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A self-consistent Schrodinger Poisson solver has been developed capable of computing
the subband structure of a quasi-two dimensional electron gas formed in silicon inversion
layers or in various heterostructures. The employed model features position-dependent
material parameters and a non-parabolic band structure.

In bulk semiconductors one frequently introduces non-parabolicity by using an E-k dis-
persion relation of the form E(1 + oF) = h%k?/2m*, which results from the two-band
Kane Model (see e.g. [1]). Such a model is expected to be accurate enough in many cases
of interest and, in any case, can be used to to draw qualitative conclusions about non-
parabolicity effects [2]. Assuming quantization in one dimension we replace the scalar
quantities z and k, by the operators z and k,, respectively, and end up with the following
implicit definition of the kinetic energy operator T:
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The in-plane wave vector is represented by K = (kg ky). Expression (1) accounts for
spatially varying material parameters such that multi-layer structures can be treated
properly. The one-dimensional Schrodinger equation including the kinetic energy operator
defined by (1) is solved numerically. As base functions we use the eigen functions of the
momentum operator, hk,, i.e., the wave functions are represented as Fourier series, and
the unknowns of the equation system are the Fourier coefficients. On the other hand, to
solve Poisson’s equation finite difference discretization in real-space is used in order to take
advantage of the sparsity of the equation system. The repeatedly required conversions
from momentum to real-space representation and vice versa are accomplished by means
of the fast Fourier transform (FFT).

Each subband can be characterized by an effective mass, m,, and a non- parabohclty
factor, a,,, two parameters which are extracted by applying perturbation theory at K =0.
To describe the in-plane dispersion relation it appears favorable to use again an expression
of the form €,(1 + aye,) = h2K2/2mn. One consequence of non-parabolicity is that the
wave functions depend on the in-pane wave vector. Their effective widths decrease with
with higher in-plane momentum.
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