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A self-consistent Schr�odinger Poisson solver has been developed capable of computing

the subband structure of a quasi-two dimensional electron gas formed in silicon inversion

layers or in various heterostructures. The employed model features position-dependent

material parameters and a non-parabolic band structure.

In bulk semiconductors one frequently introduces non-parabolicity by using an E{
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Kane Model (see e.g. [1]). Such a model is expected to be accurate enough in many cases

of interest and, in any case, can be used to to draw qualitative conclusions about non-

parabolicity e�ects [2]. Assuming quantization in one dimension we replace the scalar

quantities z and k

z

by the operators z and k

z

, respectively, and end up with the following

implicit de�nition of the kinetic energy operator T:
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The in-plane wave vector is represented by

~

K = (k

x

; k
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). Expression (1) accounts for

spatially varying material parameters such that multi-layer structures can be treated

properly. The one-dimensional Schr�odinger equation including the kinetic energy operator

de�ned by (1) is solved numerically. As base functions we use the eigen functions of the

momentum operator, �hk

z

, i.e., the wave functions are represented as Fourier series, and

the unknowns of the equation system are the Fourier coe�cients. On the other hand, to

solve Poisson's equation �nite di�erence discretization in real-space is used in order to take

advantage of the sparsity of the equation system. The repeatedly required conversions

from momentum to real-space representation and vice versa are accomplished by means

of the fast Fourier transform (FFT).

Each subband can be characterized by an e�ective mass, m

n

, and a non-parabolicity

factor, �

n

, two parameters which are extracted by applying perturbation theory at
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K =
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To describe the in-plane dispersion relation it appears favorable to use again an expression

of the form �
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. One consequence of non-parabolicity is that the

wave functions depend on the in-pane wave vector. Their e�ective widths decrease with

with higher in-plane momentum.
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