
A CASE-Oriented Configuration
Management Utility

W. Tuppa and S. Selberherr
Institute for Microelectronics, TU Vienna

Gu:Bhausstra:Be 27-29/E360, A-1040 Vienna, Austria/Europe
+43-1-58801 /3680 tuppa@iue.tuwien.ac.at

Abstract- Traditional make utilities usually lack the
necessary functionality for the management of multiple
configurations in one source code tree. Our CASE­
oriented configuration management utility, the Vien­
nese Make Utility (VMake) is platform-independent
and runs currently on a number of UNIX systems and
on VMS. VMake supports, in addition to common make
features, a number of CASE tasks like automatic code
generation, version management (using RCS and CVS
from a common repository), and automated high-level
source code processing features, like language bindings
between C, LISP and FORTRAN and extraction of reference
manuals. VMake maintains automatically a private
project file which contains up-to-date symbolic defini­
tions of source code files, modules, libraries, language
binding mechanisms, application executables, and all
build targets. Dependencies between these objects are
extracted from local description files or generated auto­
matically from source code files. This enforces compact
description files and allows for efficient management of
large-scale software projects. VMake is based on a
publicly available LISP interpreter[l).

J(eywords- configuration management, automatic
code generation, languages, parallelization

1 Introduction

Most of the commonly used configuration manage­
ment systems are based on the make utility by Feld­
man[2]. Extensions are made to this basic tool either
by modification of the make functionality or by pre­
processing higher-level configuration description files
to generate the low-level Makefiles required by make.
The concept of make is based in the incremental execu­
tion of rules that successively transform code objects
(files) until certain build goals are reached. The appli­
cable rules are comprised by a built-in part (default
rules) and optional extensions provided by the user.
Among popular make implementations, different fea­
tures and peculiarities arising from the close proximity
to the operating system prohibit the direct exchange
of the description files and are a subtle burden to
portable software systems. Independent of the partic­
ular implementation, a common drawback is that an
increasing number of modules complicates the main­
tenance of the project information significantly and
hence confines the application of make-based configu­
ration management to small-scale software projects.

For configuration management of the well known
large-scale X Windows System (X11), the imake util­
ity[3], a preprocessor to standard make, was created.
Using the C preprocessor, Makefiles are generated
from small description files by accessing rules and sys­
tem configuration data which are stored in additional
global files. This approach benefits from the reduction
of complexity and maintenance effort thanks to the
use of standardized higher-level rules for the descrip­
tion of the modules. imake adds at least one additional

SRCS = main.c
OBJS = main.o
LOBJS = my1.o my2.o
DEPLIBS = libmy.a

/• build library •/
NormalLibraryTarget(my,$LOBJS)
/• generate program •/
ComplexProgramTarget(myprog)

Fig. 1. Standard entry in an hnakefile

pass to the build process to create the description files
for make and doing so it deletes any saved dependency
information (which must be regenerated too) from the
Makefiles. The reduction in size of the description
files and the availability of global project information
enables the management of larger scale software sys­
tems. However, the global information consisting of
rules, system dependencies (e.g., where to find include
files and installed libraries), and definitions of global
objects (e.g., libraries), is contained in a separate set
of files, which are provided and maintained manually
by the software engineer.

Other approaches extend make by directly adding
new functionality like multiple goal evaluation at the
same time or inclusion of sub-description files (for
commonly used data). A common freely available ex­
tended make implementation is gmake from the GNU
project. Another way goes jam[4], which reads all de­
scription files, which are based on a simple language
by it's own, to generate a full dependency tree (on ev­
ery invocation) and then builds all goals in a second
pass.

The approaches mentioned are still lacking some
features needed for the efficient management of large­
scale software projects. Several advanced commercial
packages can be found which address the CASE pro­
cess as a whole and overcome most particular prob­
lems of configuration management, but the implemen­
tations are closely connected to the underlying system
and are therefore not portable among different oper­
ating systems[5].

2 VMake
VMake employs a small number of standard­

ized higher-level rules to reduce the complexity of
local module description files, but overcomes the
aforementioned insufficiencies of imake by maintain­
ing all global project information automatically in a
VMake-internal global project context file. This file
is generated from the information of the local descrip­
tion files and holds the time of the last modification
of each local description file (in addition to the time
stamps of all managed source code files) and is up­
dated automatically. Changes to the local descrip­
tion files are recognized and the (partial) regenera­
tion of the dependency information is done automat­
ically. In addition to the local project dependencies
inter project dependencies are recognized automati­
cally (only the names of required projects must be
given in the top level description file of the project).
Fig. 2 shows a VMake example description file for
the same program a:s shown in Fig. 1 by imake. Since
VMake is based on LISP, the syntax chosen is a sub­
set of LISP so that the LISP reader can be used for
parsing.

;; this defines a name £or the directory
(Module-Directory My-dir)
; ; compile main source rile
(CC-Target My-C-main :source "mymain.c")
; ; compile library objects
(CC-Target My-C-objects :source "my1.c" "my2.c")
; ; build library
(Library-Target My-C-library

:libname 11 my 11

:objects My-C-objects)
; ; generate program
(Program-Target My-C-program

: progname "myprog"
:objects My-C-main
:libraries My-C-library)

Fig. 2. Example of a VMake description file

The rule Module-Directory defines a symbolic name
for the source code directory. The CC-Target rules are
used to compile the main object and the library ob­
ject files. The object files are never named explicitly
in the description file but are referred to by a symbolic
name. This symbolic name is automatically added to
VMake's global name space and can be accessed in
any other local description file within the project (and
in other projects which depend on this project). All
files are accessed by their symbolic name which has

to be unique within all projects. In Fig. 2 the sym­
bol My-C-Main is bound to "mymain.o" under UNIX
and bound to "MYMAIN .OBJ" under VMS. Thus,
hiding the system-specific file names and other sys­
tem dependencies through symbolic names, the same
description file can be used on entirely different op­
erating systems. With the rule Library-Target a
library is generated and bound to the symbolic name
My-C-Library. The objects for the library are spec­
ified by the symbolic name My-C-objects. Further­
more, the name of the library is only given par­
tially and extended internally to "libmy.a" (UNIX) or
"LIBMY.OLB" (VMS), respectively. Since the flag
: shared is not given, this library is generated as an
archive library (if supported by the operating system
a shared library could be generated on demand). Fi­
nally the program is generated from the main object
and the library. Again the program name is defined
without extension (this is added by VMake automat­
ically). The generated executable code is automati­
cally linked (by a symbolic link, if supported by the
operating system, or a hard link) into a common di­
rectory for executables to shorten user's search path
for later execution.

make and imake-based approaches usually must
perform multiple passes over a project source tree to
reach a certain build goal, during which many possibly
non-needed objects and libraries are built. VMake
exploits the fine-grained global dependency informa­
tion to rebuild an utmost concise superset of the really
required objects. Thus, only the necessary files are
updated to speed up the rebuild cycle time. Further­
more, no unnecessary checks of non-needed files are
done (make and imake scan their description files many
times and gather just the same information in each in­
vocation). VMake allows easily to combine multiple
projects into bigger ones. In the top level description
file of VMake the engineer can specify inter project
dependencies by specyfing the symbolic names of the
required sub-projects in the actual project. The re­
quired information is automatically read by VMake
(either from a working or installed project) and depen­
dencies are checked globally over project boundaries
on demand.

3 Hiding System Dependencies

Path names, file names, compiler invocation, com­
piler options and arguments, generation of libraries
and programs, execution of applications, redirection
of input and output, error handling, and return codes
are all highly system-dependent features. VMake
encapsulates all system-dependent functionality in
generic transformation functions which map the sym­
bolic definition to actual compiler or linker system
calls, by using either a simple configuration file or by
overriding the generic functions with specific imple­
mentations for more complex tasks (e.g., for building
shared libraries under IBM's AIX operating system).

4 CASE operations

4.1 Tool Abstraction Concept

VMake uses a Tool Abstraction Concept (TAC)
for generating language bindings of functional mod­
ules and constants for different programming lan­
guages. Currently, bindings can be generated from
C to FORTRAN, from FORTRAN to C, and from C to
LISP. The automatic support of multi-language pro­
gramming has proven valuable for two reasons. First,
writing the required stub code manually is a te­
dious and error-prone task, and secondly, multi­
language interfaces between compiled languages are
highly system-dependent. Usually, language binding
is done by the programmer by writing C files with some
#ifdef/#endif pairs to generate code for the different
platforms. This works quite well under UNIX because
parameters are handled mostly the same way and only
the function naming differs. In contrast to UNIX,
VMS has a totally different handling of strings (espe­
cially under FORTRAN). In this case the stub code has
to be written in a totally different way. In addition to
this problem some other code is often integrated into
the stub, adding functionality, which does not belong
to the actual function binding. Generating the stub
code automatically (from a description) avoids both
of these problems.

The TAC module of VMake scans the source code
file (similar to a preprocessor) and extracts informa­
tion from the function definitions and special for­
mal comments, as depicted in Fig. 3. The comment
/***TF starts the definition of a TAC-able Function.
The comments after the function arguments consist
of a formal description of the argument characteris­
tics and a textual documentation part which is also
used for the documentation extraction facility.

/•••TF counts the number of occurrences of a
character Bithin a string. The start and
end of the search range can be specified
to simplify substring operations. •/

/•••R myStrChar myStrReverseChar •/
int /• [:not-ok O] •/

{

}

myStrCount(
char •str,
char ch,
int start,

int end)

/• [Ul] input string to search •/
/• [I] character to search for •/
/• [I :opt :key :default O] start

index for search •/
/• [I :default strlen(str) : opt

:key] end index for search •/

/• implementation of function •/

Fig. 3. TAC documented function

In the example in Fig. 3, all parameters are used
as input [I] and str may be given as NULL pointer
[IN]. To bind the function myStrCount to another
language, the definition is used in the description file
of the module implementation.

(Module-Directory MyModule)
(Define-TAC-Interface TAC-module

:files "mysrc.c" ; source file of function
:module 11 my 11

:source-domain C)

To generate a LISP binding for the C function
myStrCount (which is part of the module "my") some­
where else in the project tree the rule

(Create-TAC-Interface TAC-LISP-Interface
:modules 11 my 11

:target-domain VLisp)

has to be used in the description file where the lan­
guage bindings shall be generated. All the TAC in­
formation that has been extracted by VMake is tied
to the symbolic name and prefix of the module. Once
defined, this information can be used for the genera­
tion of multiple language binding interfaces. The rule

(Create-TAC-Interface TAC-FDRTRAB-Interface
:modules 11 my 11

:target-domain FDRTRAB)

is used to create a FORTRAN binding for myStrCount.
The system dependency of a leading and/or trailing
underline and the case of the function name is han­
dled automatically by VMake. The conversion of
LOGICALs, character arrays (C strings) and indices is
done between FORTRAN and C. The usage of the result­
ing LISP and FORTRAN functions is depicted in Fig. 4.

(my: :str-count str #\Space :start 5 :end 15)
; ; search for Space character Bith in limits

CHARACTER•20 STR
UlTEGER CDUBT
CALL MYSC(STR, ' ' 5, 15, CDUBT)

Fig. 4. Example of LISP and FDRTRAB call of TAC-bound C
function myStrCount

A stub code in C is generated from the extracted
information to generate the language binding between
source and target language. This stub code needs than
to be linked to the application. In the case of LISP
a single object file is generated, whereas for FORTRAN
an object library is generated to avoid the linking of
non-needed functions.

The TAC is also used for the extraction of ref­
erence manuals from the source code. A function
documented with a /***F comment, as depicted in
is parsed by VMake and a Tu\TEX reference manual
entry for that function is generated for a reference
manual.

4.2 Universal Function Generator

The Universal Function Generator (UNFUG)(6)
provides language-independent, advanced preprocess­
ing to generate repeated program code sequences with
slight variations. It uses so called template and tuple
files which are combined to produce a compilable out­
put source code file in an arbitrary programming lan­
guage. The template file consists essentially of source

code with occasional meta-strings (variables), which
are replaced with actual values from the tuple file dur­
ing the UNFUG run. In Fig. 5, the UNFUG com-

Template File Tuple File

(tuple /*start of example */
< (UseTuple 'MyTuple) >

*<name> = <value>;

' (MyTuple (name value)

<EndTuple>

I* end of example *I

Output File

/*start of example */
*first= l;

*second = 2;

*third = 3;

/* end of example */

(~first" 1)

("second" 2)

("third" 3)))

Fig. 5. Example of UNFUG generated code

mand < (UseTuple 'MyTuple) > selects the tuple to
be used with the template file (the angle brackets "<"
and ">" delimit UNFUG code). UNFUG may be
used recursively and multiple nested loops are sup­
ported. Full LISP functionality is accessible for code

. . b 1 d " (" d ")>" A t . generat10n usmg a ance < an . yp1-
cal application of UNFUG is the generation of a set
of specific functions from a generic function template
and a tuple holding the specific information.

4.3 External code generators

External code generators (like yacc and lex) are
directly supported by the two rules Yacc-Target and
Lex-Target. The code generator used should be avail­
able on all supported platforms of the project (if not,
the generated code is copied to a release too, but can­
not be regenerated from a modified source later). The
generated files are protected against modification by
making them read-only. Also the output base file­
name is the same as the input file to avoid name con­
flicts with multiple generated parsers.

4.4 Software Installation

To build a software release, all modules of a project
must be installed under an installation directory. As
VMake knows all global include files, public libraries,
and executable programs it can automatically put
them into respective installation directories. Only for
additional installable, otherwise unmanaged files (like
READ ME files and data files) a dedicated installation
directory must be specified in the module description
file. In addition to the installed files, VMake creates
an installation project file which can be imported from
other projects as a dependent project.

4.5 Release/Patch Generation

VMake supports source code level releases and
patches between releases. The basic process is similar
to the software installation, but a full second instance
of the managed source code is created. For later patch

generation a save file is generated with size/time in­
formation of the released files. For a patch this in­
formation is compared to the actual working infor­
mation and used to find all changed, new and deleted
files. The patch information is stored in the patch file,
which can be applied by VMake to update a release
by using the update option. During patch generation
the save file and the release are updated. So in ad­
dition to the patch file, a full, patched release tree is
generated.

4.6 Version Management Interface

VMake supports the Concurrent Version Sys­
tem[7], a public-domain version management system
based on RCS[8]. VMake reads CVS' special files and
upon request, prints lists of all source files modified
with respect to the repository, and of all files not cur­
rently checked in, and of all files under control of CVS
but not known to VMake. This automatism helps to
detect and avoid version/ configuration management
inconsistencies in an early stage of the software pro­
duction process (e.g., before the test phase). On re­
quest VMake asks the user to commit all changed
source files (a modification description is required and
put into the repository for logging), inserts new files
into the repository and removes non-needed files due
to changed sources. This feature is very useful when
several people are working on the same or dependent
projects to garantee a consistent repository.

5 Using VMake

VMake operates in both batch and interactive
mode. The batch mode is similar to the make opera­
tion. After a build goal has been reached, VMake ter­
minates. This is useful when VMake is controlled by
another program, like automatic (overnight) scripts
that check out the current version of a project, com­
pile it, and perform all self-tests. The interactive
mode is used by programmers during program de­
velopment. After VMake is started and the global
context file has been loaded, commands are read from
stdin and are executed consecutively. If an error oc­
curs, VMake reenters the interactive loop.

5.1 Operation

Similar to make, VMake uses a "depth first" al­
gorithm[2]. VMake stores the source file meta data
in a tree which is identical to the project directory
tree. Each source file is a node in the tree. Include
files, object files, libraries and executables are added
in their respective position into the dependency tree.
In contrast to make, VMake treats include files and
all other implicitly managed files the same way as the
files appearing explicitly in VMake rules. To ver­
ify a goal, VMake takes the list of all subgoals on
which the current goal depends and recursively eval­
uates each subgoal (without creating a new process
in contrast to make which creates for every directory

level at least one process). While checking the de­
pendencies VMake executes any goal in background
(automatic code generation, language binding, compi­
lation, etc.) and parallelizes the build process over a
workstation cluster (using remote shells under UNIX
and the batch queuing system under VMS). The max­
imum number of jobs/workstation can be specified.
This speeds up the build process significantly typically
(by a factor of 4, using seven DEC Alpha workstations
compared to local execution).

Since the entire dependency and actuality infor­
mation is available during the evaluation of goals,
VMake suffices with a single pass (in contrast to
imake and make which usually require multiple runs
to reach a certain build goal) and rebuilds only the
required files. Due to this strategy, VMake is signif­
icantly more efficient than make, whenever the source
code involved is spread around several different di­
rectories. In contrast to most make based configu­
ration management systems, VMake uses only one
process for all dependency checking and uses only a
single subprocess per operation. This helps to save
resources which is important for restrictive operating
system configurations.

5.2 Rules and Goals

Rules contained in module description files declare
source files and possible goals and define explicit rela­
tionships between all files of a module, as well as inter­
module relationships. Despite the intentionally small
set of rules offered, the implied semantics and eventu­
ally the actions taken by VMake are quite extensive.
Currently VMake needs only 28 different rules to de­
fine all dependencies from sources to build goals. A
build goal is either a single file (any object file, auto­
generated source file, library, executable, self-test out­
put file, etc.) which may be specified with its system
dependent name or its symbolic name, or one of the
more complex predefined goals, e.g. the well known
goals "all" or "clean".

6 Conclusion

Platform independence has been one of the major
design requirements for VMake. Only an ANSI C
compiler to compile the LISP interpreter is required
for porting VMake to another platform. It is cur­
rently running on VMS (VAX and ALPHA systems) and
7 different UNIX systems.

The presented one-pass concept for building soft­
ware projects, due to an open and extensible architec­
ture and due to the consequent utilization of LISP­
features, offers a functionality which goes beyond the
scope of the sole building process. The integration
of CASE utilities for source code verification, main­
tenance and formal verification is a straightforward
task and yields a homogeneous tool which is centered
around the classical "rule, target, and goal" philoso­
phy of the make process.

6.1 Current Usage

VMake is currently used to manage the Viennese
Integrated System for Technology CAD (VISTA[9])
which consists of about 18M-Byte source code (in
C, FORTRAN and LISP), or almost 650K-Lines of
code (75kLines thereof are generated automatically
by VMake) by UNFUG[6] and TAC. Within VISTA,
VMake manages 40 libraries and 30 executables in
multiple dependent projects. Several foreign source
code modules which have been contributed from dif­
ferent institutions have been successfully integrated in
the portable build process.

Acknowledgements

The presented work has been sponsored by the re­
search laboratories of AUSTRIA MIKRO SYSTEMS
at Unterpremstiitten, Austria; DIGITAL EQUIP­
MENT at Hudson, USA; HITACHI at Tokyo, Japan;
MOTOROLA at Austin, USA; NATIONAL SEMI­
CONDUCTOR at Santa Clara, USA; SIEMENS at
Munich, FRG; and SONY at Atsugi, Japan, and by
the "Forschungsforderungsfonds fiir die gewerbliche
Wirtschaft", project 2/285 and project 2/299, as
part of ADEQUAT (JESSI project BTlB), ESPRIT
project 7236, and by ADEQUAT II (JESSI project
BTll), ESPRIT project 8002.

References
(1] D. M. Betz,

XLISP: An Object-oriented LISP,
Version 2.0, Peterborough, NH, 1988.

[2] S. I. Feldman
Make - A Program for Maintaining Computer Pro­
grams Software - Practice and Experience, Vol.9,
p.255-265, 1979

[3] T. Brunhoff, J. Folton
imake - C preprocessor interface to the make utility
XllR4, X11R5 and X11R6 release

[4] C. Seiwald
JAM - Make(l)redux Version 2.00
Jam(l) and Jambase(5) manual pages, Volume47,
comp.sources.unix archive, 1995.

[5] Spectrum staff
The case for CASE tools
IEEE Spectrum, Vol.27, p.78-81, November 1990

[6] F. Fasching

(7]

[8]

[9]

Viennese Integrated System for Technology CAD Ap­
plications - Data Level Design and Implementation
Dissertation, TU Vienna, 1994
Osterr. Kunst- und Kulturverlag, Vienna, ISBN 3-
85437-093-8
P. Cederqvist
Version Management with CVS
documentation for cvs 1.3.1, last updated 5.April 1993,
FTP-able from ftp.think.com
W. F. Tichy
RCS - A System for Version Control
Software - Practice and Experience, Vol.15(7), p.637-
654, 1985
S. Selberherr, F. Fasching, C. Fischer, S. Halama,
H. Pimingstorfer, H. Read, H. Stippel, P. Verhas,
K. Wimmer
The Viennese TOAD System
Proc.lnt. Workshop on VLSI Process and Device Mod­
eling, Oiso, Japan 1991

