
OBJECT-ORIENTED MANAGEMENT OF ALGORITHMS AND
MODELS

R. Mlekus and S. Selberherr

Institute for Microelectronics, TU Vienna
Gufihausstrafie 27-29, A-1040 Vienna, Austria

Phone: +43/1/58801-3692, Fax: +43/1/5059224,
e-mail: mlekus@iue.tuwien.ac.at,URL:http://www.iue.tuwien.ac.at

KEYWORDS

Computer Aided Engineering (CAE), Simulators, Soft­
ware engineering, Model design, Object-oriented.

ABSTRACT

This paper presents a new C++ library which provides
an object-oriented approach to the management of al­
gorithms and models. The Algorithm Library affords
a class hierarchy describing arbitrary algorithms, their
parameters and documentation. Any program using
this library gains an interpreter for the Model Defini­
tion Language which allows to define algorithms and
their parameters on the input deck. New models can
be defined in an object-oriented manner by inheriting
features form prepackaged models supplied by the pro­
gram without needing to edit the source code of the
program or to link a new simulator executable. An ex­
ample for the usage of the Model Definition Language
is given to show its basic features.

INTRODUCTION

The continuous development of new processes and de­
vices in combination with the increasing number of de­
vices on a single chip requires to improve process and
device simulator programs permanently through imple­
menting new or enhanced models and algorithms. In
traditional simulators the integration of new models
requires to edit the source code of the simulator and,
thus, deep knowledge of implementation details. For
that reason a new library based concept was devel­
oped, which provides an object-oriented approach to
the implementation, parameterization and selection of
models1 , without any changes to the source code of the
simulator.

The Algorithm Library is designed to support any
kind of algorithm using arbitrary user defined data
structures as parameters, which are handled in their

1 In this text no conceptual distinction is made between the
nouns "model" and "algorithm" .

native c++ representation and forwarded to the mod­
els using references. It offers a set of C++ classes and
methods to handle these algorithms and parameters di­
rectly in C or C++ code and the object-oriented Model
Definition Language (MDL). The MDL can be used as
an interpreted language to ease the development of new
algorithms, or by using a two pass concept as a compiler
language to optimize the speed of simulations. There­
fore algorithms and data structures used in the inner­
most simulation loops can be handled using the mech­
anisms of this library with almost no performance loss
compared to traditional function calls.

These features distinguish the Algorithm Library
from general purpose extension languages like TCL
(Ousterhout 1994) or specialized approaches as pre­
sented in (Yergeau and Dutton 1997), (Litsios 1996) or
(Radi et al. 1997), where modeling languages are intro­
duced which are specialized to solving PD E's on specific
mesh representations and the automatic generation of
a Jacobian matrix.

BASIC STRUCTURE

Algorithms and Models defined with the Algorithm Li­
brary are represented by c++ classes derived from
the base class Model or other previously defined model
classes (Stroustrup 1986). The thereby defined inher­
itance tree (Figure 1) is used to classify the various
model algorithms and for checking the user supplied
definitions on the input deck during the initialization
of the Algorithm Library. Model-classes encapsulate
the algorithm itself, private data values used to evalu­
ate the algorithm, an interface containing the required
input and output parameters and the documentation
(Figure 2).

The Algorithm Library provides an interface mech­
anism which separates arbitrary algorithms and/or
model instances from the rest of the simulator. These
interfaces contain the information about the type of al­
gorithm to be used (requested model type), a specific
instance name for the model and all the input and out­
put parameters which are necessary to evaluate any al­
gorithm of the requested type ("fat" interface concept).
The actual algorithm used for a certain model instance

/"----"'
I Model I
..... ____ /

Figure 1: A sample Model Hierarchy

can be selected on the input deck of the program, or
by supplying a default type in the interface definition.
During the initialization the Algorithm Library checks
whether the model instances are either equal to or de­
rived from the requested model type.

Parameter classes contain a reference to the value, a
name which has to be unique inside of the given inter­
face, and optionally documentation and default values
(Figure 2). Several types of parameters according to
the standard C++ variable types are predefined. New
parameter types can be instantiated by specializing the
template class Parameter with arbitrary C++ classes
describing the values. For each of these parameters a
set of operators and functions can be specified which
can be used in calculations defined on the input deck
as well as in algorithms defined in c++.

Model:

type and parent types, instance name,
documentation
private data

Interface:

Parameter:
name, type, value, default value
documentation

Parameter:
name, type, value, default value
documentation

Figure 2: The data structure of a model

To evaluate the algorithms, the parameter values are
forwarded to the model instances by reference. There­
fore the interfaces of the program and the model have

to be linked by the Algorithm Library in the initializa­
tion phase of the program, so that the value references
of affected parameters are set to equal values as shown
in Figure 3. To support the optimization of data struc­
tures as needed by advanced CPU architectures these
references can explicitly be set to specified values.

Parameters with the same name and type are linked
automatically; other links can be specified in the c++
code of the program and on the input deck using the
Model Definition Language. A run time type check
of the parameters ensures the software integrity of the
input deck and the program. Since default values for
parameters can be specified in the interface definition
of a model, in the definition of the program interface
and on the input deck, the actual default value of linked
parameters is determined by the source with the highest
priority as depicted in Table 1.

priority source of default value
3 input deck definition
2 interface definition
1 model definition

Table 1: Default value priorities

Program

Interface
Variable

T - I
Parameter ''T' - - 1

' '

" Model "TestModel" r
Interface

Parameter
"temp"

'-

r
Model "SubModel"

Interface Parameter
"TO"

'

Figure 3: Linking of parameter values

Different sets of algorithms and appropriate param~
eter definitions can be collected in separate libraries of
object code or MDL source files. Rapid prototyping of
new algorithms is supported by an interpreter for the
object-oriented MDL which is used to parse model def­
initions on the input deck of the program. Additional
models can be implemented and tested during the run

time of the program and added later to the model li­
braries by using the MDL-compiler which translates the
definitions on the input deck into c++ code.

An instance of a specific algorithm can be generated
by forwarding the model type name to the Algorithm
Library or by giving an instance name for the algo­
rithm. In this case the actual class type is determined
at run time by parsing the input deck. To evaluate the
algorithm, its class instance is connected to an interface
providing the necessary parameter values.

MODEL DEFINITION LANGUAGE

The Algorithm Library contains an interpreter and a
compiler for the Model Definition Language which al­
lows to:

• Define the actual algorithms (model instances) to
be used for a specific task.

• Define the parameter values for model instances
and default values for the parameters of certain
types of algorithms.

• Define new algorithms by inheriting and combin­
ing methods and interfaces from previously defined
ones.

• Define global parameters which can be used for
communication between model instances where the
author of the program didn't anticipate the neces­
sity.

• Request a database record, describing all avail­
able algorithms, their interfaces and documenta­
tion and the thereby defined model hierarchy.

• Request a debug report describing the actually
used algorithms, the values and default values of
parameters for specific model instances, and a ta­
ble showing how these parameters are linked to­
gether.

MDL classes contain private and protected interface
parameters, private and protected local parameters and
sub-models defined on previously scanned MDL source
files or object libraries of compiled C++ code. The in­
heritance rules for protected and local parameters are
similar to the c++ inheritance rules and support mul­
tiple inheritance of parameters and single inheritance
of the evaluation rule.

The evaluation rules of MDL classes can contain cal­
culations with parameters of any type. For the prede­
fined c++ compatible parameter types the standard
c++ operators are predefined with c++ compatible
precedence rules. Operators for user defined parameter
types can be used if they are supported by the classes
describing the parameter values. These calculations can
be combined with evaluations of sub-models by using

conditional and loop expressions and evaluations of sub­
models provided from the Algorithm Library.

A minimal program using the Algorithm Library to
evaluate a single algorithm may be structured as shown
in Figure 4. A corresponding source code example is
given in Figure 6:

1. The Algorithm Library is initialized by parsing and
analyzing the input deck.

2. The "fat" interface containing all parameters acer­
tain type of algorithms might need, the required
model type, and a default model type is created.
Optionally the documentation of the interface can
be defined in this place, too.

3. The model instance is requested from the Algo­
rithm Library and linked against the parameter
interface.

4. Repeat as necessary: Compute the values of the
input parameters; evaluate the model; use the re­
sulting parameter values for further computations.

5. To release the acquired resources cleanly, the re­
quired model instance has to be deleted after the
last evaluation. A shutdown function for the Al­
gorithm Library resets the library into the initial
state, so that new definitions can be parsed inde­
pendently from any previous ones.

Steps 1-3 should take place during the initialization
phase of the program because they require the rather
time consuming parsing and interpretation of the input
deck. Once the internal data structures of the Algo­
rithm Library are assembled, the additional time con­
sumption caused by the usage of the Algorithm Library
are typically between 5-30 3 depending on the com­
plexity of the models.

EXAMPLE

To give a short example for the usage of the Model Def­
inition Language, Figure 8 shows how a simple carrier
mobility model is defined by combining a lattice scat­
tering model (Arora et al. 1982)

(1)

with a carrier carrier scattering model (Adler 1981)

1.428. 1020

(2) µcos= ; JnP · ln(l + 4.54 · 1011. (np)-l 3)

using Mathiessen's rule .

1
µ9 = -1 /...,..µ_L_s_+_l_,/_µ_c_c_s (3)

Program:

Model Manager Initialization

Interpretation of the Input Deck

(Interface Definition)
---____ ___.. ...
(~~R_e_q_u_e_s_t_M~o_d_e_1_1_n_s_t_a_n_c_e~~~~~~~) . . .

Main Loops ...
Evaluate Model

...

(Delete Model Instance)

Figure 4: Structure of a program using the Algorithm
Library

The source code of a program which uses the Algo­
rithm Library to evaluate a mobility model is depicted
in Figure 6. The interface for all carrier mobility mod­
els contains among others the parameters temp (lattice
temperature in K), mu (the resulting carrier mobility in
cm2v- 1s-1) and np (the product of the electron and
hole densities in cm-6).

The abstract model type MobilityMdl - the parent
class of all carrier mobility models - can be defined as
a part of the c++ source code of the simulator. It has
no valid evaluation rule but specifies the names, types
and default values of the interface parameters common
to all mobility models (Figure 7). These definitions are
inherited by the mobility models defined by using the
MDL as depicted in Figure 8.

Figure 5 illustrates the structure of the resulting mo­
bility model by showing the equivalences between the
various interface- and model parameters which are gen­
erated by using the link command of the Model Defi­
nition Language.

CONCLUSION

By using the model library a clean interface is intro­
duced between modularized algorithms and the rest of
the program. These algorithms can easily be replaced
by newly defined ones during run time without any ad­
ditional coding efforts within the simulator. Due to
the almost negligible run time performance loss and the

great simplifications in introducing new algorithms into
simulators, the Algorithm Library is a valuable tool for
the developers as well as for the users of a simulator.
Developers gain methods to write modularized user ex­
tensible programs whereas the users of these programs
can customize them to their own needs by using the
powerful MDL extension language.

ACKNOWLEDGMENT

The authors would like to thank Siemens AG, Munich,
Germany for the support .

REFERENCES

Adler, M. 1981. Accurate Numerical Models for Tran­
sistors and Thyristors. In Miller, J., editor, An In­
troduction to the Numerical Analysis of Semiconductor
Devices and Integrated Circuits pages 5-8 Dublin. Boole
Press.

Arora, N.; Hauser, J., and Roulston, D. 1982. Electron
and Hole Mobilities in Silicon as a Function of Concen­
tration and Temperature. IEEE Trans.Electron Devices
ED-29(2) :292-295.

Litsios, J. 1996. A modeling language for mixed circuit
and semiconductor device simulation. Hartung-Garre.

Ousterhout, J. 1994. Tel and the Tk Toolkit. Addison
Wesley.

Radi, M.; Leitner, E.; Hollensteiner, E., and Selber­
herr, S. 1997. AMIGOS: Analytical Model Interface &
General Object-Oriented Solver. In Riedling, K., edi­
tor, Basics and Technology of Electronic Devices pages
57-60 Grossarl, Austria. Gesellschaft fiir Mikroelek­
tronik. Proc. of the Seminar "Grundlagen und Tech­
nologie Elektronischer Bauelemente".

Stroustrup, B. 1986. The C++ Programming Language.
Addison-Wesley.

Yergeau, D. and Dutton, R. 1997. Alamode: A Layered
Model Development Environment for Simulation of Im­
purity Diffusion in Semiconductors. Documentation for
release 97.06.18.

BIOGRAPHY

Robert Mlekus was born in Tulln, Austria, in 1968.
He studied electrical engineering at the Technical Uni­
versity of Vienna, where he received the degree of
'Diplomingenieur' in 1994. He joined the 'Institut fiir
Mikroelektronik' in December 1994, where he is cur­
rently working for his doctoral degree. His work is fo­
cused on object-oriented techniques for the integration
of physical models into process and device simulators.

LC_ Moblll ty

LSMob

'"T•lllfl" "1emp11

.. muO '" .. mu•

"alpha"

MathiessenRule
~mu"

CCSMob

"np" "np" "mu"

ln1uroce of LC_ loblllty

Figure 5: Block diagram of the new mobility model

#include "vmodel.hh"

int main()
{
II define parameter mob with the name "mu"
Parameter<double> mob("mu");
II define other parameters (T,np, ...)

II add the parameters to the interface
Interface Mobilityinterface;
Mobilityinterface.addParam(&mob);

II get the model instance
ModelPtr MobModel = mdlRequestModel(

"ElectronMobilityMdl",
"MobilityMdl",
&Mobilityinterface);

II instance name
II required type
II interface

II compute the values of input parameters
II evaluate the model and
II use the resulting parameter values
T = .. ; np = .•.. ;
MobModel->evaluate();

II release resources
delete MobModel;
mdlShutDownModelServer();

return O;
}

Figure 6: Simulator source code example

class MobilityMdl public Model
{

protected:
Param<double> mu;
Param<double> T;

II [cmft2 vft-1 sft-1]
II [K] temperature
II further parameters

public:
bool evaluate () { return false; }
bool init () {

addParam(&mu, "mu") ;
addParam(&T , "temp", 300);
return true;

}

MODEL_DECLARATION_EXTENSION
};
MODEL_DEFINITION_EXTENSION(MobilityMdl,Model)

Figure 7: Abstract mobility model class in C++

#include "CC_Mobility .mdl"

II lattice scattering mobility model
Model LatScatMobility : MobilityMdl
{

}

calc "mobility" {
Interface."mu"=Interface."muO" *
exp (- Interface . "alpha"*
ln(Interface."temp"l300));}

EvaluationRule { "mobility"; }

II Define the combined mobility model
Model LC_Mobility : MobilityMdl {

Model LatScatMobility "LSMob";
Model CC_ScatMobility "CCSMob";

}

II new default parameters for sub models
Parameter" LSMob"."muO" = 1448;
Parameter " CCSMob"."alpha" = 2.33;

link Interface."temp" to "LSMob"."temp";
link Interface."np" to "CCSMob"."np";

EvaluationRule {
"LSMob";
"CCSMob";

}

calc {

}

Interface. "mu" =
1l(1l"LSMob"."mu"+1l"CCSMob"."mu");

II Specify the actual Mobility Model Type
Model "Mobility Model" = LC_Mobility;

Figure 8: MDL definition of the new mobility model

