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ABSTRACT 

This paper presents a new C++ library which provides 
an object-oriented approach to the management of al­
gorithms and models. The Algorithm Library affords 
a class hierarchy describing arbitrary algorithms, their 
parameters and documentation. Any program using 
this library gains an interpreter for the Model Defini­
tion Language which allows to define algorithms and 
their parameters on the input deck. New models can 
be defined in an object-oriented manner by inheriting 
features form prepackaged models supplied by the pro­
gram without needing to edit the source code of the 
program or to link a new simulator executable. An ex­
ample for the usage of the Model Definition Language 
is given to show its basic features. 

INTRODUCTION 

The continuous development of new processes and de­
vices in combination with the increasing number of de­
vices on a single chip requires to improve process and 
device simulator programs permanently through imple­
menting new or enhanced models and algorithms. In 
traditional simulators the integration of new models 
requires to edit the source code of the simulator and, 
thus, deep knowledge of implementation details. For 
that reason a new library based concept was devel­
oped, which provides an object-oriented approach to 
the implementation, parameterization and selection of 
models1 , without any changes to the source code of the 
simulator. 

The Algorithm Library is designed to support any 
kind of algorithm using arbitrary user defined data 
structures as parameters, which are handled in their 

1 In this text no conceptual distinction is made between the 
nouns "model" and "algorithm" . 

native c++ representation and forwarded to the mod­
els using references. It offers a set of C++ classes and 
methods to handle these algorithms and parameters di­
rectly in C or C++ code and the object-oriented Model 
Definition Language (MDL). The MDL can be used as 
an interpreted language to ease the development of new 
algorithms, or by using a two pass concept as a compiler 
language to optimize the speed of simulations. There­
fore algorithms and data structures used in the inner­
most simulation loops can be handled using the mech­
anisms of this library with almost no performance loss 
compared to traditional function calls. 

These features distinguish the Algorithm Library 
from general purpose extension languages like TCL 
(Ousterhout 1994) or specialized approaches as pre­
sented in (Yergeau and Dutton 1997), (Litsios 1996) or 
(Radi et al. 1997), where modeling languages are intro­
duced which are specialized to solving PD E's on specific 
mesh representations and the automatic generation of 
a Jacobian matrix. 

BASIC STRUCTURE 

Algorithms and Models defined with the Algorithm Li­
brary are represented by c++ classes derived from 
the base class Model or other previously defined model 
classes (Stroustrup 1986). The thereby defined inher­
itance tree (Figure 1) is used to classify the various 
model algorithms and for checking the user supplied 
definitions on the input deck during the initialization 
of the Algorithm Library. Model-classes encapsulate 
the algorithm itself, private data values used to evalu­
ate the algorithm, an interface containing the required 
input and output parameters and the documentation 
(Figure 2). 

The Algorithm Library provides an interface mech­
anism which separates arbitrary algorithms and/or 
model instances from the rest of the simulator. These 
interfaces contain the information about the type of al­
gorithm to be used (requested model type), a specific 
instance name for the model and all the input and out­
put parameters which are necessary to evaluate any al­
gorithm of the requested type ("fat" interface concept). 
The actual algorithm used for a certain model instance 
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Figure 1: A sample Model Hierarchy 

can be selected on the input deck of the program, or 
by supplying a default type in the interface definition. 
During the initialization the Algorithm Library checks 
whether the model instances are either equal to or de­
rived from the requested model type. 

Parameter classes contain a reference to the value, a 
name which has to be unique inside of the given inter­
face, and optionally documentation and default values 
(Figure 2). Several types of parameters according to 
the standard C++ variable types are predefined. New 
parameter types can be instantiated by specializing the 
template class Parameter with arbitrary C++ classes 
describing the values. For each of these parameters a 
set of operators and functions can be specified which 
can be used in calculations defined on the input deck 
as well as in algorithms defined in c++. 

Model: 

type and parent types, instance name, 
documentation 
private data 

Interface: 

Parameter: 
name, type, value, default value 
documentation 

Parameter: 
name, type, value, default value 
documentation 

Figure 2: The data structure of a model 

To evaluate the algorithms, the parameter values are 
forwarded to the model instances by reference. There­
fore the interfaces of the program and the model have 

to be linked by the Algorithm Library in the initializa­
tion phase of the program, so that the value references 
of affected parameters are set to equal values as shown 
in Figure 3. To support the optimization of data struc­
tures as needed by advanced CPU architectures these 
references can explicitly be set to specified values. 

Parameters with the same name and type are linked 
automatically; other links can be specified in the c++ 
code of the program and on the input deck using the 
Model Definition Language. A run time type check 
of the parameters ensures the software integrity of the 
input deck and the program. Since default values for 
parameters can be specified in the interface definition 
of a model, in the definition of the program interface 
and on the input deck, the actual default value of linked 
parameters is determined by the source with the highest 
priority as depicted in Table 1. 

priority source of default value 
3 input deck definition 
2 interface definition 
1 model definition 

Table 1: Default value priorities 
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Figure 3: Linking of parameter values 

Different sets of algorithms and appropriate param~ 
eter definitions can be collected in separate libraries of 
object code or MDL source files. Rapid prototyping of 
new algorithms is supported by an interpreter for the 
object-oriented MDL which is used to parse model def­
initions on the input deck of the program. Additional 
models can be implemented and tested during the run 



time of the program and added later to the model li­
braries by using the MDL-compiler which translates the 
definitions on the input deck into c++ code. 

An instance of a specific algorithm can be generated 
by forwarding the model type name to the Algorithm 
Library or by giving an instance name for the algo­
rithm. In this case the actual class type is determined 
at run time by parsing the input deck. To evaluate the 
algorithm, its class instance is connected to an interface 
providing the necessary parameter values. 

MODEL DEFINITION LANGUAGE 

The Algorithm Library contains an interpreter and a 
compiler for the Model Definition Language which al­
lows to: 

• Define the actual algorithms (model instances) to 
be used for a specific task. 

• Define the parameter values for model instances 
and default values for the parameters of certain 
types of algorithms. 

• Define new algorithms by inheriting and combin­
ing methods and interfaces from previously defined 
ones. 

• Define global parameters which can be used for 
communication between model instances where the 
author of the program didn't anticipate the neces­
sity. 

• Request a database record, describing all avail­
able algorithms, their interfaces and documenta­
tion and the thereby defined model hierarchy. 

• Request a debug report describing the actually 
used algorithms, the values and default values of 
parameters for specific model instances, and a ta­
ble showing how these parameters are linked to­
gether. 

MDL classes contain private and protected interface 
parameters, private and protected local parameters and 
sub-models defined on previously scanned MDL source 
files or object libraries of compiled C++ code. The in­
heritance rules for protected and local parameters are 
similar to the c++ inheritance rules and support mul­
tiple inheritance of parameters and single inheritance 
of the evaluation rule. 

The evaluation rules of MDL classes can contain cal­
culations with parameters of any type. For the prede­
fined c++ compatible parameter types the standard 
c++ operators are predefined with c++ compatible 
precedence rules. Operators for user defined parameter 
types can be used if they are supported by the classes 
describing the parameter values. These calculations can 
be combined with evaluations of sub-models by using 

conditional and loop expressions and evaluations of sub­
models provided from the Algorithm Library. 

A minimal program using the Algorithm Library to 
evaluate a single algorithm may be structured as shown 
in Figure 4. A corresponding source code example is 
given in Figure 6: 

1. The Algorithm Library is initialized by parsing and 
analyzing the input deck. 

2. The "fat" interface containing all parameters acer­
tain type of algorithms might need, the required 
model type, and a default model type is created. 
Optionally the documentation of the interface can 
be defined in this place, too. 

3. The model instance is requested from the Algo­
rithm Library and linked against the parameter 
interface. 

4. Repeat as necessary: Compute the values of the 
input parameters; evaluate the model; use the re­
sulting parameter values for further computations. 

5. To release the acquired resources cleanly, the re­
quired model instance has to be deleted after the 
last evaluation. A shutdown function for the Al­
gorithm Library resets the library into the initial 
state, so that new definitions can be parsed inde­
pendently from any previous ones. 

Steps 1-3 should take place during the initialization 
phase of the program because they require the rather 
time consuming parsing and interpretation of the input 
deck. Once the internal data structures of the Algo­
rithm Library are assembled, the additional time con­
sumption caused by the usage of the Algorithm Library 
are typically between 5-30 3 depending on the com­
plexity of the models. 

EXAMPLE 

To give a short example for the usage of the Model Def­
inition Language, Figure 8 shows how a simple carrier 
mobility model is defined by combining a lattice scat­
tering model (Arora et al. 1982) 

(1) 

with a carrier carrier scattering model (Adler 1981) 

1.428. 1020 

(2) µcos= ; JnP · ln(l + 4.54 · 1011. (np)-l 3) 

using Mathiessen's rule . 

1 
µ9 = -1 /...,..µ_L_s_+_l_,/_µ_c_c_s (3) 



Program: 

Model Manager Initialization 

Interpretation of the Input Deck 

( Interface Definition ) 
---____ ___.. ... 
(~~R_e_q_u_e_s_t_M~o_d_e_1_1_n_s_t_a_n_c_e~~~~~~~) . . . 

Main Loops ... 
Evaluate Model 

... 

( Delete Model Instance ) 

Figure 4: Structure of a program using the Algorithm 
Library 

The source code of a program which uses the Algo­
rithm Library to evaluate a mobility model is depicted 
in Figure 6. The interface for all carrier mobility mod­
els contains among others the parameters temp (lattice 
temperature in K), mu (the resulting carrier mobility in 
cm2v- 1s-1 ) and np (the product of the electron and 
hole densities in cm-6 ). 

The abstract model type MobilityMdl - the parent 
class of all carrier mobility models - can be defined as 
a part of the c++ source code of the simulator. It has 
no valid evaluation rule but specifies the names, types 
and default values of the interface parameters common 
to all mobility models (Figure 7). These definitions are 
inherited by the mobility models defined by using the 
MDL as depicted in Figure 8. 

Figure 5 illustrates the structure of the resulting mo­
bility model by showing the equivalences between the 
various interface- and model parameters which are gen­
erated by using the link command of the Model Defi­
nition Language. 

CONCLUSION 

By using the model library a clean interface is intro­
duced between modularized algorithms and the rest of 
the program. These algorithms can easily be replaced 
by newly defined ones during run time without any ad­
ditional coding efforts within the simulator. Due to 
the almost negligible run time performance loss and the 

great simplifications in introducing new algorithms into 
simulators, the Algorithm Library is a valuable tool for 
the developers as well as for the users of a simulator. 
Developers gain methods to write modularized user ex­
tensible programs whereas the users of these programs 
can customize them to their own needs by using the 
powerful MDL extension language. 
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Figure 5: Block diagram of the new mobility model 

#include "vmodel.hh" 

int main() 
{ 
II define parameter mob with the name "mu" 
Parameter<double> mob("mu"); 
II define other parameters (T,np, ... ) 

II add the parameters to the interface 
Interface Mobilityinterface; 
Mobilityinterface.addParam(&mob); 

II get the model instance 
ModelPtr MobModel = mdlRequestModel( 

"ElectronMobilityMdl", 
"MobilityMdl", 
&Mobilityinterface); 

II instance name 
II required type 
II interface 

II compute the values of input parameters 
II evaluate the model and 
II use the resulting parameter values 
T = .. ; np = .•.. ; 
MobModel->evaluate(); 

II release resources 
delete MobModel; 
mdlShutDownModelServer(); 

return O; 
} 

Figure 6: Simulator source code example 

class MobilityMdl public Model 
{ 

protected: 
Param<double> mu; 
Param<double> T; 

II [cmft2 vft-1 sft-1] 
II [K] temperature 
II further parameters 

public: 
bool evaluate () { return false; } 
bool init () { 

addParam( &mu, "mu" ) ; 
addParam( &T , "temp", 300 ); 
return true; 

} 

MODEL_DECLARATION_EXTENSION 
}; 
MODEL_DEFINITION_EXTENSION(MobilityMdl,Model) 

Figure 7: Abstract mobility model class in C++ 

#include "CC_Mobility .mdl" 

II lattice scattering mobility model 
Model LatScatMobility : MobilityMdl 
{ 

} 

calc "mobility" { 
Interface."mu"=Interface."muO" * 
exp ( - Interface . "alpha"* 
ln(Interface."temp"l300));} 

EvaluationRule { "mobility"; } 

II Define the combined mobility model 
Model LC_Mobility : MobilityMdl { 

Model LatScatMobility "LSMob"; 
Model CC_ScatMobility "CCSMob"; 

} 

II new default parameters for sub models 
Parameter" LSMob"."muO" = 1448; 
Parameter " CCSMob"."alpha" = 2.33; 

link Interface."temp" to "LSMob"."temp"; 
link Interface."np" to "CCSMob"."np"; 

EvaluationRule { 
"LSMob"; 
"CCSMob"; 

} 

calc { 

} 

Interface. "mu" = 
1l(1l"LSMob"."mu"+1l"CCSMob"."mu"); 

II Specify the actual Mobility Model Type 
Model "Mobility Model" = LC_Mobility; 

Figure 8: MDL definition of the new mobility model 




