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Abstract- Traditional make utilities usually lack the 
necessary functionality for the management of multiple 
configurations in one source code tree. Our CASE­
oriented configuration management utility, the Vien­
nese Make Utility (VMake) is platform-independent 
and runs currently on a number of UNIX systems and 
on VMS. VMake supports, in addition to common make 
features, a number of CASE tasks like automatic code 
generation, version management (using RCS and CVS 
from a common repository), and automated high-level 
source code processing features, like language bindings 
between C, LISP and FORTRAN and extraction of reference 
manuals. VMake maintains automatically a private 
project file which contains up-to-date symbolic defini­
tions of source code files, modules, libraries, language 
binding mechanisms, application executables, and all 
build targets. Dependencies between these objects are 
extracted from local description files or generated auto­
matically from source code files. This enforces compact 
description files and allows for efficient management of 
large-scale software projects. VMake is based on a 
publicly available LISP interpreter[l). 

J( eywords- configuration management, automatic 
code generation, languages, parallelization 

1 Introduction 

Most of the commonly used configuration manage­
ment systems are based on the make utility by Feld­
man[2]. Extensions are made to this basic tool either 
by modification of the make functionality or by pre­
processing higher-level configuration description files 
to generate the low-level Makefiles required by make. 
The concept of make is based in the incremental execu­
tion of rules that successively transform code objects 
(files) until certain build goals are reached. The appli­
cable rules are comprised by a built-in part (default 
rules) and optional extensions provided by the user. 
Among popular make implementations, different fea­
tures and peculiarities arising from the close proximity 
to the operating system prohibit the direct exchange 
of the description files and are a subtle burden to 
portable software systems. Independent of the partic­
ular implementation, a common drawback is that an 
increasing number of modules complicates the main­
tenance of the project information significantly and 
hence confines the application of make-based configu­
ration management to small-scale software projects. 

For configuration management of the well known 
large-scale X Windows System (X11), the imake util­
ity[3], a preprocessor to standard make, was created. 
Using the C preprocessor, Makefiles are generated 
from small description files by accessing rules and sys­
tem configuration data which are stored in additional 
global files. This approach benefits from the reduction 
of complexity and maintenance effort thanks to the 
use of standardized higher-level rules for the descrip­
tion of the modules. imake adds at least one additional 

SRCS = main.c 
OBJS = main.o 
LOBJS = my1.o my2.o 
DEPLIBS = libmy.a 

/• build library •/ 
NormalLibraryTarget(my,$LOBJS) 
/• generate program •/ 
ComplexProgramTarget(myprog) 

Fig. 1. Standard entry in an hnakefile 

pass to the build process to create the description files 
for make and doing so it deletes any saved dependency 
information (which must be regenerated too) from the 
Makefiles. The reduction in size of the description 
files and the availability of global project information 
enables the management of larger scale software sys­
tems. However, the global information consisting of 
rules, system dependencies (e.g., where to find include 
files and installed libraries), and definitions of global 
objects (e.g., libraries), is contained in a separate set 
of files, which are provided and maintained manually 
by the software engineer. 

Other approaches extend make by directly adding 
new functionality like multiple goal evaluation at the 
same time or inclusion of sub-description files (for 
commonly used data). A common freely available ex­
tended make implementation is gmake from the GNU 
project. Another way goes jam[4], which reads all de­
scription files, which are based on a simple language 
by it's own, to generate a full dependency tree (on ev­
ery invocation) and then builds all goals in a second 
pass. 



The approaches mentioned are still lacking some 
features needed for the efficient management of large­
scale software projects. Several advanced commercial 
packages can be found which address the CASE pro­
cess as a whole and overcome most particular prob­
lems of configuration management, but the implemen­
tations are closely connected to the underlying system 
and are therefore not portable among different oper­
ating systems[5]. 

2 VMake 
VMake employs a small number of standard­

ized higher-level rules to reduce the complexity of 
local module description files, but overcomes the 
aforementioned insufficiencies of imake by maintain­
ing all global project information automatically in a 
VMake-internal global project context file. This file 
is generated from the information of the local descrip­
tion files and holds the time of the last modification 
of each local description file (in addition to the time 
stamps of all managed source code files) and is up­
dated automatically. Changes to the local descrip­
tion files are recognized and the (partial) regenera­
tion of the dependency information is done automat­
ically. In addition to the local project dependencies 
inter project dependencies are recognized automati­
cally (only the names of required projects must be 
given in the top level description file of the project). 
Fig. 2 shows a VMake example description file for 
the same program a:s shown in Fig. 1 by imake. Since 
VMake is based on LISP, the syntax chosen is a sub­
set of LISP so that the LISP reader can be used for 
parsing. 

;; this defines a name £or the directory 
(Module-Directory My-dir) 
; ; compile main source rile 
(CC-Target My-C-main :source "mymain.c") 
; ; compile library objects 
(CC-Target My-C-objects :source "my1.c" "my2.c") 
; ; build library 
(Library-Target My-C-library 

:libname 11 my 11 

:objects My-C-objects) 
; ; generate program 
(Program-Target My-C-program 

: progname "myprog" 
:objects My-C-main 
:libraries My-C-library) 

Fig. 2. Example of a VMake description file 

The rule Module-Directory defines a symbolic name 
for the source code directory. The CC-Target rules are 
used to compile the main object and the library ob­
ject files. The object files are never named explicitly 
in the description file but are referred to by a symbolic 
name. This symbolic name is automatically added to 
VMake's global name space and can be accessed in 
any other local description file within the project (and 
in other projects which depend on this project). All 
files are accessed by their symbolic name which has 

to be unique within all projects. In Fig. 2 the sym­
bol My-C-Main is bound to "mymain.o" under UNIX 
and bound to "MYMAIN .OBJ" under VMS. Thus, 
hiding the system-specific file names and other sys­
tem dependencies through symbolic names, the same 
description file can be used on entirely different op­
erating systems. With the rule Library-Target a 
library is generated and bound to the symbolic name 
My-C-Library. The objects for the library are spec­
ified by the symbolic name My-C-objects. Further­
more, the name of the library is only given par­
tially and extended internally to "libmy.a" (UNIX) or 
"LIBMY.OLB" (VMS), respectively. Since the flag 
: shared is not given, this library is generated as an 
archive library (if supported by the operating system 
a shared library could be generated on demand). Fi­
nally the program is generated from the main object 
and the library. Again the program name is defined 
without extension (this is added by VMake automat­
ically). The generated executable code is automati­
cally linked (by a symbolic link, if supported by the 
operating system, or a hard link) into a common di­
rectory for executables to shorten user's search path 
for later execution. 

make and imake-based approaches usually must 
perform multiple passes over a project source tree to 
reach a certain build goal, during which many possibly 
non-needed objects and libraries are built. VMake 
exploits the fine-grained global dependency informa­
tion to rebuild an utmost concise superset of the really 
required objects. Thus, only the necessary files are 
updated to speed up the rebuild cycle time. Further­
more, no unnecessary checks of non-needed files are 
done (make and imake scan their description files many 
times and gather just the same information in each in­
vocation). VMake allows easily to combine multiple 
projects into bigger ones. In the top level description 
file of VMake the engineer can specify inter project 
dependencies by specyfing the symbolic names of the 
required sub-projects in the actual project. The re­
quired information is automatically read by VMake 
(either from a working or installed project) and depen­
dencies are checked globally over project boundaries 
on demand. 

3 Hiding System Dependencies 

Path names, file names, compiler invocation, com­
piler options and arguments, generation of libraries 
and programs, execution of applications, redirection 
of input and output, error handling, and return codes 
are all highly system-dependent features. VMake 
encapsulates all system-dependent functionality in 
generic transformation functions which map the sym­
bolic definition to actual compiler or linker system 
calls, by using either a simple configuration file or by 
overriding the generic functions with specific imple­
mentations for more complex tasks (e.g., for building 
shared libraries under IBM's AIX operating system). 



4 CASE operations 

4.1 Tool Abstraction Concept 

VMake uses a Tool Abstraction Concept (TAC) 
for generating language bindings of functional mod­
ules and constants for different programming lan­
guages. Currently, bindings can be generated from 
C to FORTRAN, from FORTRAN to C, and from C to 
LISP. The automatic support of multi-language pro­
gramming has proven valuable for two reasons. First, 
writing the required stub code manually is a te­
dious and error-prone task, and secondly, multi­
language interfaces between compiled languages are 
highly system-dependent. Usually, language binding 
is done by the programmer by writing C files with some 
#ifdef/#endif pairs to generate code for the different 
platforms. This works quite well under UNIX because 
parameters are handled mostly the same way and only 
the function naming differs. In contrast to UNIX, 
VMS has a totally different handling of strings ( espe­
cially under FORTRAN). In this case the stub code has 
to be written in a totally different way. In addition to 
this problem some other code is often integrated into 
the stub, adding functionality, which does not belong 
to the actual function binding. Generating the stub 
code automatically (from a description) avoids both 
of these problems. 

The TAC module of VMake scans the source code 
file (similar to a preprocessor) and extracts informa­
tion from the function definitions and special for­
mal comments, as depicted in Fig. 3. The comment 
/***TF starts the definition of a TAC-able Function. 
The comments after the function arguments consist 
of a formal description of the argument characteris­
tics and a textual documentation part which is also 
used for the documentation extraction facility. 

/•••TF counts the number of occurrences of a 
character Bithin a string. The start and 
end of the search range can be specified 
to simplify substring operations. •/ 

/•••R myStrChar myStrReverseChar •/ 
int /• [:not-ok O] •/ 

{ 

} 

myStrCount( 
char •str, 
char ch, 
int start, 

int end) 

/• [Ul] input string to search •/ 
/• [I] character to search for •/ 
/• [I :opt :key :default O] start 

index for search •/ 
/• [I :default strlen(str) : opt 

:key] end index for search •/ 

/• implementation of function •/ 

Fig. 3. TAC documented function 

In the example in Fig. 3, all parameters are used 
as input [I] and str may be given as NULL pointer 
[IN]. To bind the function myStrCount to another 
language, the definition is used in the description file 
of the module implementation. 

(Module-Directory MyModule) 
(Define-TAC-Interface TAC-module 

:files "mysrc.c" ; source file of function 
:module 11 my 11 

:source-domain C) 

To generate a LISP binding for the C function 
myStrCount (which is part of the module "my") some­
where else in the project tree the rule 

(Create-TAC-Interface TAC-LISP-Interface 
:modules 11 my 11 

:target-domain VLisp) 

has to be used in the description file where the lan­
guage bindings shall be generated. All the TAC in­
formation that has been extracted by VMake is tied 
to the symbolic name and prefix of the module. Once 
defined, this information can be used for the genera­
tion of multiple language binding interfaces. The rule 

(Create-TAC-Interface TAC-FDRTRAB-Interface 
:modules 11 my 11 

:target-domain FDRTRAB) 

is used to create a FORTRAN binding for myStrCount. 
The system dependency of a leading and/or trailing 
underline and the case of the function name is han­
dled automatically by VMake. The conversion of 
LOGICALs, character arrays ( C strings) and indices is 
done between FORTRAN and C. The usage of the result­
ing LISP and FORTRAN functions is depicted in Fig. 4. 

(my: :str-count str #\Space :start 5 :end 15) 
; ; search for Space character Bith in limits 

CHARACTER•20 STR 
UlTEGER CDUBT 
CALL MYSC(STR, ' ' 5, 15, CDUBT) 

Fig. 4. Example of LISP and FDRTRAB call of TAC-bound C 
function myStrCount 

A stub code in C is generated from the extracted 
information to generate the language binding between 
source and target language. This stub code needs than 
to be linked to the application. In the case of LISP 
a single object file is generated, whereas for FORTRAN 
an object library is generated to avoid the linking of 
non-needed functions. 

The TAC is also used for the extraction of ref­
erence manuals from the source code. A function 
documented with a /***F comment, as depicted in 
is parsed by VMake and a Tu\TEX reference manual 
entry for that function is generated for a reference 
manual. 

4.2 Universal Function Generator 

The Universal Function Generator (UNFUG)(6) 
provides language-independent, advanced preprocess­
ing to generate repeated program code sequences with 
slight variations. It uses so called template and tuple 
files which are combined to produce a compilable out­
put source code file in an arbitrary programming lan­
guage. The template file consists essentially of source 



code with occasional meta-strings (variables), which 
are replaced with actual values from the tuple file dur­
ing the UNFUG run. In Fig. 5, the UNFUG com-

Template File Tuple File 

(tuple /*start of example */ 
< (UseTuple 'MyTuple) > 

*<name> = <value>; 

' (MyTuple (name value) 

<EndTuple> 

I* end of example *I 

Output File 

/*start of example */ 
*first= l; 

*second = 2; 

*third = 3; 

/* end of example */ 

(~first" 1) 

("second" 2) 

("third" 3))) 

Fig. 5. Example of UNFUG generated code 

mand < (UseTuple 'MyTuple) > selects the tuple to 
be used with the template file (the angle brackets "<" 
and ">" delimit UNFUG code). UNFUG may be 
used recursively and multiple nested loops are sup­
ported. Full LISP functionality is accessible for code 

. . b 1 d " (" d ")>" A t . generat10n usmg a ance < an . yp1-
cal application of UNFUG is the generation of a set 
of specific functions from a generic function template 
and a tuple holding the specific information. 

4.3 External code generators 

External code generators (like yacc and lex) are 
directly supported by the two rules Yacc-Target and 
Lex-Target. The code generator used should be avail­
able on all supported platforms of the project (if not, 
the generated code is copied to a release too, but can­
not be regenerated from a modified source later). The 
generated files are protected against modification by 
making them read-only. Also the output base file­
name is the same as the input file to avoid name con­
flicts with multiple generated parsers. 

4.4 Software Installation 

To build a software release, all modules of a project 
must be installed under an installation directory. As 
VMake knows all global include files, public libraries, 
and executable programs it can automatically put 
them into respective installation directories. Only for 
additional installable, otherwise unmanaged files (like 
READ ME files and data files) a dedicated installation 
directory must be specified in the module description 
file. In addition to the installed files, VMake creates 
an installation project file which can be imported from 
other projects as a dependent project. 

4.5 Release/Patch Generation 

VMake supports source code level releases and 
patches between releases. The basic process is similar 
to the software installation, but a full second instance 
of the managed source code is created. For later patch 

generation a save file is generated with size/time in­
formation of the released files. For a patch this in­
formation is compared to the actual working infor­
mation and used to find all changed, new and deleted 
files. The patch information is stored in the patch file, 
which can be applied by VMake to update a release 
by using the update option. During patch generation 
the save file and the release are updated. So in ad­
dition to the patch file, a full, patched release tree is 
generated. 

4.6 Version Management Interface 

VMake supports the Concurrent Version Sys­
tem[7], a public-domain version management system 
based on RCS[8]. VMake reads CVS' special files and 
upon request, prints lists of all source files modified 
with respect to the repository, and of all files not cur­
rently checked in, and of all files under control of CVS 
but not known to VMake. This automatism helps to 
detect and avoid version/ configuration management 
inconsistencies in an early stage of the software pro­
duction process (e.g., before the test phase). On re­
quest VMake asks the user to commit all changed 
source files (a modification description is required and 
put into the repository for logging), inserts new files 
into the repository and removes non-needed files due 
to changed sources. This feature is very useful when 
several people are working on the same or dependent 
projects to garantee a consistent repository. 

5 Using VMake 

VMake operates in both batch and interactive 
mode. The batch mode is similar to the make opera­
tion. After a build goal has been reached, VMake ter­
minates. This is useful when VMake is controlled by 
another program, like automatic (overnight) scripts 
that check out the current version of a project, com­
pile it, and perform all self-tests. The interactive 
mode is used by programmers during program de­
velopment. After VMake is started and the global 
context file has been loaded, commands are read from 
stdin and are executed consecutively. If an error oc­
curs, VMake reenters the interactive loop. 

5.1 Operation 

Similar to make, VMake uses a "depth first" al­
gorithm[2]. VMake stores the source file meta data 
in a tree which is identical to the project directory 
tree. Each source file is a node in the tree. Include 
files, object files, libraries and executables are added 
in their respective position into the dependency tree. 
In contrast to make, VMake treats include files and 
all other implicitly managed files the same way as the 
files appearing explicitly in VMake rules. To ver­
ify a goal, VMake takes the list of all subgoals on 
which the current goal depends and recursively eval­
uates each subgoal (without creating a new process 
in contrast to make which creates for every directory 



level at least one process). While checking the de­
pendencies VMake executes any goal in background 
(automatic code generation, language binding, compi­
lation, etc.) and parallelizes the build process over a 
workstation cluster (using remote shells under UNIX 
and the batch queuing system under VMS). The max­
imum number of jobs/workstation can be specified. 
This speeds up the build process significantly typically 
(by a factor of 4, using seven DEC Alpha workstations 
compared to local execution). 

Since the entire dependency and actuality infor­
mation is available during the evaluation of goals, 
VMake suffices with a single pass (in contrast to 
imake and make which usually require multiple runs 
to reach a certain build goal) and rebuilds only the 
required files. Due to this strategy, VMake is signif­
icantly more efficient than make, whenever the source 
code involved is spread around several different di­
rectories. In contrast to most make based configu­
ration management systems, VMake uses only one 
process for all dependency checking and uses only a 
single subprocess per operation. This helps to save 
resources which is important for restrictive operating 
system configurations. 

5.2 Rules and Goals 

Rules contained in module description files declare 
source files and possible goals and define explicit rela­
tionships between all files of a module, as well as inter­
module relationships. Despite the intentionally small 
set of rules offered, the implied semantics and eventu­
ally the actions taken by VMake are quite extensive. 
Currently VMake needs only 28 different rules to de­
fine all dependencies from sources to build goals. A 
build goal is either a single file (any object file, auto­
generated source file, library, executable, self-test out­
put file, etc.) which may be specified with its system 
dependent name or its symbolic name, or one of the 
more complex predefined goals, e.g. the well known 
goals "all" or "clean". 

6 Conclusion 

Platform independence has been one of the major 
design requirements for VMake. Only an ANSI C 
compiler to compile the LISP interpreter is required 
for porting VMake to another platform. It is cur­
rently running on VMS (VAX and ALPHA systems) and 
7 different UNIX systems. 

The presented one-pass concept for building soft­
ware projects, due to an open and extensible architec­
ture and due to the consequent utilization of LISP­
features, offers a functionality which goes beyond the 
scope of the sole building process. The integration 
of CASE utilities for source code verification, main­
tenance and formal verification is a straightforward 
task and yields a homogeneous tool which is centered 
around the classical "rule, target, and goal" philoso­
phy of the make process. 

6.1 Current Usage 

VMake is currently used to manage the Viennese 
Integrated System for Technology CAD (VISTA[9]) 
which consists of about 18M-Byte source code (in 
C, FORTRAN and LISP), or almost 650K-Lines of 
code (75kLines thereof are generated automatically 
by VMake) by UNFUG[6] and TAC. Within VISTA, 
VMake manages 40 libraries and 30 executables in 
multiple dependent projects. Several foreign source 
code modules which have been contributed from dif­
ferent institutions have been successfully integrated in 
the portable build process. 
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