlH (x) = -jue0e(x)E(x), curlE(x) = jup0H(x). (1)
The crucial point for the applicability of our simulation model is an efficient
solution of the Maxwell equations (1).
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2. Numerical solution of the Maxwell equations
Our solution of the Maxwell equations is based on a Fourier expansion of the
EM field. A similar approach in two dimensions, the so-called differential
method, was first proposed in the simulation of diffraction gratings [1] and
later adapted for photolithography in [2]. The use of Fourier expansions im¬
plies a periodic nature of the EM field within the resist, which ensues from the
following two assumptions: (i) the incident light is quasi-periodic or, equiva¬
lent^, a periodic mask pattern is supposed; (ii) the geometry is periodic, too,
and the periods a and b in x- and y- direction, respectively, are identical to
that of the incident light. The simulation domain is one period a x b x h of
such a laterally periodic geometry, and the vertical extension h is chosen to
comprise exactly the inhomogeneous resist and all nonplanar layer parts.
Lateral discretization. Consequently, the EM field inside the simulation
domain can be expressed by Fourier expansions,
E(x) = ZZ^nm(z)e^-x+k^\ H(x) =EEHnm(^(i-,+W, (2)

n m n m

with kx^n = kx-\-n27r/a and ky^m = ky-\-m2ix/b. For off-axis illumination k%x and
ky are nonzero and determined by the angle of the incident waves. Additionally,
the inhomogeneous permittivity e(x) and its reciprocal x(x) l/¿:(x), needed
for the discretization of (1), can be expanded in Fourier series,

eto = E£enm(;<)ej2*(n*/0+my/i,), x{*) =Y,Y,Xnm{z)ei2<nxla+mylh). (3)
71 771 TI 771

Insertion of (2) and (3) into (1) transforms the partial differential equations
into an infinite set of coupled ordinary differential equations (ODEs) for the
Fourier coefficients of the lateral field components. The vertical components
can be expressed analytically by the lateral ones. Obviously, this infinite set of
ODEs cannot be solved numerically on a computer. Hence, we have to truncate
the Fourier expansions (2), i.e. we consider only coefficients {EXjnmj Eyjnmj
Hx,nrrn HyinTn}\n^¡six^m\<Ny symmetrically centered around the principal incident
ray n = m = 0. Using a matrix-vector notation the ODE system writes to

u'(z) = H{z) . u(z), u = [e* ey hx hî/]T, (4)
where the complex-valued e and h vectors hold the field's Fourier coefficients,
and the elements of the system matrix H(z) contain the Fourier coefficients of
the permittivity and its reciprocal (cf. (3)). Due to the symmetric truncation of
the Fourier sums each of the e and h vectors has dimension (2JVX+1) x (2Ny+l).
Hence, the entire ODE system is of dimension A/ODE = 4x(2JVx+l)x(2iVy+l).
Boundary conditions. Above and below the simulation domain the EM field
can be expressed by Rayleigh expansions [1], Matching the lateral components
of these expansions to the field representation (2) valid inside the simulation
domain, and eliminating the unknown reflected and outgoing wave amplitudes
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yield the sought boundary conditions on top (z = 0) and at the bottom (z = h):
Bo-u(0) = e\ BLh-u(h) = 0. (5)

The vector el comprises all incident wave amplitudes, which are assumed to
be known as they are the output of the illumination simulation. Each of the
rectangular matrices Bo and B^ has dimension NQDE/2 X ÍVQDEÍ el and 0
are iVoDE/2-dimensional vectors. Hence (5) represents exactly ÍVODE algebraic
equations as necessary for the definiteness of the ODE system (4).
Vertical Discretization. Using an explicit discretization method for the
two-point boundary value problem (4) and (5) yields a recursion formula like
n(zj+i) = Sj *u(2j) between two adjacent mesh points [4]. In the simplest case

Sj equals S3 = 1 + {z3+\ zJ)'H(z3) (Euler's method). A successive evaluation
of this recursion formula relates the two boundary points ZQ = 0 and ZNZ+I = h,

uW = (nSJj-u(0) = S-u(0), (6)
where Nz is the number of vertical discretization points. Combining this equa¬
tion with the boundary conditions (5) forms the final algebraic system for u(0),

Bo
a, s u(0) = 0 (7)

As the illuminating light is not fully coherent, the algebraic equation system
has to be solved for different incoherent incoming light orders, i.e. several right
hand sides e* have to be considered in (7). However, the system matrix has
to be calculated just once and the Fourier coefficients u(z3) at the inner mesh
points can be computed simultaneously for all incoherent orders.

Computational efficiency. The memory usage of our method is of order
Ö(^ODE) ~ °(256 x Nl x Ny)> e-g- for N* = Ny = 15 approximately 250MB
are required assuming 16 Bytes of memory for a double precision complex
number. However, this quite high memory requirement is of the same order as

other rigorous three-dimensional photolithography simulation models [5].
The numerical costs are mainly determined by the evaluation of the recursion
(6) and by the multiple solution of (7). Both operations are of order 0(NQDE).
Hence, the total run-time grows for Nt time steps, Ns incoherent incoming wave
sets and Nz vertical discretization points with ö(Nt x (Ns+Nz) x N^DE), which
lies typically under a few hours on DEC-3000/600 workstation.

3. Simulation Results and Concluding Remarks

In Figure 1 and Figure 2 we demonstrate the capability of our approach
showing a contour plot of the PAC for a planar and stepped topography,
respectively. The 0.75 ¡im x 0.75 //ra wide mask-opening is in the center of
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the 1.5/im x 1.5 (im x 1.0//m large simulation domain. The cut is along
y = 0.75 um. The actinie wavelength is 365 nm (I-line), the exposure-dose
is 120 raJIcm2. Dill's parameters are n0 = 1.65, A = 0.55 pm_1, B =

0.045 (im,-1, C = 0.013 cm2/mJ.
We have presented a rigorous three-dimensional electromagnetic simulation
method, that extends the two-dimensional differential approach [1][2]. Using
Fourier expansions the Maxwell equations are transformed to ordinary differ¬
ential equations. The resulting two-point boundary value problem is solved
with a "shooting method" like algorithm [4]. The computational efficiency
is analyzed and shown to be advantageous or at least comparable to differ¬
ent recently proposed methods [5]. The simulation program runs on common

engineering workstations with memory requirements in the range of 250 MB.

Acknowledgments. Our work is significantly supported by Austria Mikro
Systeme Internationale AG, Unterpremstätten, Austria; and Christian Doppler
Gesellschaft, Vienna, Austria.

References

[1] R. Petit, ed., Electromagnetic Theory of Gratings, Springer, 1980.
[2] M.S. Yeung, Modeling High Numerical Aperture Optical Lithography,

Proc. SPIE, vol. 922, pp. 149-167, 1988.

[3] F.H. Dill, Optical Lithography, IEEE Trans. Electron Devices, vol. 22, no. 7,
pp. 440-444, 1975.

[4] U.M. Ascher, Numerical Solution of Boundary Value Problems for Ordi¬
nary Differential Equations, SIAM: Classics in Applied Mathematics, 1995.

[5] K.D. Lucas et al., Efficient and Rigorous 3D Model for Optical Lithography
Simulation, Proc. SISDEP, vol. 6, pp. 14-17, 1995.

Figure 1 The oval contours are caused by Figure 2 Due to the vanation in optical thick-
standing waves within the photoresist, which ness the oval contours are distorted and light-
result from substrate reflections scattering into nominally unexposed parts of

the photoresist occurs.


