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Abstract- Traditional make utilities usually lack the 
necessary functionality for the management of mul­
tiple configurations in one source code tree. Our 
CASE-oriented configuration management agent, the 
Viennese Make (VMake) is platform-independent and 
runs currently on a number of UNIX systems and on 
Open \.'MS. VMake supports, in addition to common 
m•ke features, a number of CASE tasks in sub-agents, 
like automatic code generation, version management 
(using publically available RCS and CVS from a com­
mon repository), and automated high-level source code 
processing feature~, like language bindings between C, 
LISP and FORTRAN as well as extraction of reference man­
uals. VMake maintains automatically a private project 
file which contains up-to-date symbolic definitions of 
source code flies, modules, libraries, language bind­
ing mechanisms, application executables, and all build 
targets. Dependencies between these objects are ex­
tracted from local description files or generated auto­
matically from source code files. This enforces com­
pact description files and allows efficient management 
of large-scale software projects. VMake is based on a 
publically available LISP interpreter[l]. 

K~ywords- configuration management, automatic 
code generation, parallelization, CASE, object oriented 
techniques 

1 Introduction 

}.Jost of the commonly used configuration manage­
ment systems are based on the make utility by Feld­
man [2]. Extensions are made to this basic tool either 
by modification of the make functionality or by pre­
processing higher-level configuration description files 
to generate the low-level Makefiles required by make. 
Th<> concept of make is based upon the incremental 
execution of rules that successively transform code ob­
jects (files) until certain build goals are reached. The 
applicable rules are comprised by a built-in part (de­
fault rules) and optional extensions provided by the 
user. make itself is directory oriented, e.g. a new 
evocation is needed for any recursion or use of subdi­
rectories. There is no information exchange between 
different evocations of make. 

For configuration management of the well known 
large-scaJe X Window System (Xll ) , the imake ut il­
ity[3]. a preprocessor to standard make, was cr"eated . 
l' sing the C preprocessor , makefiles are generated 
from small descript ion files by accessing rules and sys­
tem configuration data which are stored in additional 
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global files. This approach benefits from the reduc­
tion of complexity and maintenance effort thanks to 
the use of standardized higher-level rules for the de­
scription of the modules. imake adds at least one addi­
tional pass to the build process to create the descrip­
tion files for make and doing so it deletes any saved 
dependency information (which must be regenerated 
too) from the Makefiles. The size reduction of the 
description files and the availability of global project 
information enables the management of larger scale 
software systems. However, the global information 
consisting of rules, system dependencies (e.g., where 
to find include files and installed libraries), and defini­
tions of global objects (e.g., libraries and programs). 
is contained in a separate set of files, which have to 
be provided and maintained manually by the software 
engineer. 

Other approaches extend make by directly adding 
new functionality like multiple goal evaluation in par­
allel or inclusion of sub-description files (for com­
monly used data and global information similar to 
imake) . A common freely available extended make im­
plementation is gmake from the GNU project. All ad­
vanced approaches based on make are still directory 
oriented and use a recursive evocation for subdirecto­
ries . All global data has still to be maintained man­
ually for each system. Jam[4] goes with a different 
solution. It reads all description files in a directory 
tree (and so avoids the problems of being directory 
oriented and multiple scans of the same description 
files), which are based on a simple language by its 
own, to generate a full dependency tree on every in­
vocation and then builds all goals in a second pass . In 
this case all information is handled by one evocation 
of jam. 

The approaches mentioned are still lacking some 
features needed for the efficient management of large­
scale software projects. Several advanced commercial 
packages can be found which address the CASE pro­
cess as a whole and overcome most particular prob­
lems of configuration management, but the implemen­
tations are closely connected to the underlying system 
and are- therefore not portable among different oper­
ating systems[5]. 
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') \"irnna \lake 

The \"ienna \lake (VMake) employs a small num­
ber of st andardizP<l high-level rules to reduce the com­
plexity of local module description files, but over­
comes the aforementioned insufficiencies of imake by 
maintaining all global project information automat­
ically in a VMake-internal global project context 
file. This file is generated from the information of 
the local description files and holds the time of the 
last modification of each local description file (in ad­
dition to the time stamps of all managed source code 
files) and is updated automatically. Changes to lo­
cal description files are recognized and the (partial) 
regeneration of the dependency information is done 
automatically. In addition to the local project de­
pendencies inter-project dependencies are recognized 
automatically from the project description file in the 
top level directory of a working project. Only the 
symbolic names of required projects must be given in 
this project description file. Those projects can be ei­
ther working projects with source available or projects 
which have been globally installed by VMake (see 
3.4) earlier. 

Fig. 1 shows an example VMake description file for 
a small program in a working project. Since VMake 
is based on LISP, the syntax chosen is a subset of LISP 
so that the LISP reader can be used for parsing. 

; ; this defines a name for the directory 
(Module-Directory My-dir) 
; ; compile main source file 
(CC-Target Hy-C-main :source "mym.ain.c") 
; ; compile library objects 
(CC-Target My-C-objects :source "myl.c" "my2.c") 
; ; build library 
(Library-Target My-C-library 

:libname "my" 
:objects Hy-C-objects) 

;; generate program 
(Program-Target Hy-C-program 

:progname "myprog" 
:objects Hy-C-main 
:libraries My-C-library) 

Fig. I. Example of a VMake description file 

The rule Module-Directory defines a symbolic 
name for the source code directory. The CC-Target 
rules are used to compile the main object and the 
library object files. The generated object files are 
never named explicitly in the description file but are 
referred to by a symbolic name. This symbolic name is 
automatically added to VMake's global name space 
and can be accessed in any other local description 
file within the project (and in other projects which 
depend on this project). All files are accessed by 
their symbolic name which has to be unique within all 
projects. In Fig. 1 the symbol My-C-Main is bound 
to the system specific file name. Thus, hiding the 
system-specific file names and other system depen­
dencies through symbolic names, the same descrip­
tion file can be used on entirely different operating 

systems. \\"ith the rule Library-Target. a lihrar~· is 
generated and with Program-Target. t cw f'XPrut abk 
program. The generated executable is automaticall:> 
linked (by a symbolic link. if supported h~· thf" oper­
ating system, or a hard link) into a common directon· 
for executables to shorten user's search path for late.r 
execution. 

2.1 Algorithm 

make and imake-based approaches usuallv must 
perform multiple passes over a project source. tree to 
reach a certain build goal, during which many possi­
bly non-needed files are rebuilt. VMake exploits the 
fine-grained global dependency information (over di­
rectory and project boundaries) to rebuild an utmost 
concise superset of the really required files. Inter­
nally VMake identifies each file by a unique LISP ob­
ject which stores all available information about that 
file. The main agent checks the dependencies between 
objects (and possibly rebuilds the dependencies from 
modified source files) in a "depth first" algorithm sim­
ilar to make and sends a rebuild request to the checked 
objects if required. If execution of a goal is required, 
the appropriate command is inserted into the sub­
agent of VMake for later execution which occurs in 
parallel on a defined workstation cluster. This speeds 
up the build process significantly (by a factor of four, 
using seven DEC Alpha workstations compared to lo­
cal execution). In contrast to make VMake needs no 
recursive evocation and solves the goal evaluation in 
one pass since all information is available in the main 
agent. Due to this strategy, VMake is significantly 
more efficient than make whenever the source code in­
volved is spread around several different directories 
and/or projects .. This helps to save resources which is 
important for restrictive operating system configura­
tions. 

Dependencies are stored in VMake per directly in­
cluded source files only (in contrast to make where all 
include files over all levels are needed as dependen­
cies). This speeds up the dependency generation pro­
cess since no files are multiply scanned during depen­
dency generation and so allows dependency generation 
on the fly on every run of VMake. The automatically 
extracted global information about projects is saved 
by VMake for every configuration in a special place 
to be reloaded on the next evocation. 

2.2 The Queuing Agent 

This sub-agent of VMake is activated by objects 
if they need to be rebuilt. In this case the queuing 
agent checks if all required inputs of a goal are already 
available and then queues it for building else it delays 
this job back until all required objects are built. Ob­
jects ready for building are executed in parallel on the 
defined hosts and/or batch queues for the actual con­
figuration. The main agent can request information 
about the current status of the queuing agent. 
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.'3 C..\SE Operations 

VMake has built-in support with sub-agents for 
different CASE-operations needed by large-scale soft­
ware projects. 

3.1 V ni\'ersal Function Generator 

The Universal Function Generator (UNFUG )[6] 
proYides language-independent. advanced preprocess­
ing to generate repeated program code sequences with 
slight variations. It uses so called template and tuple 
files which are combined to produce a compilable out­
put source code file in an arbitrary programming lan­
guage. The template file consists essentially of source 
code with occasional meta-strings (variables), which 
are replaced with actual values from the tuple file 
during the UNFUG run . A typical application of 
UNFUG is the generation of a set of specific func­
tions from a generic function template and a tuple 
holding the specific information. 

3.2 Tool Abstraction Concept 

VMake uses a Tool Abstraction Concept (TAC) 
for generating language bindings of functional mod­
ules and constants foi different programming lan­
guages. The automatic support of multi-language 
programming has proven valuable for two reasons. 
First, writing the required stub code manually is a 
tedious and error-prone task, and secondly, multi­
language interfaces between compiled languages are 
highly system-dependent. Usually, laiiguage binding 
is done by the programmer by writing C files with some 
#if def /#endif pairs to generate code for the differ­
ent platforms. This works quite well under UNIX be­
cause parameters are handled mostly the same way 
and onl:-.· the function naming differs . In contrast to 
UXIX, Open VMS has a totally different handling of 
strings (especially using FORTRAN). In this case the 
stub code has to be written in a totally different way. 
In addition to this problem some other code is often 
integrated into the stub, adding functionality, which 
does not belong to the actual function binding. Gener­
ating the stub code automatically (from a description) 
a\'oids both of these problems. 

The TAC module of VMake scans the source code 
file (similar to a preprocessor) and extracts informa­
tion from the function definitions and special formal 
comments. as depicted in Fig. 2. Currently, bindings 
can be generated from C to FORTRAN, from FORTRAN to 
C. and from C to LI SP. The comment I** •TF starts 
the definition of a TAC-able Function. The com­
ments following the function arguments consist of a 
formal description of the argument characteristics and 
a textual documentation part which is used for the 
documentation extraction facility. 
In the example shown in Fig. 2, all parameters are 
used as input [I] and str may be a NULL pointer 
[IN] . To bind the function myStrCount to another 

/•••TF [ : reference myStrChar myStrReverseChar) 
counts the number of occurrences of a 
character within a string. The start and 
end of the search range can be specified 
to simplify substring operations. •/ 

int /• [ :not-ok 0) •/ 

} 

myStrCount( 
char •str, 
char ch, 
int start, 

int end) 

/• [IN] input string to search •I 
/• [I) character to search for •/ 
/• [I : opt :key :default 0) start 

index for search •/ 
/• [I :default strlen(str) :opt 

:key] end index for search •/ 

/• implementation of function •/ 

Fig. 2. TAC documented function 

language a TAC definition interface rule must be used 
in the VMake description file so that it c:an be used 
later with the create interface rule to bind the function 
to a different target domain (e.g. LISP or FORTRAN) . 
A stub code in C is generated from the extracted in­
formation to generate the language binding between 
source and target language. This stub code then needs 
to be linked to the application. 

TAC is also used for the extraction of reference 
manuals from the source code. A function doc­
umented with a /••• [T] F comment, is parsed by 
VMake and a InE;X manual entry for that function 
is generated for a reference manual. 

3.3 External Code Generators 

External code generators (like yacc and lex) are 
directly supported by the two rules Yacc-Target and 
Lex-Target. The code generator used should be avail­
able on all supported platforms of the project. For 
release generation the automatically generated code 
is copied into the release in case the external code 
generator is not available on the target platform. 

3.4 Project Installation 

To build a software release, all modules of a project 
must be installed under a global installation direc­
tory. As VMake knows all global include files, public 
libraries, and executable programs it can automati­
cally put them into respective installation directories . 
Only for additional, otherwise unmanaged files (like 
README and data files) a dedicated installation direc­
tory must be specified in the module description file. 
In addition to the installed files, VMake creates an 
installation project file which can ·be imported from 
other projects as a dependent projE'ct. This file holds 
all dependency and installation information required 
for use by VMake as an installed project. In contrast 
standard tools like make usually copy all files every 
time and do not create an information file . One ad­
ditional feature is that only modified files, especially 
include files, are installed if an older release already 

370 



exists. So onh· changed sources get new time stamps 
and again on!;· a minimal set of files has to he rebuilt 
in the working project . files that are no longer re­
quired in an installation are automatically removed 
from the global directory. 

3.5 Project Release 

VMake supports source code level releases and 
patches between releases. The basic process is sim­
ilar to the software installation, but a full second in­
stance of the managed source code is created. For 
later patch generation a save file is generated with 
size/time information of the released files. For gener­
ating a patch this information is compared with the 
actual state of the working project and is used to find 
all changed, new and deleted files. The patch infor­
mation is stored in the patch data file , which can be 
applied by VMake to update a release by using the 
update option. During patch generation the save file 
and the release are updated. So in addition to the 
patch file, a full, patched release tree is generated. 

3.6 Repository Interface 

VMake supports the Concurrent Version Sys­
tem[7], a public-domain version management system 
based on RCS(8] . VMake reads CVS special files and 
informs the developer of modified, added and removed 
files in the working version. When checking in files 
into the repository modification comments to all mod­
ified files are inquired from the programmer and the 
repository is brought up-to-date. This mechanism 
helps to detect and avoid version/configuration man­
agement inconsistencies in an early stage of the soft­
ware production process (e.g., before the test phase). 
To allow easy update from the repository VMake is 
able to update on project basis from the repository. 
The developer is informed of updated files and a warn­
ing is issued for every conflict between local modifica­
tions and the repository state. 

4 Interactive Csage 

In addition to the batch mode similar to make 
VMake supports an interactive . mode where once 
started the main agents enters an interactive loop. 
Some state variables of VMake, like the actual goal , 
working project, or flags can be modified and then 
the goal evaluation can be started. On error VMake 
stops the goal evaluation and reenters the interactive 
loop. 

In addition to the interactive command line mode 
an interface to Emacs has been written to allow run­
ning VMake as a subprocess within in Emacs and 
analvze the output of VMake by the editor , e.g. to 
jump to lines with error messages from the compila­
tions (similar to the make mode of Emacs). 

o Conclusion 
Platform independence has been one of the mr..­

jor design requirements for VMake . Only an ANSI 
C compiler for generating the LISP interpreter is re>­
quired for porting VMake to another platform . It is 
currently running on Open VMS (Vax and Alpha s:•s­
tems) and 8 different UNIX platforms. The presented 
one-pass concept for building software projects. due 
to an open and extensible architecture and due to 
the consequent utilization of LISP-features. offers a 
functionality which goes beyond the scope of the sole 
building process. The integration of CASE utilities 
for source code verification, maintenance and formal 
verification is a straightforward task and yields a ho­
mogeneous tool which is centered around the classical 
"rule, target, and goal" philosophy of the make pro­
cess. 
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