
l ' r c0 , cc,!1n~ - ,., :he 14.STED ln1cmJ11onJI Ctinkrcncc
.·\n1i"1.:1Jl in:cll1~cn.:~ . E'pcr1 S~'1cni-. and Scur.:il \'.~t"orks
4.ugu,1 f'J.~I . l'fYIJ · Honolulu . HJ"Jll. t;SA

A CASE-Oriented Configuration Management
Agent

Vv'. Tuppa and S. Selberherr
Institute for l\1icroelectronics, TU Vienna

Gul3hausstral3e 27-29/£360, A-1040 Vienna, Austria/Europe
+43-1-58801/3680 tuppa@iue.tuwien.ac.at

http://www.iue.tuwien.ac.at/

Abstract- Traditional make utilities usually lack the
necessary functionality for the management of mul­
tiple configurations in one source code tree. Our
CASE-oriented configuration management agent, the
Viennese Make (VMake) is platform-independent and
runs currently on a number of UNIX systems and on
Open \.'MS. VMake supports, in addition to common
m•ke features, a number of CASE tasks in sub-agents,
like automatic code generation, version management
(using publically available RCS and CVS from a com­
mon repository), and automated high-level source code
processing feature~, like language bindings between C,
LISP and FORTRAN as well as extraction of reference man­
uals. VMake maintains automatically a private project
file which contains up-to-date symbolic definitions of
source code flies, modules, libraries, language bind­
ing mechanisms, application executables, and all build
targets. Dependencies between these objects are ex­
tracted from local description files or generated auto­
matically from source code files. This enforces com­
pact description files and allows efficient management
of large-scale software projects. VMake is based on a
publically available LISP interpreter[l].

K~ywords- configuration management, automatic
code generation, parallelization, CASE, object oriented
techniques

1 Introduction

}.Jost of the commonly used configuration manage­
ment systems are based on the make utility by Feld­
man [2]. Extensions are made to this basic tool either
by modification of the make functionality or by pre­
processing higher-level configuration description files
to generate the low-level Makefiles required by make.
Th<> concept of make is based upon the incremental
execution of rules that successively transform code ob­
jects (files) until certain build goals are reached. The
applicable rules are comprised by a built-in part (de­
fault rules) and optional extensions provided by the
user. make itself is directory oriented, e.g. a new
evocation is needed for any recursion or use of subdi­
rectories. There is no information exchange between
different evocations of make.

For configuration management of the well known
large-scaJe X Window System (Xll) , the imake ut il­
ity[3]. a preprocessor to standard make, was cr"eated .
l' sing the C preprocessor , makefiles are generated
from small descript ion files by accessing rules and sys­
tem configuration data which are stored in additional

252-043

global files. This approach benefits from the reduc­
tion of complexity and maintenance effort thanks to
the use of standardized higher-level rules for the de­
scription of the modules. imake adds at least one addi­
tional pass to the build process to create the descrip­
tion files for make and doing so it deletes any saved
dependency information (which must be regenerated
too) from the Makefiles. The size reduction of the
description files and the availability of global project
information enables the management of larger scale
software systems. However, the global information
consisting of rules, system dependencies (e.g., where
to find include files and installed libraries), and defini­
tions of global objects (e.g., libraries and programs).
is contained in a separate set of files, which have to
be provided and maintained manually by the software
engineer.

Other approaches extend make by directly adding
new functionality like multiple goal evaluation in par­
allel or inclusion of sub-description files (for com­
monly used data and global information similar to
imake) . A common freely available extended make im­
plementation is gmake from the GNU project. All ad­
vanced approaches based on make are still directory
oriented and use a recursive evocation for subdirecto­
ries . All global data has still to be maintained man­
ually for each system. Jam[4] goes with a different
solution. It reads all description files in a directory
tree (and so avoids the problems of being directory
oriented and multiple scans of the same description
files), which are based on a simple language by its
own, to generate a full dependency tree on every in­
vocation and then builds all goals in a second pass . In
this case all information is handled by one evocation
of jam.

The approaches mentioned are still lacking some
features needed for the efficient management of large­
scale software projects. Several advanced commercial
packages can be found which address the CASE pro­
cess as a whole and overcome most particular prob­
lems of configuration management, but the implemen­
tations are closely connected to the underlying system
and are- therefore not portable among different oper­
ating systems[5].

368

') \"irnna \lake

The \"ienna \lake (VMake) employs a small num­
ber of st andardizP<l high-level rules to reduce the com­
plexity of local module description files, but over­
comes the aforementioned insufficiencies of imake by
maintaining all global project information automat­
ically in a VMake-internal global project context
file. This file is generated from the information of
the local description files and holds the time of the
last modification of each local description file (in ad­
dition to the time stamps of all managed source code
files) and is updated automatically. Changes to lo­
cal description files are recognized and the (partial)
regeneration of the dependency information is done
automatically. In addition to the local project de­
pendencies inter-project dependencies are recognized
automatically from the project description file in the
top level directory of a working project. Only the
symbolic names of required projects must be given in
this project description file. Those projects can be ei­
ther working projects with source available or projects
which have been globally installed by VMake (see
3.4) earlier.

Fig. 1 shows an example VMake description file for
a small program in a working project. Since VMake
is based on LISP, the syntax chosen is a subset of LISP
so that the LISP reader can be used for parsing.

; ; this defines a name for the directory
(Module-Directory My-dir)
; ; compile main source file
(CC-Target Hy-C-main :source "mym.ain.c")
; ; compile library objects
(CC-Target My-C-objects :source "myl.c" "my2.c")
; ; build library
(Library-Target My-C-library

:libname "my"
:objects Hy-C-objects)

;; generate program
(Program-Target Hy-C-program

:progname "myprog"
:objects Hy-C-main
:libraries My-C-library)

Fig. I. Example of a VMake description file

The rule Module-Directory defines a symbolic
name for the source code directory. The CC-Target
rules are used to compile the main object and the
library object files. The generated object files are
never named explicitly in the description file but are
referred to by a symbolic name. This symbolic name is
automatically added to VMake's global name space
and can be accessed in any other local description
file within the project (and in other projects which
depend on this project). All files are accessed by
their symbolic name which has to be unique within all
projects. In Fig. 1 the symbol My-C-Main is bound
to the system specific file name. Thus, hiding the
system-specific file names and other system depen­
dencies through symbolic names, the same descrip­
tion file can be used on entirely different operating

systems. \\"ith the rule Library-Target. a lihrar~· is
generated and with Program-Target. t cw f'XPrut abk
program. The generated executable is automaticall:>
linked (by a symbolic link. if supported h~· thf" oper­
ating system, or a hard link) into a common directon·
for executables to shorten user's search path for late.r
execution.

2.1 Algorithm

make and imake-based approaches usuallv must
perform multiple passes over a project source. tree to
reach a certain build goal, during which many possi­
bly non-needed files are rebuilt. VMake exploits the
fine-grained global dependency information (over di­
rectory and project boundaries) to rebuild an utmost
concise superset of the really required files. Inter­
nally VMake identifies each file by a unique LISP ob­
ject which stores all available information about that
file. The main agent checks the dependencies between
objects (and possibly rebuilds the dependencies from
modified source files) in a "depth first" algorithm sim­
ilar to make and sends a rebuild request to the checked
objects if required. If execution of a goal is required,
the appropriate command is inserted into the sub­
agent of VMake for later execution which occurs in
parallel on a defined workstation cluster. This speeds
up the build process significantly (by a factor of four,
using seven DEC Alpha workstations compared to lo­
cal execution). In contrast to make VMake needs no
recursive evocation and solves the goal evaluation in
one pass since all information is available in the main
agent. Due to this strategy, VMake is significantly
more efficient than make whenever the source code in­
volved is spread around several different directories
and/or projects .. This helps to save resources which is
important for restrictive operating system configura­
tions.

Dependencies are stored in VMake per directly in­
cluded source files only (in contrast to make where all
include files over all levels are needed as dependen­
cies). This speeds up the dependency generation pro­
cess since no files are multiply scanned during depen­
dency generation and so allows dependency generation
on the fly on every run of VMake. The automatically
extracted global information about projects is saved
by VMake for every configuration in a special place
to be reloaded on the next evocation.

2.2 The Queuing Agent

This sub-agent of VMake is activated by objects
if they need to be rebuilt. In this case the queuing
agent checks if all required inputs of a goal are already
available and then queues it for building else it delays
this job back until all required objects are built. Ob­
jects ready for building are executed in parallel on the
defined hosts and/or batch queues for the actual con­
figuration. The main agent can request information
about the current status of the queuing agent.

369

.'3 C..\SE Operations

VMake has built-in support with sub-agents for
different CASE-operations needed by large-scale soft­
ware projects.

3.1 V ni\'ersal Function Generator

The Universal Function Generator (UNFUG)[6]
proYides language-independent. advanced preprocess­
ing to generate repeated program code sequences with
slight variations. It uses so called template and tuple
files which are combined to produce a compilable out­
put source code file in an arbitrary programming lan­
guage. The template file consists essentially of source
code with occasional meta-strings (variables), which
are replaced with actual values from the tuple file
during the UNFUG run . A typical application of
UNFUG is the generation of a set of specific func­
tions from a generic function template and a tuple
holding the specific information.

3.2 Tool Abstraction Concept

VMake uses a Tool Abstraction Concept (TAC)
for generating language bindings of functional mod­
ules and constants foi different programming lan­
guages. The automatic support of multi-language
programming has proven valuable for two reasons.
First, writing the required stub code manually is a
tedious and error-prone task, and secondly, multi­
language interfaces between compiled languages are
highly system-dependent. Usually, laiiguage binding
is done by the programmer by writing C files with some
#if def /#endif pairs to generate code for the differ­
ent platforms. This works quite well under UNIX be­
cause parameters are handled mostly the same way
and onl:-.· the function naming differs . In contrast to
UXIX, Open VMS has a totally different handling of
strings (especially using FORTRAN). In this case the
stub code has to be written in a totally different way.
In addition to this problem some other code is often
integrated into the stub, adding functionality, which
does not belong to the actual function binding. Gener­
ating the stub code automatically (from a description)
a\'oids both of these problems.

The TAC module of VMake scans the source code
file (similar to a preprocessor) and extracts informa­
tion from the function definitions and special formal
comments. as depicted in Fig. 2. Currently, bindings
can be generated from C to FORTRAN, from FORTRAN to
C. and from C to LI SP. The comment I** •TF starts
the definition of a TAC-able Function. The com­
ments following the function arguments consist of a
formal description of the argument characteristics and
a textual documentation part which is used for the
documentation extraction facility.
In the example shown in Fig. 2, all parameters are
used as input [I] and str may be a NULL pointer
[IN] . To bind the function myStrCount to another

/•••TF [: reference myStrChar myStrReverseChar)
counts the number of occurrences of a
character within a string. The start and
end of the search range can be specified
to simplify substring operations. •/

int /• [:not-ok 0) •/

}

myStrCount(
char •str,
char ch,
int start,

int end)

/• [IN] input string to search •I
/• [I) character to search for •/
/• [I : opt :key :default 0) start

index for search •/
/• [I :default strlen(str) :opt

:key] end index for search •/

/• implementation of function •/

Fig. 2. TAC documented function

language a TAC definition interface rule must be used
in the VMake description file so that it c:an be used
later with the create interface rule to bind the function
to a different target domain (e.g. LISP or FORTRAN) .
A stub code in C is generated from the extracted in­
formation to generate the language binding between
source and target language. This stub code then needs
to be linked to the application.

TAC is also used for the extraction of reference
manuals from the source code. A function doc­
umented with a /••• [T] F comment, is parsed by
VMake and a InE;X manual entry for that function
is generated for a reference manual.

3.3 External Code Generators

External code generators (like yacc and lex) are
directly supported by the two rules Yacc-Target and
Lex-Target. The code generator used should be avail­
able on all supported platforms of the project. For
release generation the automatically generated code
is copied into the release in case the external code
generator is not available on the target platform.

3.4 Project Installation

To build a software release, all modules of a project
must be installed under a global installation direc­
tory. As VMake knows all global include files, public
libraries, and executable programs it can automati­
cally put them into respective installation directories .
Only for additional, otherwise unmanaged files (like
README and data files) a dedicated installation direc­
tory must be specified in the module description file.
In addition to the installed files, VMake creates an
installation project file which can ·be imported from
other projects as a dependent projE'ct. This file holds
all dependency and installation information required
for use by VMake as an installed project. In contrast
standard tools like make usually copy all files every
time and do not create an information file . One ad­
ditional feature is that only modified files, especially
include files, are installed if an older release already

370

exists. So onh· changed sources get new time stamps
and again on!;· a minimal set of files has to he rebuilt
in the working project . files that are no longer re­
quired in an installation are automatically removed
from the global directory.

3.5 Project Release

VMake supports source code level releases and
patches between releases. The basic process is sim­
ilar to the software installation, but a full second in­
stance of the managed source code is created. For
later patch generation a save file is generated with
size/time information of the released files. For gener­
ating a patch this information is compared with the
actual state of the working project and is used to find
all changed, new and deleted files. The patch infor­
mation is stored in the patch data file , which can be
applied by VMake to update a release by using the
update option. During patch generation the save file
and the release are updated. So in addition to the
patch file, a full, patched release tree is generated.

3.6 Repository Interface

VMake supports the Concurrent Version Sys­
tem[7], a public-domain version management system
based on RCS(8] . VMake reads CVS special files and
informs the developer of modified, added and removed
files in the working version. When checking in files
into the repository modification comments to all mod­
ified files are inquired from the programmer and the
repository is brought up-to-date. This mechanism
helps to detect and avoid version/configuration man­
agement inconsistencies in an early stage of the soft­
ware production process (e.g., before the test phase).
To allow easy update from the repository VMake is
able to update on project basis from the repository.
The developer is informed of updated files and a warn­
ing is issued for every conflict between local modifica­
tions and the repository state.

4 Interactive Csage

In addition to the batch mode similar to make
VMake supports an interactive . mode where once
started the main agents enters an interactive loop.
Some state variables of VMake, like the actual goal ,
working project, or flags can be modified and then
the goal evaluation can be started. On error VMake
stops the goal evaluation and reenters the interactive
loop.

In addition to the interactive command line mode
an interface to Emacs has been written to allow run­
ning VMake as a subprocess within in Emacs and
analvze the output of VMake by the editor , e.g. to
jump to lines with error messages from the compila­
tions (similar to the make mode of Emacs).

o Conclusion
Platform independence has been one of the mr..­

jor design requirements for VMake . Only an ANSI
C compiler for generating the LISP interpreter is re>­
quired for porting VMake to another platform . It is
currently running on Open VMS (Vax and Alpha s:•s­
tems) and 8 different UNIX platforms. The presented
one-pass concept for building software projects. due
to an open and extensible architecture and due to
the consequent utilization of LISP-features. offers a
functionality which goes beyond the scope of the sole
building process. The integration of CASE utilities
for source code verification, maintenance and formal
verification is a straightforward task and yields a ho­
mogeneous tool which is centered around the classical
"rule, target, and goal" philosophy of the make pro­
cess.

Acknowledgments
The presented work has been sponsored by the re­

search laboratories of AUSTRIA MIKRO SYSTE:-.lS
at Unterpremstatten, Austria; DIGITAL EQL'IP­
MENT at Hudson, USA; HITACHI at Tokyo, Japan;
MOTOROLA at Austin, USA; NATIO:\AL SE~U­
CONDUCTOR at Santa Clara, USA; SIEl'vfENS at
Munich, FRG; and SONY at Atsugi, Japan, and by
the "Forschungsforderungsfonds fiir die gewerbliche
Wirtschaft", project 2/285 and project 2/299, as
part of ADEQUAT (JESSI project BTlB), ESPRIT
project 7236, and by ADEQUAT II (JESSI project
BTll), ESPRIT project 8002.

References
[l] D. M. Betz,

XL/SP: An Object-oriented LISP,
Version 2.0, Peterborough, NH , 1988 .

(2] S. I. Feldman
Make - A Program for Maintaining Computer Pro­
grams Software - Practice and Experience , Vol. 9,
p.255-265, 1979

[3] T . Brunhoff, J. Folton
imake - C preproassor interface to the make utility
Xl1R4, X11R5 and X11R6 release

[4] C. Seiwald
JAM - Make(J)redur Version 2.00
Jam(l) and Jambase(5) manual pages, Volume47,
comp.sources. unix archive, 1995.

[5] Spectrum staff
The case for CASE tools
IEEE Spectrum, Vol.27, p .78-81, November 1990

[6] F . Fasching
Viennese Integrated System for Technology CAD Ap­
plications - Data Level Design and Implementation
Dissertation, TU Vienna, 1994
Osterr. Kunst- und Kulturverlag, Vienna, 158!'1/ 3-
85437--093-8

[7] P. Cederqvist
Version Management with CVS
documentation for cvs 1.3.1, last updated 5.April 1993 ,
FTP-able from ftp .think .com

[8] W . F . Tichy
RCS - A System for Version Control

37)

Software - Practice and Experience , Vol.1 5(7), p.637-
654, 1985

