
A Configuration Management Utility with
CASE-Orientation

W. Tuppa and S. Selberherr
Institute for Microelectronics, TU Vienna

Gu:fShausstralSe 27-29/E360, A-1040 Vienna, Austria/Europe
Phone: +43-1-58801/3680 Fax: +43-1-5059224

Email: tuppa@iue.tuwien.ac.at

Abstract:
Traditional make utilities usually lack the necessary func­
tionality for the management of multiple configurations in one
source code tree. OUr CASE-oriented configuration management
utility, the Viennese Make Utility (VMake) is platform-independent
and runs currently on a number of UNIX systems and on VMS. It
supports, in addition to conman make features, a number of CASE
tasks like automatic code generation, version management (using
RCS and CVS), and automated high-level source code processing
features, like language bindings between C, FORTRAN and LISP. To
foster re-use of source code modules, the proper modularization is
verified by VMake. The tool maintains automatically a private
project file which contains up-to-date symbolic definitions of
source code files, modules, libraries, language binding
mechanisms, application executables, and all build targets.
Dependencies between these objects are extracted from local
description files or generated automatically from source code
files. This enforces corrpact description files and allows for
efficient management of large-scale software projects. VMake is
based on a publicly available LISP interpreter[l].

Keywords:
configuration management, automatic code generation, languages,
parallelization

1. Introduction

Most of the corrrnonly used configuration management systems are
based on the make utility by S.I.Feldman[2]. Extensions are made
to this basic tool either by modification of the make
functionality or by preprocessing higher-level configuration
description files to generate the low-level Makefiles required by
make. The concept of make is based in the incremental execution of
rules that successively transform code objects (files) until
certain build goals are reached. The applicable rules are
corrprised by a built-in part (default rules) and optional
extensions provided by the user. Among popular make
irrplementations, different features and peculiarities arising from
the close proximity to the operating system prohibit the direct
exchange of the description files and are a subtle burden to
portable software systems. The description files for two prominent

examples, a generic UNIX make, and the VMS MMS utility are shown
in Fig. 1.

PRCGRAM = myprog
MAIN = myrrain. o
OBJECI'S = IT\Yl . o IT\Y2 . o
LIBRARY = lil:my.a
generate program
$(PRCGRAM): $(MAIN) $(LIBRARY)

cc -o $(PRCGRAM) $(MAIN)
$(LIBRARY)
build library
$(LIBRARY): $(OBJECI'S)

ar -alcvs $(LIBRARY)
$ (OBJECI'S)
additional dependencies
generated by rnakedepend
myrrain. C : IT\YllC . h
IT\Yl. C : IT\YllC . h
IT\Y2 . C : IT\YllC . h

PRCGRAM = MYPRCG.EXE
MAIN = MYMAIN. OBJ
OBJECI'S = MYl. OBJ, MY2 . OBJ
LIBRARY = LIBMY.OLB
generate program
$(PRCGRAM) : $(MAIN) $(LIBRARY)

LINK /EXE=$ (PRCGRAM)
$(MAIN),$(LIBRARY)
build library
$(LIBRARY) : $(0BJECI'S)

LIB/CREATE $(LIBRARY) $(0BJECI'S)
additional dependencies
MYMAIN.C : MYINC.H
MYl.C MYINC.H
MY2.C : MYINC.H

Fig. 1 Simple make and MMS description file

Independent of the particular implementation, a cormnon drawl:::>ack is
that an increasing number of modules complicates the maintenance
of the project information significantly and hence confines the
application of make-l:::>ased configuration management to small-scale
software projects.
For configuration management of the large-scale X Windows System
(Xll), the imake utility[3], a preprocessor to standard make, was
created. Using the C preprocessor, Makefiles are generated from
small description files by accessing rules and system
configuration data are stored in additional glol:::>al files. 'This
approach benefits from the reduction of complexity and maintenance
effort thanks to the use of standardized higher-level rules for
the description of the modules.

SRCS = rrain. c
OBJS = rrain.o
LOB.JS = IT\Yl. o IT\Y2 . o IT\Y3 . o
DEPLIBS = lil:my.a

/* build library */
NonralLibraryTarget(IT\Y,$LOB.JS)
/* generate program */
CorrplexPrograrrtrarget(myprog)

Fig. 2 Standard entry in an Imakefile

Imake adds at least one additional pass to the build process to
create the description files for make and doing so it deletes any
saved dependency information (which must be regenerated too) . 'Ihe
reduction in size of the description files and the availability of
glol:::>al project information enables the management of larger
software systems. However, the glol:::>al information consisting of
rules, system dependencies and definitions of glol:::>al objects, is
contained in a separate set of files, which are provided and
maintained manually by the software engineer.
Other approaches extend make by directly adding new functionality
like multiple goal evaluation at the same time or inclusion of
sub-description files. A cormnon extended make implementation is

gmake from the GNU project[4]. Another way goes jam [5] , which
reads all description files, which are based on a simple language
by it's own, to generate a full dependency tree (on every
invocation) and then builds all goals in a second pass.
'I1he approaches mentioned are still lacking some features needed
for the efficient management of large-scale software projects[6].
Several advanced comnercial packages [7 J address the CASE process
as a whole and overcome most particular problems of configuration
management, but the implementations are closely connected to the
underlying system and are therefore not portable among different
operating systems.

2. VMake

VMake employs a small number of standardized higher-level rules to
reduce the complexity of local module description files, but
overcomes the aforementioned insufficiencies of imake by
maintaining all global project information automatically in a
\I.Make-internal per project global context file. 'I1his file is
generated from the information of the local description files.
Changes to the local description files are recognized and the
(partial) regeneration of the dependency information is done
automatically. In addition to the local project dependencies inter
project dependencies are recognized (only the names of required
projects must be given in the top level description file of the
project). Fig. 3 shows a VMake description file for the program
shown in Fig. 1 and Fig. 2. Since VMake is based on LISP, the same
syntax is chosen so that the LISP reader can be used for parsing.

; this defines a narre for the directory
(Module-Directory My-dir)
; ; corrpile rrain source file
(CC-Target My-C-rrain : source "reyrrain. c")
; ; corrpile library objects
(CC-Target My-C-objects :source "myl.c" "my2.c")
; ; build library
(Library-Target My-C-library

:libnarre "my" :objects My-C-objects)
; ; generate program
(Program-Target My-C-program

:prognarre ''myprog''
: objects My-C-rrain : libraries My-C-library)

Fig. 3 Example of a VMake description file

'I1he rule Module-Directory defines a symbolic name for the source
code directory. 'I1he CC-Target rules are used to compile the main
object and the library object files. 'I1he object files are never
named explicitly in the description file but are referred to by a
symbolic name. All files are accessed by their symbolic name,
which has to be unique within all projects. In Fig. 3 the symbol
'My-C-Main' is bound to "mymain.o" under UNIX and bound to
"MYMAiliJ. OBJ" under VMS. 'I1hus, hiding the system-specific file
names and other system dependencies through symbolic names, the
same description file can be used on entirely different operating
systems. With the rule Library-Target a library is generated and
bound to the symbolic name 'My-C-Library'. 'I1he objects for the

library are specified by the symbolic name ' My-C-Objects'. Finally
the program is generated from the main object and the library. The
generated executable code is automatically linked (by a symbolic
link, if supported by the operating system, or a hard link) into a
cormnon directory for executables to shorten user's search path.
Make and imake-based approaches usually must perform multiple
passes over a project source tree to reach a certain build goal,
during which many possibly unneeded objects and libraries are
built. VMake exploits the fine-grained global dependency
infonnation to rebuild an utmost concise superset of the really
required objects. Thus, only the necessary files are updated to
speed up the rebuild cycle time. Furthermore, no unnecessary
checks of unneeded files are done (make and imake scan their
description files many times and gather just the same infonnation
in each invocation) . VMake allows easily to combine multiple
projects into bigger ones. In the top level description file of
VMake the engineer can specify inter project dependencies by
specifying the symbolic names of the required sub-projects in the
actual project . The required information is automatically read by
VMake (either from a working or installed project) and
dependencies are checked globally over project boundaries.

2.1 Hiding System Dependencies

VMake encapsulates all system-dependent functionality in generic
transfo:rmation functions which map the symbolic definition to
actual compiler or linker calls, using either a simple
configuration file or by overriding the generic functions with
specific implementations for more complex tasks (e.g . , for
building shared libraries under IBM's AIX operating system). To
keep system-dependent files apart from the source code and to
enable program building for multiple platf arm or project
configurations within a single source code tree, VMake stores all
compiled object files, libraries, executables, etc. , in conf ig­
uration-dependent subdirectories in the source code tree. Only
source code files and configuration-independent code is stored in
the actual source directories and shared between different
configurations . Automatically generated code is marked read-only
to prevent accidental changes by the prograrmner.

3 • CASE Operations

3.1 Tool Abstraction Concept

VMake uses a Tool Abstraction Concept (TAC) for generating
language bindings of functional modules and constants for
different prograrmning languages . Currently, bindings can be
generated between C and FORTRAN and from C to LISP. The automatic
support of multi-language prograrcming has proven valuable for two
reasons. First, writing the required stub code manually is a
tedious and error-prone task and secondly, multi-language
interfaces between compiled languages are highly system-dependent.
Usually, language binding is done by the prograrmner by writing C
files with some #ifdef/#endif pairs to generate code for the

different platforms. In addition to this problem some other code
is often integrated into the stub, adding functionality, which
does not belong to the actual function binding. Generating the
stub code automatically (from a description) avoids both of these
problems . The TAC module of VMake scans the source code file
(similar to a preprocessor) and extracts information from the
function definitions and special formal comments, as depicted in
Fig. 4. The comment /***TF starts the definition of a TAC-able
Function. The comments after the function arguments consist of a
formal description of the argument characteristics and a textual
documentation part.

/***'IF counts the number of occurrences of a character
within a string. The start and end of the search
range can be specified to sinplify substring
operations . *I

/***R myStrChar rf\YStrReverseChar */
int /* [:not-ok OJ *I
rf\YStrCount(char *str, /* [IN] input string to search */

char ch, /* [I] character to search for */
int start, /* [I :opt :key :default OJ

start index for search */
int end) /* [I :opt :key :default

strlen(str)] end index for
search */

/* inplerrentation of function */

Fig. 4 TAC documented function

In the exarrple in Fig. 4, all parameters are used as input ([I])
and the parameter "str" may be given as NULL pointer ([DJ]) . To
bind the function "myStrCount" to another language, the definition

(Module-Directory MyModule)
(Define-TAC-Interface TAC-module

:files "mysrc.c" ; source file of function
:module "my" :source-donain C)

is used in the description file of the module irrplementation. To
generate a LISP binding for the C function "myStrCount" (which is
part of the module "my") somewhere else in the project tree the
rule

(Create-TAC-Interface TAC-LISP-Interface
:modules "my" : target-donain LISP)

has to be used in the description file where the language bindings
shall be generated. All the TAC information that has been
extracted by VMake is tied to the symbolic name and the pref ix of
the module. Once defined, this information can be used for the
generation of multiple language binding interfaces. The rule

(Create-TAC-Interface TAC-FORTRAN-Interface
:modules "my" : target-donain FORTRAN)

is used to create a FORTRAN binding for "myStrCount".

3.2 Universal Function Generator

The Universal Function Generator (UNFUG) provides language­
independent, advanced preprocessing to generate repeated program
code sequences with slight variations. It uses so called template
and tuple files which are combined to produce a compile-able
output source code file in an arbitrary programning language (see
Fig. 5) . The template file consists essentially of source code
with occasional meta-strings (variables), which are replaced with
actual values from the tuple file during the UNFUG run.

Terrplate File
/* start exarrple */
<(UseTuple 'MyTuple)>

*<name> = <value>
<EndTuple>
/* end of exarrple */

Tuple File
(tupe
' (MyTuple (name value)

("first" 1)
("second" 2)
("third" 3)))

Output File
/* start exarrple */
*first = l;
*second = 2;
*third= 3;
/* end of exarrple */

Fig. 5 Example of UNFUG generated code

The UNFUG command < (UseTuple 'IY'IyTuple) > selects the tuple to be
used with the template file (the angle brackets "<" and ">"
delimit UNFUG code) . UNFUG may be used recursively and multiple
nested loops are supported. Full LISP functionality is accessible
for code generation using balanced "< (" and ") >" . A typical
application of UNFUG is the generation of a set of specific
functions from a generic function template and a tuple holding the
specific infonnation.

3.3 Exteznal code generators
External code generators (like yacc and lex) are directly
supported by the two rules Yacc-Target and Lex-Target. The
generated files are protected against modification by making them
read-only. Also the output base filename is the same as the input
file to avoid name conflicts with multiple generated parsers in
the same directory.

3.4 Software Installation
To build a software release, all modules of a project must be
installed under an installation directory. As VMake knows all
global include files, public libraries, and executable programs it
can automatically put them into respective installation
directories. Only for additional installable, otherwise unmanaged
files (like README files and data files) a dedicated installation
rule rrust be used. In addition to the installed files, VMake
creates an installation project file. The infonnation of this file
is used by VMake to get all required inf onnation about the
installed project (in contrast to working projects) so that it can
be used as dependency in working projects by different users.

3 • 5 Release/Patch Generation

VMake supports source code level releases and patches between
releases. The basic process is similar to the software
installation, but a full second instance of the managed source
code is created. For later patch generation a save file is

generated with size/time infornation of the released files. For a
patch this information is compared to the actual working
information and used to find all changed, new and deleted files.
The patch information is stored in the patch file, which can be
applied by VMake to update a release by using the update option.
During patch generation the save file and the release is updated.
So in addition to the patch file, a full, patched release tree is
generated to allow generation of a full release file.

3. 6 Version Management Interface

VMake supports the Concurrent Version System (CVS) [8], a public­
domain version management system based on RCS [9]. VMake reads
CVS's special files and upon request, prints a list of all source
files modified with respect to the repository, and of all required
files which are currently not checked in. This automatism helps to
detect and avoid version/configuration management inconsistencies
in an early stage of the software production process. The feature
is useful when several people are working on the same or dependent
projects to guarantee a consistent repository.

4. Conclusion

Platform independence has been one of the major design
requirements for VMake. Only an ANSI-C compiler to compile the
LISP interpreter is required for porting VMake to another
platform.
The presented one-pass concept for building software projects, due
to an open and extensible architecture and due to the consequent
utilization of LISP-features offers a functionality which goes
beyond the scope of the sole building process. The integration of
CASE utilities for source code verification, maintenance and
formal verification is a straightforward task and yields a
homogeneous tool which is centered around the classical "rule,
target, and goal" philosophy of the make process.

4.1 CUrrent Usage
VMake is currently used to manage the Viennese Integrated System
for Technology CAD (VISTA[lO, 11]) which consists currently of
about 18M-Byte source code (in C, FORTRAN and LISP), or almost
650K-Lines of code (75kLines thereof are generated automatically
by VMake) . Within VISTA, VMake manages 40 libraries and 30
executables. Several foreign source code modules have been
successfully integrated in the portable build process which have
been contributed from different institutions. In addition to
avoiding tedious coding of :multi-language programning interfaces,
the TAC has proven as invaluable tool for the easy and smooth
extension of the LISP interpreter. Moreover, the concise
description files and the notions established by VMake enable the
developer to grasp the organization and structure of projects more
easily and to manage the build processes of even large projects
effectively.

Acknowledgments

The presented work has been sponsored by the research lal:::xJratories
of AUSTRIA :MIKRO SYSTEMS at Unterpremstatten, Austria; DIGITAL
EQUIPMENT at Hudson, USA; HITACHI at Tokyo, Japan; MOTOROLA at
Austin, USA; NATIONAL SEMICONDUCTOR at Santa Clara, USA; SIEMENS
at Munich, FRG; and SONY at Atsugi, Japan, and by the
"Forschungsforderungsfonds filr die gewerbliche Wirtschaft",
project 2/285 and project 2/299, as part of ADEQUAT (JESSI project
BTlB), ESPRIT project 7236, and by ADEQUAT II (JESSI project
BTll), ESPRIT project 8002.

References

[1] D.M. Betz, "XLISP: An Object-oriented LISP", Version 2.0,
Peterborough, NH, 1988.

[2] S.I. Feldm:m, "Make --- A Program for Maintaining Computer
Programs", Software - Practice and Experience, 9, 1979,
255-265

[3) T. Brunhoff and J. Folton, "irnake --- C preprocessor
interface to the rrake utility",
X11R4, XllR5 and X11R6 release

[4) R.M. Stallman and R. McGrath, "GNU make Version 3.63",
Jan. 1994, FTP-able from prep.ai.mit.edu or mirrors

[5] C. Seiwald, "JAM - Make(l)redux} Version 2.00",
Jam(l) and Jambase(5) manual pages, Volume 47,
comp.sources.unix archive, 1995.

[6] C. Jones, "Case's missing elements", IEEE Spectrum, 29, 1992,
38-41

[7] Spectrum Staff, "The case for CASE tools", IEEE Spectrum, 27,
1990, 78-81

[8] P. Cederqvist, "Version Management with CVS",
documentation for cvs 1.3.l, last updated 5.April 1993,
FTP-able from ftp.think.com

[9] W.F.Tichy, "RCS - A System for Version Control",
Software - Practise and Experience, 15(7), 1985, 637-654

[10] S.Selberherr and F.Fasching and C.Fischer and S.Halama and
H.Pimingsdorfer and H.Read and H.Stippel and P.Verhas and
K. Wimmer, "The Viennese TCAD System" ,
Proc. Int. Workshop on VLSI Process and Device Modelling,
1991

[11] S.Halama, "The Viennese Integrated System for Technology
Applications, Architecture and Critical Components",
(Vienna: Osterr. Kunst- und Kulturverlag, 1995)

