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Introduction

We present a theoretical reassessment of electron mobility in doped InP with respect to different
doping species. Using Thomas-Fermi theory in the energy functional formulation we describe the
charge density of the individual impurity ion. Analytical expressions for the scattering rate are
calculated based on a variational expression of Schwinger. Employing these results in a Monte Carlo

calculation we find no significant dependence of mobility on doping species up to 10*® cm™3.

For

higher concentrations an increasing difference is observed which reaches 25% at 10'® cm™2 for Si and

Te doping.

I. Background

The dependence of the electron mobility p on im-
purity concentration has been investigated for a long
time by many theoretical approaches and experimental
work mostly in n-InP. Many corrections to the simple
Brooks-Herring (BH) model have been introduced im-
proving the overall agreement with experiments [8]. All
attempts in the past failed to explain the influence of
the different dopant species characterized by the atomic
number Z and electron number N. One usually as-
sumes a delta-like impurity charge concentrated in the
origin of the dopant ion neglecting the spatial extension
of the electron charge distribution of the dopant. This
is equivalent to neglecting the dependence of the atomic
form factor F(g) on the momentum transfer ¢ = |k’ —k|.
We show that consideration of a spherically symmetric
charge density of the electrons explains the different
mobilities for majority and minority electrons for vari-
ous dopants at high concentration.

I1. Thomas-Fermi atomic model

Assuming a hydrogen-like electron charge distribu-
tion consisting of N valence electrons
Na3

pelr) = 8n ¢

/ pe(r) dV

and a point-like nucleus with charge Z, the total charge
distribution of an impurity ion (in units of the elemen-

—ar

(1)

N =

0-7803-3898-7/97/$10.00 ©1997 IEEE

280

tary charge eg) is

pion("') = Z(S(T) — Pe (T) : (2)
The atomic form factor F(q) which is the fourier trans-
form of p. [11],
Naot
(@2 +0a?)”’

directly enters the effective scattering potential in mo-
mentum space U(g)

F(q) = / pe(r)e™iT 4V = 3)

Z~-F(g)
U = Vy ——t 4
(@) 0 2+ 5 4)
2e2m*
Vo = hozs

B is the inverse Thomas-Fermi screening length. The
reason for different scattering rates for different dopants
lies in the different radial extension of their charge den-
sity expressed by the variational parameter a. To ob-
tain numerical values for a as function of the doping
species determined by Z and N we minimize the semi-
classical Thomas-Fermi energy functional [2, 4, 15]. It
should be noted that the form factor can also explain
the difference between majority and minority electron
mobility since, besides the completely different func-
tional form, Z — F(q) is larger than unity in the first
and smaller in the second case. Only in the limit of
small-angle scattering (¢ — 0) the form factor equals
the number of electrons, F(0) = N, and the BH Model
is retained.



II1. Scattering rates

In addition to the first scattering amplitude of the
Born approximation

file) =U(9), (5)

an analytical expression for the second scattering am-
plitude f2(g) of the Born series can be obtained if we
use the approximation F(g) ~ F(0) = N,

Uo® Bg \, i, Al +kg
P = T30 (‘“"“‘(2 A(q)> T3 Ay - kq)
Alg) = VB +4P K2 + R ¢
U, = w, (6)

h2e

The squared total scattering amplitude gives the differ-
ential scattering cross section

(7)

the total scattering cross section for electrons in state k
is

% @ =1f@P,

T 2k
o) =37 [ V@Paas. ®

In the usual first Born approximation (B1), which is
valid for low doping concentrations, the total amplitude
simply is the first term fp1(g¢) = fi(¢g). In the second
Born approximation (B2) the series is truncated at the
second term and fpa(q) = f1(¢) + fo(q). However, the
series does not converge for small energies. Therefore
we calculate the total scattering amplitude by employ-
ing the variational method of Schwinger [6, 12]. The
scattering amplitude denoted by fs(g) can be expressed

as
f1(g)
_ falg)
f1(q)

It can be shown that using (9) the divergence of the
second Born approximation for the cross section o,
that occurs at small energies at low concentration is
avoided while with increasing concentration og exceeds
o2, which is in agreement with numerical phase-shift
results [7].

As the Friedel sum rule [13] has to be obeyed by
the effective scattering potential, a correction for the
screening parameter 3 has to be introduced which now
also depends on Z and V.

The behavior of the Schwinger formula is shown for
example in the calculated momentum scattering rate
for low (Fig. 1) and high doping concentrations {Fig. 2),
respectively. While the scattering rate for weakly n-
doped material using the Schwinger model is about
three orders of magnitude below B2 and even smaller

fs(g) = (9)
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than the BH value, it lies above BH for highly n-doped
but below for heavily p-doped material. Througout the
figures “Schwinger” denotes the use of Schwinger for-
mula with F(g) = N while the chemical symbols for
the dopant elements in Figs. 4-6 imply the usage of the
Schwinger model! including F(q).
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Figure 1. Momentum scattering rate for a carrier
concentration of 1015 cm—3 in InP with F' = F(0).
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Figure 2. Momentum scattering rate for a carrier
concentration of 10!® cm~3 in InP with F' = F(0).

IV. Monte Carlo Results

We employ the derived formulas in a single-particle
Monte Carlo procedure to calculate the electron drift
mobility at 300K using an analytic three-valley band
dispersion and include phonon and plasmon scatter-
ing. At high concentrations many-body effects cause a
distortion of the conduction band. The resulting con-
centration dependent change of the density of states



is incorporated via an increase of the effective electron
mass. This mass enhancement is an increase of the
band edge curvature mass and is not to be confused
with the usual mass increase due to nonparabolicity.
In analogy to [14] we model the effective mass by a
polynomial in n,

m* n

(n) 0075+ A
Nref

A = 349x1073
B = -237x107°

108 cm ™3,

+B (nzfy (10)

Mo

Npef =

The coefficients have been obtained by a fit to experi-
mental data summarized in [9]. Equation (10) is valid
for n < 3 x 10'® cm™3. The Pauli exclusion principle is
accounted for by a rejection technique [3].

Fig. 3 compares the calculated majority mobility us-
ing the Brooks-Herring (BH) and “Schwinger” model
with published experimental Hall data [1, 5, 9]. The
Schwinger model reduces the overestimation of the mo-
bility of BH at degenerate conditions significantly.
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Figure 3. Majority electron mobility in InP with
F = F(0).

In Fig. 4 the mobility for different donors in InP
is shown. We find no significant influence on Z up to
n ~ 10'® which is in agreement with experiments. With
increasing concentration the different behavior becomes
significant, heavier ions lead to lower values of yu. At
10'® cm™3 the mobility differs by 25% for 4Si and
52Te doping, which are the lightest respectively heaviest
donors used. Unfortunately, the uncertainty and scat-
tering of the available experimental data is of the same
order of magnitude as the difference of the mobilities
for various dopants. Hence, we are unable to assess the
simulation results quantitatively at that time. In case
of n-Si (Fig. 5), however, a systematic decrease of u
with increasing Z is observed experimentally, too [10].

282

4000 T T
—_ gapn b
2 3000 b N
~
(o]
<
E v
3 2000
- £

> N :
D iR
= Schwinger ———
9 1000 | Qi tenem

Se Hewmo
g Ta
N var.exp. +
3 Anderson, Si  # h
— Anderson, Sn .
@ Hsu, Te ~ :

200 u, Te v .
le+17 le+l8 le+19

donor concentration [cm”-31

Figure 4. Majority electron mobility in InP with
F = F(q).
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Figure 5. Majority electron mobility in Si with
F=F(g).

Finally, Fig. 6 shows the well-known dip in g in p-
type material due to the plasmon interaction and a
weaker dependence on Z compared to n-type mate-
rial. Only for p > 2 x 10'? cm™2 a small difference is
observed, p again decreases with atomic number from
“Be, 3°Zn to “*Cd.

V. Conclusions

The proposed theoretical approach to our knowl-
edge is the first physically based model to date which
explains the dependence of the majority and minority
electron mobility on various dopant species through the
atomic number. Corrections to the first Born approxi-
mation are important for doping concentrations beyond
107 cm~3. The dependence on the donor species be-
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Figure 6. Minority electron mobility in InP with
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comes significant for concentrations beyond 10*® cm=3.

= F(q).
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Neither compensation nor autocompensation is neces-
sary to obtain a close agreement with experiment in
highly n-degenerate material. In case of minority elec-
tron transport no species dependence is observed in the
practical doping range.
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