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Abstract

We present a new theoretical approach to study the elec-
tron transport in doped silicon under low electric fields.
The charge distribution of the impurities is described by the
Thomas-Fermi theory in the energy functional formulation.
We have included many-particle effects, such as dynamical
screening and multiple scattering, which become important
in heavily doped semiconductors. Analytical expressions for
the scattering cross section for various species of dopants
using the Born approximation up to second order are de-
rived. Monte Carlo simulations including all important
scattering mechanism have been performed in the doping
concentration range of 101 to 10*' cm™>. The agreement
with experimental data is excellent. The results confirm not
only the experimental data of the mobility enhancement of
minority electrons in degenerate silicon but also the lower
electron mobility in As-doped silicon in comparison to P-
doped silicon.

1. Introduction

As semiconductor device dimensions decreasingly ap-
proach 0.1 pm, it becomes necessary to have accurate values
of the majority- and minority electron mobilities in advanced
semiconductor device simulation. Despite the importance
of these quantities for device applications, such as bipo-
lar transistors which are controlled by minority carrier flow
in heavily doped regions, theoretical treatments are quite
limited. There still remains a tendency in numerical simu-
lation to assume that majority and minority mobilities are
equal, although experiments have shown that majority- and
minority mobilities may differ by a factor of 3 in heavily
doped silicon [7][10]{13][18].

Moreover, there is no theoretical model to date, which
explains the different mobility data for As- and P-doped
silicon for impurity concentrations higher than 10'® cm—3.
The difference between the electron mobility in As- and
P-doped samples monotonically increases from 6 % at
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Nr=10Ycm™3 up to 32 % for Ny =4- 10 cm—3 [12]. Ig-
noring these phenomena can lead to incorrect interpretation
of device data which strongly depend on doping concentra-
tion.

Many attempts in the past failed to explain these differ-
ences. Ralph et al. [15] introduced a central-cell scattering
potential determined empirically using bound state energies
of donors. Later, El-Ghanem and Ridley [8) employed a
square-well impurity core potential. Both approaches were
too crude to explain the experiments sufficiently. Bennett
and Lowney made extensive studies of the majority- and mi-
nority electron mobility in Si [1][2][3] and GaAs [11]. They
used phase shift analysis to calculate the ionized impurity
scattering cross sections of minority and majority electron
scattering. As they introduced many parameters to explain
experimental data for different donors, the theoretical situa-
tion remains unsatisfactorily from a physical point of view.
In the well-known Brooks-Herring (BH) approach [4] the
impurity’s charge distribution is treated as a point charge
and screening by valence electrons of the solid is neglected.
Hence, the standard BH theory is not able to explain the
above mentioned experimental observations.

The basis of our theoretical model is the Thomas-Fermi
(TE) theory [9]{19]. This semi-classical treatment of the
atom in the energy functional formulation yields the impu-
rity charge density as a function of the atomic and electron
number as well as a variational parameter which defines
the size of the valence electron charge cloud. Knowing
the charge density we obtain analytical expressions for the
cross section using the Born formalism up to second order
to account for the charge sign of the impurity center [5].
This approach from first principles explains the dependence
of the electron mobility on the impurity element. To our
knowledge this is the first physical based model which ex-
plains the lower electron mobility in As-doped silicon than
that in P-doped silicon for concentrations higher than 108
cm™3. As all relevant quantities are calculated analytically,
the computational burden is not higher than for the simple
BH model, so that this approach is well suited for device
simulation.
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Figure 1. [Z — F(9)]? for P-doped Si.

2. Charge Density of Ionized Impurities

The total charge density (in units of the electron charge
€,) of an impurity atom with atomic number Z and electron
number N in a solid is given by

Z4(r) — pe(r)
/ pe(P)dr

The first term in (1) describes the nuclear charge density dis-
tribution concentrated in the origin, and p, () is the electron
charge density of the impurity ion. The atomic form factor
F(q), which represents the distribution of the valence elec-
trons in momentum space, is defined as the Fourier transform
of the charge density [14):
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The momentum dependent form factor strongly influences
the scattering strength of the ionized impurity. Fig. 1 shows
(z-F ) ? for P-doped Si for different energies assuming
a screened Coulomb charge density (see next section). Only
in the forward direction (g = 0) F(g) becomes a constant
equal to the number of electrons (BH limit). Yet, with
increasing doping concentraton and carrier energy the angle-
dependence of the atomic form factor becomes important.
A similar effect-shows Fig. 2 for As-doped Si with a even
stronger angle dependence on the form factor which explains
the lower electron mobility for As-doped Si compared to P-
doped samples. From Fig. 5 we see the more complicated
functional behavior of the form factor in B-doped Si which
empbhasizes the importance of the atomic form factor for the
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Figure 2. [Z — F(0))? for As-doped Si.

correct description of minority electron transport. Note that
(Z - F(9)) ?is smaller than unity in case of acceptor ions in
contrast to donor ions where this factor is greater than one.
At a scattering angle of # = 7 the scattering cross section
is even zero! Since the impurity ion in a solid is screened
by free carriers, the effective potential in momentum space
in the random phase approximation is

Z—-F(q)
o = Yz rmag
2m* e?

where €g. is the dielectric constant of the semiconductor,
and 3 the inverse Debye screening length which is given by
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kT is the thermal energy, g the momentum transfer, and n
the free carrier concentration (no compensation is assumed).
The screening function G(q) < 1 represents the dielectric
response of the conduction electrons to an external charge
(dynamical screening). In the BH approach G(g) = 1 is
assumed (static screening) . This assumption becomes ques-
tionably in highly doped semiconductors, such as silicon at
a doping concentration of 10'8 cm™>.

3. The Thomas-Fermi Atomic Model

To this end the only unknown quantity is the exact charge
density distribution of the impurity ion in a solid. There
are numerous rather sophisticated methods to calculate the
electron charge density distribution. As we are interested
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Figure 3. Z.;; for various inverse screening
lengths g in B-doped Si.

in analytical solutions, we use the semi-classical TF model.
Its basic idea is to treat the valence electrons as a degenerate
Fermi gas of nonuniform, spherically symmetric electron
density in a positive charged background [17] at zero tem-
perature., Under this assumption we get a local relation
between the electron charge density and the Fermi energy.
The total energy consists of the classical Coloumb potential
energy of electron-electron E,_. and electron-nucleus in-
teractions E,_,, the kinetic energy Fj, an inhomogeneity
correction E™* [20] for the kinetic energy, and a quan-
tum mechanical exchange energy correction [6]. Hence we
define the total energy functional i = m = 1)

Ey = Ep+ E:unh + Eepn + A (Ee—e + Eez) ©)
B. = o / pe(r)’Pd’r %
E._, = _Z_/pe__(r')d3r ®)
€Se T
1 (7 .
Ee—e = // Pe(T‘)p _ET )d37' d37"' (9)
2630 | F—r
Eoo = 22 | per)*dPr (10)
€Se
2
. 1 (Vpe(r))
Eznh - = 3
ir - o) d*r (11)
_ 3 23
o= 7 0(37r ) 12)
11 (3\'?
Cegx - —ﬁ (;) (13)

In (6) A represents the correlation parameter. In principle
any function can be chosen as long as it vanishes at infinity
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Figure 4. Z.;; for various inverse screening
lengths 5 in P-doped Si.

and the integral over a certain domain remains finite. Two
widely used charge density distributions (atomic form fac-
tors) are the normalized hydrogen-like exponential charge
distribution

N o3

pe(r) = e (14)
Na*

F@) = oray (1)

and the normalized screened Coloumb charge distribution:

Na2€—ar

pe(r) = 4 T (16)
Na?

F(g) = o a7

The corresponding scattering potential can be written as

_ﬁr

r

Zefs

€Sc

V(r) = (18)

with the effective charge

Zosg = Z-N* (1 o (a=0)r <1 _W))
sy (19)
(-9
for an exponential distribution and
Zeps =7+ ivg—z (1 - e~@r) 20)



for a screened Coulomb charge density. Fig. 3 shows the
dependence of the effective charge on the impurity concen-
tration in B-doped Si. Only for 8 = 0 (no screening) one
obtains unity for r — oo, but in all other cases the scattered
electron interacts with an negative effective charge which
is always smaller that unity. Whereas in Fig. 4 one can
see that the effective charge in P-doped Si becomes smaller
than unity with increasing impurity concentration which ex-
plains the slower decrease of the majority electron mobility
for highly doped silicon. Both density distributions have a
better behavior for large 7 than the exact solution of the TF
equation which decreases too slowly. Calculating the first
derivative of the total energy with respect to the variational
parameter o and the electron number N we get two equations
for @ and A:

oFE

0 = %— 21
oF

O = Ny, 22)

The latter equation is obtained from the vanishing chemical
potential for a neutral atom in the TF model. Solving (21)
and (22) with respect to X and o we obtain o and A as a
function of Z and N. Substituting a and A in (6) we obtain
for the total energy functional in case of an exponential
density

Na? NZa 5N ¢t
Ep = *N5/3 2 _ ﬁN4/3 73
o= N e e T M 32, Tes Y ¢ @Y
and
NZ N? *
Eo:cZNS/SaZ————a+>\( a+cﬂN“/3a) (24)
€Sc dese  €sc

for a screened Coulomb density.

4 Scattering Rate

The differential cross section in the first Born approxi-
mation can be written as:

= o (

The term in brackets takes into account the scattering of
an electron on pairs of ionized impurities. The average
separation R between neighboring impurities is defined as
(16]

d0'31
dQ

(25)

R=(r)~QrNp)~* (26)

The total cross section a4 (k) is the integral of (25) over the
solid angle. The total impurity scattering rate is defined as

Nifik

m* at

Ak) =

(k) 27
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Figure 5. [Z — F(6)]* for B-doped Si.
with
oi(k) = op1(k) + o.(k) (28)

The selection of a impurity scattering process can be com-
puted by a rejection method. o is a correction of third order
in the interaction strength V4 including the second Born am-
plitude which is defined for a point charge with F'(¢) = N

as
U Bq i, Alg) +kq
B9 = <t <2A(q)) 318 g - kq)
Alg) = VB +4P2 k2 + k2 ¢
_ 2m*(Z-N) ¢
Up = =5 — (29)

As a consistent derivation of the second Born amplitude in-
cluding dynamic screening is impossible, we set the screen-
ing function equal to unity. For the same reason we drop
the two-ion correction. Using (27) in a Monte Carlo simu-
lator enables us to calculate the local average electron drift
velocity vq. We obtain the electron drift mobility using the
relation

Ud

= (30)
2

M:

5. Results and Discussion

As an example we present results for silicon at room
temperature. All impurities are assumed to be ionized. In
addition to ionized impurity scattering which is the main
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Figure 6. Minority electron mobility in B-
doped Si: Simulation: solid line; experimen-
tal data from [18]: open diamonds; compared
to the majority mobility: filled circles [12].

scattering process in heavily doped semiconductors, we
take into account phonon scattering and electron-plasmon
scattering. The latter effect lowers the mobility in p-type
material significantly and is responsible for the dip in the
minority mobility at about Ny = 10'°, which corresponds
to the maximum strength of the electron-plasmon interac-
tion. At those concentrations degeneracy effects are strong;
therefore we include the Pauli exclusion principle (majority
electrons only) and the Fermi-Dirac statistics in our calcula-
tions. Calculated ground state energies of different ions and
neutral atoms with a hydrogen-like density function give
extremely accurate results (within 2 %) in comparison with
experimental data. From Figs. 3 and 4 one can see that with
increasing doping level the BH approach of a constant effec-
tive impurity charge becomes wrong (cf. Figs. 1,2 and 5).
Only when the distance from the impurity becomes infinite
and the screening length equals zero (i.e. no screening and
a structureless impurity ion with IV point-like valence elec-
trons in the origin), we get a constant impurity charge Z — V.
In all other cases we have Z.ry < Z — N. Figs. 1-2 and

5 show (Z — F(9))2 as a function of the scattering angle
6 for different energies. This expression, which represents
actually the effective charge in momentum space, strongly
influences the scattering cross section. Only in a small dop-
ing region the BH model using the first Born approximation
is valid. Note the completely different behavior for acceptor
and donor-ions. In heavily doped regions screening valence
electrons reduce the charge of the positive charged accep-
tors significantly which explains the almost constant major-
ity electron mobility in the doping region [4 - 10! — 10%0]
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Figure 7. Majority electron mobility in P- and
As-doped Si over the full doping range. Sim-
ulation: solid lines; experimental data from
[12]: open diamonds (As); open squares (P).

cm™3 (Figs. 4,7 and 8). On the other hand, the effective
charge of the negative charged boron ion is two times higher
thanits original charge at Ny = 10%° cm~3 (Fig. 3) and even
eight times higher at N; = 10*! cm™3. Hence a stronger
repulsion of the effective scattering potential for acceptors
makes this scattering process less effective. The vanishing
electron-plasmon interaction and the stronger repulsion are
responsible for the increase of the minority electron mobility
up to 4 - 10" em ™3 (Fig. 6) and the generally higher mo-
bility in p-type Si. In the case of As-doped Si the effective
charge remains almost unchanged even at high doping con-
centrations. The squared difference between Z and F'(6) is
higher compared to P-doped Si for the same energy. Hence,
the electron mobility is always lower in As-doped samples
than in P-doped samples. (Figs. 7 and 8).

6. Conclusion

We have shown that even in the first Born approximation
one can differentiate between attractive and repulsive scat-
tering centers, if one takes into account the spatial charge dis-
tribution of the ionized impurities properly. The momentum
dependence of the atomic form factor has to be considered to
reproduce the dopant dependent electron mobility in heav-
ily doped semiconductors. Hence, the failure of explaining
minority- and majority electron mobilities in the past was
due to neglecting the atomic form factor which is responsi-
ble for the different effective charges of the ionized dopants.
Furthermore, it can be concluded that the two-ion correction
is important over the whole doping range, whereas dynami-
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Figure 8. Majority electron mobility in P- and
As-doped Si. Simulation: solid lines; experi-
mental data from [12]: open circles (As); filled

squares (P).

cal screening and the second Born correction are becoming
important at Ny = 10'8. Due to the lack and inconsistency
of experimental data for the minority mobility it is difficult
to compare our simulation results quantitatively for this par-
ticular case. It is hoped that the results outlined here will
stimulate more experimental work to establish the different
electron mobilities observed for various species of donors

inn-

and p-type Si.
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