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Simulation of Submicron Double-
Heterojunction High Electron Mobility
Transistors with MINIMOS-NT

Thomas Simlinger, Helmut Brech, Thomas Grave, and Siegfried SelbeFa#iow, IEEE

Abstract— Simulations and measurements of submicron  The simulation of HEMT's is mainly facing two problems.
pseudomorphic high electron mobility transistors (HEMT's) Of concern are short-channel effects caused by reducing the
are presented. For the simulations the generic device simulator gate length well below a quarter micron. Secondly, the device

MINIMOS-NT is used which is capable of dealing with complex g :
device geometries as well as with several physical modelsCh"’""leterIStICS strongly depend on the properties of abrupt

represented by certain sets of partial differential equations. A heterojunction interfaces.
description of the structure of the simulator is given, which To account for short-channel effects several attempts have

shows the basic idea of splitting the device geometry into distinct been made to make the hydrodynamic (HD) model suitable for
regions. Within these “segments,” arbitrary material properties  device simulation [1]-[4]. However, the convergence of the
and physical models, i.e., partial differential equations, can be HD model is poor and the computational effort is high, since

defined independently. The segments are linked together by h f unk . d by th . .
interface models which account for the interface conditions. '€ S€t of unknowns is augmented by the carrier energies.

The simulated characteristics of a HEMT with a gate length Both effects can be mitigated when the HD model is only
of 240 nm are compared with the measured data. Essential used for regions of the device where nonlocal behavior is
physical effects which determine the behavior of the device can dominating, hence by mixing drift-diffusion (DD) and hydro-
be identified in the output and transfer characteristics. dynamic model (mixed-model simulation). For HEMT’s the
critical region is the channel layer. To apply the HD model
only for the channel layer, this region must be cut out and then
) - _ linked with the remaining regions by specific interface models.
I N RECENT years, high electron mobility transistorgpys, the device region is split into a set of subdomains by a
(HEMT’s) have become a widely used supplement tgrgcess referred to as segment split method (SSM) [5].
the spectrum of industrial semiconductor devices. Especia 'yMoreover, the SSM offers an elegant way to handle abrupt
pseudomorphic - submicron HEMT's have conquered gpterojunctions using specific interface models mentioned
broad field of application because of their high-frequencygye. Previously published simulators are only capable
performance. _ of dealing with continuous material properties [6], [7] and
The aim of this work is to show the capabilities and featurggerefore ignoring thermionic-field emission, or they are
of the two-dimensional (2-D) device simulator MINIMOS-yggigned for only one dimension in space [8], [9]. Using SSM
NT which are required for the simulation of HEMT'S.jt js possible to combine models for abrupt heterojunctions
Special interface models are developed on the basis ffy 2.p device simulation. Accordingly, for the simulation

DC-characteristics simulation of a pseudomorphic doublg: HEMT's the short-channel effects can be considered as
heterojunction AlGaAs/InGaAs HEMT with a gate length ofye|| a5 the influence of the thermionic-field emission on the

240 nm. ) . confinement of the electrons inside the channel layer.
The simulation results are compared with measured datan gection Il the equations for the drift-diffusion and hy-

and three distinct operation regimes of the transfer charggqgynamic models, the interface model for thermionic-field
teristics can be diagnosed, each owing to a major physigalission, and the physical models are presented along with
effect. Identifying the essential physical mechanisms whicly e notes on numerics. The measured DC characteristics
are re_sponS|bIe for partlcglar effects of the HEMT's electrical,o compared with simulation results in Section Il as well
behavior by means of simulation allows to push ahead the , giscussion of several physical effects which influence

further develqpment _OfHEMT’S' The capability_ of simulation,e yansfer characteristics. Finally, some conclusions are
includes device scaling as well as the potential of band 98P.sented in Section IV

engineering. Both improvements can be realized by process
technology due to advances in epitaxial growth producing Il. SEGMENT SPLIT METHOD AND MIXED

epilayers of almost arbitrary material composition. DRIFT-DIFFUSION HYDRODYNAMIC SIMULATION

The electrical behavior of the HEMT is mainly determined

I. INTRODUCTION
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Insulator an—q-aa—? —qg-R=0 (2
.9
VJp—i-q-a—]t)—i-q-R:O 3)

wherefn andfp are the electron and hole current densities,

A;;i?;?:g . respectively,R is the net recombination rate, is the per-
“~ Upper Barrier 25 nm mittivity, » and p the electron and hole concentrationsis

the absolute electron chargd;; and Nj are the densities

In o 4Gag gAs Channel 12 nm of ionized acceptors and donors, and;,, is the density of

ionized deep traps, respectively.
The current densities are defined as

. > E kN -1
Back-Doping | gwer Barrier  AloGaggAs o =q iy -1 - [V(f - ¢> + E e \v/ nN—C}

(4)

Fig. 1. Schematic cross section of a delta-doped pseudomorphic dou- J, =¢q - p, - p- [V(E—L — z/;) — E . Ny -V —=
ble-heterojunction HEMT. The current is conducted inside the narrow q

band-gap lp.2Ga sAs channel layer, 12 nm thick, which is sandwiched (5)
between the wide band-gap A Ga s As upper and lower barrier layer.

where the nonconstant carrier temperatures and effective-

ial and electrical ies ch | bruotl ensity-of-states are considered by the teVi( - 7,,/N¢)
material and electrical properties change almost abruptly at dV(p-T,/Ny ), respectively. The terms (Ec /¢ — 1) and

heterojunction interfaces, i.e., at interfaces between differgh Ey /q—1) account for the nonconstant band edge energies
Iayers_.llnside a Iayer the material propertigs and Fhe electri e definition of the carrier mobilities,, and 1, depends on
guantities are continuous, and the partial differential equatiofs, applied model and considers a field dependence for the DD

(PD.E) describing the 'electrical behavior can be solved "Hiodel and a carrier temperature dependence for the HD model.
merically. The discontinuous behavior on interfaces betweenFOr the HD model the equations governing the energy

layers has to be treated by specific interface models to ”ﬂ}énsport are
the layers together. For the simulation the device domain Is

split into several subdomains, referred to as segments. Each VS, + INn-wy) V(E B T/)) T
segment corresponds to a distinct layer of the device. This ot q
process is termed segment split method (SSM). Wn — Wo o
Abrupt heterojunction interfaces can be properly handled tn Taon, tw- R=0 ()
with interface mode!s. Especially,' the.effe.cts of tunneling vi A(p - wy) - Ey 7
through energy barriers at heterojunction interfaces can be pt+ ot 7 - ) Jp
considered analytically for arbitrary device geometries. Tun- w, — wo
neling is important to describe the electron transport from the +p- 7;7 +w-R=0 (7)
wp

drain-sided end of the channel into the barrier layer above.
Furthermore, by linking segments with different properties byhere
appropriate interface models, the models for the segments can g 1 >

also be different. Thus, for the channel segment a five equation Sn ==t Vo = q (wn 4k Tn) - T (8)
hydrodynamic (HD) model can be used to account for short-
channel effects and a plain three equation drift-diffusion (DD)
model for the other segments. Compared to simulations usinl%

the HD model for the entire device, mixed DD/HD modef the electron and hole energy fluxes, respectively,and

simulations are more effective with respect to computatioT p are the energy rela_xat|0n tlme_s, and gnd wp are the .
time and the convergence of the iteration scheme. electron and hole energies, respectively. Since the simulations

are performed for room temperatufie = 300 K the drift
kinetic energy part is small compared to the random kinetic
A. Basic Equations energy of the carriers and can be neglected

. 1 -
Sp:—ﬁp-VTp—l—a-(wp—i—k-Tp)-Jp (9)

In the following the basic equations used for the simulation Wy R % k- Thp- (10)
of the HEMT are given. For plain drift-diffusion modeling S ]
the well known Poisson equation and continuity equatior]s':or the thermal conductivities the Wiedemann—Frantz—Law
are used. Additionally, to account for short-channel effectS, Used
a hydrodynamic model describing the energy transport is P
implemented and the continuity equations are extended for ne
nonconstant carrier temperatures.

The Poisson and continuity equations read

k2

? . Tnp *Hnp - (nvp)' (ll)
Furthermore, for the discretization of the continuity and en-

ergy balance equations we implemented the scheme proposed

in [3] to improve the poor convergence behavior of the HD
V(e -Vy)—q-(n—p+ Ny —N}H—NSf,)=0 (1) model.

NN
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B. Interface Models mixed-model simulation the carrier temperatures on both sides

Considering the interface between Segment 1 and S&j-the interface are supposed to be eq@l, = Tnz2).
ment 2, the thermionic-field emission model determines the ]
electron current density,,; leaving Segment 1, the electronC. Numerical Methods
current density.J,,» entering Segment 2, the electron energy The discretized nonlinear equation system is solved by a
flux density S,,; leaving Segment 1, and the electron energyewton—Raphson scheme. Additionally, to improve the well
flux density S, entering Segment 2 known poor convergence of the energy transport equations a
block iterative scheme is implemented. First, the set of Poisson

Tnz = Jn1 (12) equation and continuity equations is solved alternately with
Spo =8Sn1 + = (AEc —bEc) - Jn2 (13) the set of continuity equations and energy transport equations.
Each set is solved iteratively by the Newton—Raphson method

Jn2 =q- Un2(Tn2) "2 until the norm of the updates remains under a certain value.
—q- Mn2 1 (Th1) 11 At last, for the full equation set the Newton—Raphson method

Mn1 [11], [12] is invoked to obtain the desired final accuracy.

exp <_ AEc - 5Ec> (14) The linear system is solved either by a GauR-solver or by a
kT state-of-the-art BiCGStab algorithm [13]. When the BiCGStab

Spo==2k - Tha - vpa(Tha) - no algorithm is employed, at first the matrix is scaled with an

e Mz Ty oo (To1) - ma iterative algorithm [14] and preconditioned [15].

Mn1

< AE: — 6EC) D. Physical Models
. eX ——

k-Th1 (13) In the sequel the models for the band edge energies [16],
the electron and hole effective masses [16], and the mobilities
for Al,Ga _,As and In,Ga,_,As are given.

2-k-Thi (16) Usually, the band gap energies are used for simulation.

T M o However, the correct treatment of the abrupt heterojunctions

requires the energy barrier height on the interfaces, i.e., the
denotes the “emission velocity,” and, , are the electron values for the conduction band edge energy and the valence
effective masses for Segments 1 and 2, respectively. Tihend edge energy as well.

where

Un1,2(Tn1,2) =

barrier height is defined as The band gap energy for ABa;_.As reads
AEC = ECQ bt ECl- (17) a\xr) - T2
Eyle.T) = Eylo.0) = 5020 (20)
For the electrostatic potential the interface condition reads .
18 E (x,0) = EGaLAS (1-z)+ E;UAS -z (21)
VL= (18) alr) = GaAS Q=)+ aMA g (22)
Tunneling of electrons through the energy barrier is taken into Bz) =pY2A (1 —z) 4 pMAS . ¢ (23)

account by barrier height lowering, which is modeled as
whereE,(z,T) is given in eV andl’ is the lattice temperature

§Ec = {gEl " Left gl i% (19) in K.
1= The band gap energy for InAs reads
where £/, is the electric field perpendicular to the interface , , omAs | 2
in Segment 2 and.z is the effective tunnel length which is EPS(T) = B — G T (24)

assumed with 7 nm.
The exponential term in (14) containing the barrier heightith the appropriate parameteBg*4*, ™A%, and g4 (see

determines the current flow across the interface. The efférable 1).

tiveness of this energy barrier is reduced either by barrierThe band gap energy for JGa,_,As is given by

height lowering due to tunneling or by increasing electron CaAs InAs )

temperatureT,,,. Thus, the carrier temperature influencesfs(¥,1) = £ (D) - (1—y)+ ES(T) -y - C -y~ (25)

the current flux across the interface—the higher the eleCtrWiﬁereEGaAs

temperature the more electrons are able to surmount the en

barrier. This effect is referred to as real-space transfer (Reﬁ%

andEI“AS(T) are the band gap energies for
sand InAs respectlvely, addis the “bowing” parameter
For the values of the parameters, see Table |I.

[10]). :

The mixed DD/HD model simulation requires a suitable The band gap energy is refated to the band edge energies by
value for the electron temperatuf®,, inside the wide band- Ec(z,T)=E40,T)+ 0.6 [Ey(x,T) — E4(0,T)] (26)
gap semiconductor segment where the carrier temperature is Ey(z,T) = Ec(z,T) — Ey(z,T) 27)

not calculated explicitly. One possibility is to assume the car-

rier temperature identical to the lattice temperature. Howevéhus, 60% of the change of the band gap energy are attributed
full HD simulations show that the carrier temperature does niat the conduction band edge energy and 40% to the valence
change very much in the vicinity of the interface. Thus, fdoand edge energy.
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TABLE |

PARAMETER VALUES FOR MODELING THE BAND GAP ENERGIES

a3 [1074%eV/K] | o [107%eV/K] | o'*% [10~%eV /K]
5.58 8.78 2.76
ﬂGaAs [K] ﬂAlAs [K] ﬂInAs [K]
220 322 83
E;}a.As [EV] E;IAS [PV] E!I]nAs [ev]
1.521 2.891 0.42
| clv) 0.475
TABLE 1l
PARAMETER VALUES FOR MODELING THE CARRIER EFFECTIVE MASSES
Parameter || AlGaAs | InGaAs
m0y +0.067 | +0.079
ml, +0.083 | —0.038
m2,
mi, +0.080 | +0.120
ml, +0.080 | —0.099
m2, - +0.030
TABLE 11l
PARAMETER VALUES FOR THE MOBILITY MODELS
Parameter AlGaAs InGaAs
#2 [em?/Vs] 3000 6000
v3 [cm/s] 8.0-10° | 11.0-10°
an [K7Y 0.0431 0.0064
8 [em?/Vs] 120 120
v [em/s] 5.0 - 108 5.0 - 108
ap (K™Y 0.62-107%| 0.62- 1072

The carrier effective masses for Aba;_,As read

my, = m0ppy +Mmlpy - +m2y), - 2

np

(28)
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governed by the equations

e — e —

Jn=q-n-pn-Fn, Jp=q-p-py- Fp. (31)
The HD mobility is modeled carrier temperature dependent
_ Hap
1+ Oénp(Tnp - TL)

where7;,, are the carrier temperatures aiig is the lattice
temperature. The corresponding values for the parameters can
be found in Table IIl.

frp (Lnp) 32

lll. RESULTS

The device simulated in this study was fabricated using
a structure grown by molecular beam epitaxy. From top to
bottom the layer sequence consists of a highly doped GaAs
cap layer, a 30 nm undoped AIGa sAs upper barrier
layer, a 12 nm Ip>Ga sAs channel layer, and a 400 nm
Alg 2Gay sAs lower barrier layer on a semi-insulating GaAs-
substrate. Within the upper barrier layer, a delta doping with
an active doping concentration of aba\ip, = 2.7-10'2 cm~2
is grown. The A} ,Ga, sAs barrier below the channel contains
a 7 nm thick doping layer with an active doping concentration
of aboutNp = 8.5 - 10 cm=2,

The gate length of the HEMT is 240 nm. In the vicinity
of the gate, the cap layer is etched to form a recess of about
540 nm length. The gate is placed symmetrically within the
recess. Thus, ungated channel regions extend for about 150
nm at both sides of the gate. Fig. 2 shows a representative
SEM-profile (Scanning Electron Microscopy) of the structure.
As can be seen, the alloying process of the ohmic contacts
does not lead to complete penetration of the cap. Thus, we
assume that the underlying heterostructures are not destroyed
by the contacts. Therefore, the schematic structure shown in
Fig. 1 where the ohmic metal is placed on top of the cap
layer is used for simulation. For the 2-D simulations a contact
resistance of 0.12-mm is assumed. The width of the device
is 180 xm which results in a contact resistance of Q&or
the complete extrinsic device.

The mixed-model simulation is performed with a hydrody-
namic model within the channel region and a drift-diffusion

where forz = 0 the effective masses for GaAs are obtaine§'d€! within the other layers. The hydrodynamic model is
Table Il shows the values used for these parameters.

The carrier effective masses for @a,_,As are governed

by

*
mnp

where the effective masses for InAs are obtained with 1.0

(see Table II).

The DD mobility is modeled by

an(|ﬁnp|) =

=m0pp +mlyy -y +m2y, - y2

0
an

- 2
0o F

1+ <unp s|at np|>
Unp

wherei;, are the zero-field mobilities;’s; are the saturation measurement was performed on wafer ofa45 um device.
velocities, and I,,| are the magnitudes of the driving forceAs depicted in this figure the mixed-model simulation and
for electrons and holes, respectively. The driving forces atlee measured data agree very well. Furthermore, the full HD

(29)

(30)

only applied to electrons. The hole concentration does not
influence the device characteristics and their temperature is
held constant at 300 K. A rectangular grid with 2726 points is
used for discretization. The channel layer is discretized with
315 points. Thus, the mixed DD/HD model simulation needs
about 1.2 times the computation time of a plain DD simulation
and at least 0.7 times the computation time of a full HD
simulation.

The simulation of one bias point requires an average of
500 iteration steps, 30 MB main memory, and needs 200 s.
CPU-time on an HP 9000/735 with 100 MHz clock frequency.

The measured transfer characteristic for a drain-source volt-
age of 2 V is shown in Fig. 3 along with three simulatkd”
curves, one with plain DD model simulation, one with mixed-
model simulation, and one with full HD model simulation. The
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Fig. 2. Representative scanning electron microscopy cross section of the HEMT.

600.0 T T T T ‘ 600.0
® Measured Data P )
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- - - - DD Simulation / LN
4000 + - HD Simulation 400.0 + .
£q g @ -
E E - .
8 &
200.0 200.0 o
® Measured Data
—— Mixed Model Simulation 7]
---- DD Simulation
[ — - — HD Simulation
00 L OO Il L Il L L L
-0. 0.6 0.8 -08 -06 -04 -02 0.0 0.2 0.4 0.6 0.8
Vs (V)
Fig. 3. I-V curves forVps = 2 V. Fig. 4. Transconductance fafps = 2 V.

model and mixed-model simulations are almost identical. ForThe second regime is the one of most interest for device
gate voltages higher than 0.6 V the full HD model simulatioapplications. The drain current is controlled mostly linear by
shows an increase of the drain current which can be attributiése¢ gate voltage and exhibits the maximumgip, as shown
to a parasitic channel in the upper barrier layer. This parasitit Fig. 4.
channel is also shown by mixed-model simulations but for For gate voltages higher than 0.3 V, marking the third
gate voltages beyond 0.8 V. A detailed investigation of thregime, the/-V" curve in Fig. 3 drops off since the electrons
parasitic-channel effect will be published in another paper. heat up and start to surmount the energy barrier between chan-
The transfer characteristics can be divided up into threel and the barrier layer above known as real-space transfer
operation regimes, each regime owing to a major physiaafl the electrons. Hence, an increasing fraction of the electron
effect. Firstly, the pinch off regime, i.e., negative gate voltagdésansport takes place within the upper barrier layer where
where the electron concentration in the channel is low buttise electron mobility is much lower than within the channel.
starting to rise with the gate voltage increasing. Most of tHeig. 5 shows the electron temperature inside the channel of the
current flowing is conducted in the lower barrier layer. transistor and Fig. 7 the electron concentration of the entire
The deviation of the DD simulation and the measuremedevice. As clearly can be seen in Fig. 5 the temperature is
can be attributed to an overestimation of the electron coabout 3000 K on the drain-sided end of the channel which
finement in the channel, i.e., the electrons are not swappatbws the electrons easily to cross the heterojunction between
out into the lower barrier where their mobility is rather lowchannel and upper barrier layer.
This is simulated much more realistically by the mixed-model Tunneling of electrons through the heterojunctions is impor-
simulation as shown in Fig. 6. tant for the connection of the drain-sided end of the channel
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Fig. 5. Electron temperature inside the channel layénd{ = 2 V, Vs = 40.5 V).
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Fig. 6. Electron concentrationVps = 2 V,Vgs = —0.5 V).

to the drain contact. When tunneling is not taken into accountin Fig. 8 the output characteristics of the HEMT are de-
only few electrons are able to leave the channel and to regmhbted. The simulation results are in good agreement with the
the drain contact. Thus, the current is correspondingly too laweasured data. The correspondence of the output conductance
(see Fig. 3). shows, that, as stated above, the current flow inside the channel



706 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 5, MAY 1997
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Fig. 7. Electron concentrationVs = 2 V,Vgs = +0.5 V).
500.0 : : : : of which is very inexact. This exponential dependence causes
e — @ Measured Data the inaccuracy of the model for the ohmic operation regime of
—— Simulation Results,’flﬁﬁ,,.at!/— the HEMT. Further improvement of the tunneling model will
4000 | seegss s 1 alleviate this problem.
GS e .:_Q!l*:
E R Jad -
3000 W"r"\,:szo_zv 7 IV. CONCLUSION
< . R i
E eee et sm T A icron delta-doped d hic doubl
= PP guarter micron delta-doped pseudomorphic double-
- 500.0 Ves=0.0V ol heterojunction high electron mobility transistor is simulated
PP ¥ L b with the generic 2-D device simulator MINIMOS-NT. A
Tﬂvf'z_o ov new method is used which divides the device region into
1000 as e several subdomains, referred to as segments, each segment
peparar el g with its specific physical models. This offers the opportunity to
Vgs=-0.4V combine segments where a hydrodynamic model is used with
006 ‘ segments where the plain drift-diffusion model is employed.
: V.. (V) 3.0 4.0 50 Thus, for the channel of the transistor, where short-channel
Bs

effects are expected, the energy balance equations are used
Fig. 8. Output characteristics of the HEMT. The simulation results are tn account for nonlocal effects such as velocity overshoot.

good agreement with the measured data except for drain-source voltages b%gw : : :
0.5 V. The inaccuracy of the results for the ohmic operation regime is induc thermore, solving the hydrodynamic model in only a part

by the exponential dependence of the tunneling model on the electrical fi@# the device is more efficient than a full hydrodynamic
at the heterojunction interface. solution.
Moreover, the distinct segments are linked together with

specific interface models. These interface models allow to
and the neighboring segments is well characterized by téeal with abrupt heterojunctions and to include the effects of
mixed-model simulations. The disagreement of the simulatiotfgermionic-field emission which determine the current confine-
and the measurements for drain-source voltages below 0.91¢nt within the channel layer and properly describe how the
is due to the tunneling model. The tunneling current acrosarriers swap out into the neighboring segments. Hence, the
the heterojunction depends exponentially on the perpendiculaduction of the transconductance by real-space transfer can
component of the electric field at the interface, the calculatidre observed by the simulations.
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The combination of abrupt heterojunctions and a 2-D mixe~!
hydrodynamic drift-diffusion model simulation leads to rea
sonable results which are in good agreement with the measu
data. Furthermore, the influence of several physical effec
such as real-space transfer and carrier heating, on the de
characteristics can be identified.
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