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Technology CAD: Process and Device Simulation

H. Kosina and S. Selberherr

Abstract— The state of the art in self-consistent numer-
ical modeling of semiconductor devices and their fabri-
cation processes is reviewed. Particular emphasis is put
on the models for dopant profile formation, namely ion-
implantation and annealing, and on models for carrier
transport.

I. INTRODUCTION

Continuous advances over the past years in integrated
circuit technology impose new challenges on modeling
of fabrication processes and electrical behavior of semi-
conductor devices. The routine utilization of process
and device simulation has become indispensable for the
development and redesign of ULSI devices as well as for
power devices.

During fabrication of a modern integrated circuit nu-
merous process steps, which exploit a broad variety of
physical and chemical effects, are applied one after the
other onto the semiconductor wafer. Nowadays for vir-
tually all these process steps one or more, usually very
specialized, simulation tools are available. These tools
deal with the simulation of optical lithography com-
prising the simulation of the areal image, exposure of
the photoresist, and resist development. Furthermore,
topography simulation is applied to etching and depo-
sition processes, which change the shape of the wafer
surface. Very accurate simulation tools are required for
ion-implantation used to selectively dope semiconduc-
tors as well as for high temperature processes such as
dopant diffusion and oxidation of silicon. Especially for
the high temperature processes not only is simulation
used to give input data for device simulation, but also
to understand the effect of successive process steps on
doping distribution and wafer topography.

A brief review on the state of the art in modeling the
processes listed above is given, and some more emphasis
is put on the processes for dopant profile formation,
which are mainly lon-implantation and annealing giving
rise to, in case of shallow junction formation unwanted,
dopant, diffusion.

While the cooperation of a variety of process simu-
lation tools generates a model of the desired semicon-
ductor structure a device simulation tool computes the
electrical characteristics of the resulting electronic de-
vice. Device simulation based on the self-consistent so-
lution of the basic semiconductor equations dates back
to the famous work of Gummel in 1964 [1]. Since then
numerical device modeling has been applied to nearly
all important devices. The current relations respon-
sible for modeling carrier transport through a device
have been frequently subject of discussions, in particu-
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lar in view of their applicability to submicron devices.
We present transient simulations based on the drift-
diffusion transport model and discuss in more detail
the hydrodynamic transport model.

II. LITHOGRAPHY SIMULATION

Decreasing dimensions and increasing non-planaricy
of semiconductor devices makes the optical lithography
process a very critical one in semiconductor manufac-
turing. Simulation has to be capable of assessing phe-
nomena such as light scattering from wafer topography
or defraction through photomask apertures. Rigorous
numerical models of wave propagation are needed he-
cause typical feature sizes are on the order of a wave-
length. In this regime, neither the Rayleigh approxi-
mation nor geometric optics suffices. The solution of
the Maxwell equations by mecans of the time-domain
finite-diffcrence method can be very time-consuming
[2], whereas the waveguide method, a spatial frequency-
domain method for solving the Maxwell equations, ap-
pears to be more efficient [3][4]. As boundary condition
the light intensity incidenting on top of the wafer, also
referred to as areal image, has to be known. This can
be obtained by another simulation taking into account
light propagation through the optical system and the
light transmission through the photomask [53]. Once the
light propagation within the optically nonlinear resist
is known, the chemical reaction of the photosensitive
compound is computed, and the latent bulk image is
obtained. Development of the photoresist is treated as
an isotropic etch process, with etch rates being deter-
mined by the previously calculated bulk image.

III. TOPOGRAPHY SIMULATION

Topography simulation assists in understanding the
time evolution of topographical features in advanced
semiconductor structures. The numerical methods and
algorithms applied to the movement of the actual sur-
face play a key role because they determine accuracy.
robustness and efficiency of a simulation tool.

Many algorithms also applicable to topography sim-
ulation have been reported for photoresist development
in lithography simulation [6][7][8][9][10}[11]. and fewer
methods have been proposed for the simulation of ctch-
ing and deposition processes [12][13][14]{15]. Basically,
there are two types of algorithms feasible for multi-
dimensional topography simulation. The first type of
algorithms represent the surface of the material being
ctched by a mesh of triangular facets [12]. Either the
mesh points or the facets are moved according to the lo-
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cal etch rates. In general, these algorithms yield highly
accurate results, though with potential topological in-
stabilities such as erroneous surface loops which result
from a growing or shrinking surface intersecting with it-
self. In three dimensions, the detection of such surface
loops takes a large algorithmic overhead.

Volume removal methods are the second type of
methods. The material being etched is divided into a
large array of rectangular prismatic cells, each of which
is characterized as etched, unetched, or partially etched.
During etching cells are removed one by one according
to the local etch rate and the number of cell faces ex-
posed to the etching medium. Volume removal meth-
ods have the potential to handle arbitrary geometries
[71(8]19], but unfortunately they suffer from inherent in-
accuracy as they favor certain mesh-dependent direc-
tions.

A more general approach to surface evolution is pre-
sented in [16]. Fundamental morphological operations
originally employed in digital image processing are per-
formed on a cellular material representation. The latter
fact also enables efficient shadow and visibility compu-
tation which are needed to determine the particle flux
of directly and indirectly incident particles. Such sim-
ulations allow to investigate step coverage effects (see
Fig. 1).
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Fig. 1. Simulation of a sputter deposition.

Topography simulation allows on one hand a better
physical understanding of the applied etching and de-
position processes, and on the other hand it provides
the geometry information needed for subsequent pro-
cess and device simulation.

IV. ToN IMPLANTATION

Ion implantation is the method of choice to selec-
tively introduce dopants into the layers of an integrated
circuit [17]. One of the first atomistic approaches to

estimate implantation profiles was performed by Lind-
hard, Scharff and Schigtt (LSS theory) [18]. Under the
assumption of Gaussian profiles, the mean projected
range and the standard deviation of the implantation
profile are calculated. Tabulated values of these so-
called LSS parameters can be found, for instance, in
[19]. Since then elaborate analytical methods have been
developed to describe dopant distributions. For the
analytical description of implantation profiles it is as-
sumed that they can be closely approximated by statis-
tical functions. Suitable distributions are the so-called
Pearson distributions. They are derived as solutions
f(z) of the differential equation

dfy) _ _ y-—a
dy bo + b1y + bay?

f(y)7 y:x’—RP‘ (1)

The parameters a, by, b1, and bs can be expressed in
terms of the moments of the distribution, namely stan-
dard deviation o, skewness v, and kurtosis 2. R,
denotes the mean projected range. Depending on the
roots of the denominator polynomial of (1) seven types
of solutions are distinguished.

It should be noted that the Perason distributions
themselves have no direct meaning for ion implantation.
The justification of applying them to ion implantation
profiles is given by the fact that they reserble nearly all
ion implantation profiles very closely, and that closed
formulas exist for them. In a few cases the Pearson
distributions do not agree well with measured profiles,
they have to be adapted by adding exponential tails [20]
or by doing other manipulations. These manipulations
appear justified since the only goal of using analytical
functions is to fit measurements.

Ton implantation profiles are characterized by the mo-
ments as a function of implantation energy and dose
[21]. In the regime of low and very high doses it is
sufficient to assume that the shape of the implantation
profiles is a function of the implantation energy. The
dose is then used only as a multiplicative factor. For the
intermediate doses close to the amorphization dose, this
simple assumption does not suffice, and recent trends
go either in the direction of tabulating the distribution
moments as a function of dose and energy [21][22] or to
add two Pearson profiles, one for the amorphous part
and one for the crystalline part of the profile [23].

If the ions are implanted through passivating or scat-
tering layers two analytical profiles have to be added by
some empirical method, for instance, by the so-called
NRS-algorithm (Numerical Range Scaling) [24].

Two-dimensional analytical dopant profiles are ob-
tained from the one-dimeusional dopant profiles by per-
forming a convolution with a lateral Gaussian distribu-
tion [25]. In [26] a further improvement by using convo-
lutions with symmetrical Pearson functions and depth
dependent moments has been proposed.
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In most process simulators such analytical models of
ion-implanted profiles are incorporated because they al-
low a quick calculation of the results, however, at the
expense of reduced accuracy in realistic structures such
as multilayer structures or trenches.

Compared to the analytical methods based on distri-
bution functions the Monte Carlo technique allows to
model ion-implantation more accurately. The trajec-
tory of a single ion is traced on its way through the
solid until it comes to rest. On its way, the ion collides
with other atoms, transfers energy to these atoms, or
is slowed down by interaction with the electron shells
of the target atoms. The energy passed to other atoms
can be high enough such that these atoms are displaced
from their lattice position and may interact with other
atoms. By simulating a large number of trajectories,
the final distribution of atoms in the target material
can be determined.

When energetic ions move nearly parallel to a major
axis or plane in a crystal, they may be steered down
the open channels between the rows or planes of atoms.
This so-called channeling effect [27] leads to increased
ion ranges for part of the implanted ions. In Monte
Carlo simulation channeling is accounted for by includ-
ing proper models for the electronic stopping power
[28)[29]. Implantation damage, i.e. the gradual destruc-
tion of the crystalline target by the implanted ions,
is described by damage accumulation models [29][30].
In miniaturized structures three-dimensional effects are
gaining importance, an implementation of the Monte
Carlo technique combining both the latest physical
models and the ability to deal with complex three-
dimensional structures are reported in [31){32]. Fig. 2
shows a three-dimensional simulation after [32].

An approach of similar rigor is given by the solution
of the Boltzmann transport equation, which describes
the motion of the dopants in the phase space. This
method relies on the same scattering principles as the
Monte Carlo technique. However, changes in the com-
position of the target material are not easily included.
As a continuum method, it gives smoother dopant pro-
files in less time [33][34].

Drawbacks of both the Monte Carle and the Boltz-
mann solution technique are the high computation
times, which even increases considerably if crystalline
targets are considered instead of amorphous ones. This
is the reason why the simpler analytical methods found
wide spread application in process simulation tools.
These tools have to be capable of performing repeated
calculations for the purpose of technology optimization
in affordable time.

V. DIFFUSION

During process steps at elevated temperatures,
dopant atoms migrate due to statistical motions. The
main assumptions made when modeling dopant diffu-

Fig. 2. Boron concentration in 0.5 pm gate length p-MOS tran-
sistor simulated with the Monte Carlo method. The p™
source/drain implantation was performed at 45 keV and a
dose of 51015 cm—2.

sion are first that electrically active dopant atoms re-
side on substitutional sites of the lattice, and second,
that dopant atoms can diffuse only due to the assistance
of diffusion vehicles. As diffusion vehicles one usually
considers vacancies and silicon self-interstitials in vari-
ous charge states. A review on this subject is given by
Fahey et al. [35].

The simplest case, the so-called intrinsic case, is when
the dopant atoms are very diluted in a perfect erystal
and if no chemical reaction takes place at the surface
of the semiconductor. In this case, the diffusion vehi-
cles are assumed not to be influenced by the dopants
and to have a constant concentration with respect to
time and position. This allows to get rid of the dif-
fusion vehicles in the diffusion model, and to describe
the redistribution of dopants by the two laws of Fick
[36]. If the dopant concentration exceeds the intrin-
sic carrier concentration an electric field will be present
in the wafer. This field acts on all charged point de-
fects, namely intrinsic point defects, ionized dopants,
and charged dopant-point defect pairs. In the first es-
timations of this effect the field effect on the diffusion
vehicles have been neglected, and the field effect on the
diffusion has been described by modifying the flux equa-
tion to [37]

J==D;-VC+z p-C-Vy 2

At the surface the boundary condition .J-7i = 0 applies.
In (2), J and C denote the flux and the concentration
of the dopant atoms, respectively, ¢ describes the elee-
trostatic potential and z the charge state of the dopant
(z = 1 for singly charged acceptors, and z = —1 for

443



singly charged donors). The diffusion coefficient D; is
only a function of temperature, and usually it follows
an Arrhenius law. The mobility y; is related to the dif-
fusion coefficient D; by the Einstein relation, and the
electrostatic potential can be computed from Poisson’s
equation. The electron and hole concentrations can be
obtained by assuming Boltzmann statistics. The error
caused by this simplification is sufficiently small [38].

The effect of the electric field can be estimated by
assuming charge neutrality in the form n —p+ > 2 -
C; = 0, where the C; are the concentration of different
dopant species. This assumption allows to calculate
the electrostatic potential explicitly and again with low
errors if the impurity diffusion length is several times
the Debye length [39]. The flux equation for dopant j
is then given by

=

CA
J; = —Dj- |1+ . -VCy
’ " ( \/4-n%+<2zi-ci>2> ’
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From this equation it can be seen that the diffusion
coefficient for the dopant j increases by a factor which
has a value close to one for concentrations below the
intrinsic concentrations and a maximum value of two
for high concentrations. Furthermore, if more than one
dopant is present the diffusion of the dopants will be
coupled due to the electric field (Fig. 3).

log ( Phosphorus fem])

Fig. 3. Source area of a 0.35 pm p-channel MOS transistor:
the originally constant substrate (phosphorus) doping has be-
come lower in the vicinity of the pn-junction due to the field
coupling to the source {boron) profile.

1t has bee found out, however, that the field enhance-
ment predicted by (3) is not sufficient to explain mea-
sured data. To this point the analysis did not include
the diffusion vehicles, and it is in a strict sense valid
only if all diffusion vehicles are assumed to be neutral.

The additional diffusion enhancement observed ex-
perimentally has then be attributed to vacancies as dif-
fusion vehicles in various charge states. The diffusion
via vacancies in each charge state is proportional to
the concentration of the respective vacancy species. By
applying a simple mass action law one obtains for the
concentration of the singly and doubly negative charged
vacancies {Cy -, Cy=) normalized by their intrinsic val-
ues (C,_, CL2) [40]

n\ 2
-()

The diffusion coefficients for, e.g. donors, can then be

written in the form
i1 n 2
oo (2)
g g

where the parameters D?, D, and D7 characterize the
contributions of the neutral, singly and doubly charged
vacancies to the diffusion coeflicient. The diffusion
coefficient for intrinsic concentrations is obtained as
D; = DY + D; + D7. Under the assumption of va-
cancies in various charge states as diffusion vehicles the
influence of their gradients on the diffusion cannot be
neglected. Nevertheless, the model has great success
up to now and the most popular diffusion coefficients
and nonlinearity coefficients have been proposed by Fair
[40].

If the dopant concentration becomes so high that the
solubility limit in silicon is approached, the dopants will
form precipitates or clusters. Precipitates may contain
many thousands of dopant atoms and are considered
as regions of the crystal that have formed a second
phase. In contrast, clusters are composed of a few
dopant atoms in specific configurations, and are ion-
ized at diffusion temperatures. Clustered dopants are
assumed not to diffuse and to be electrically inactive
at room temperature. A popular clustering model for
arsenic can be found in [41]. Fig. 4 shows a boron pro-
file part of a p-MOS transistor simulated with a static
clustering model [42].

All of the above mentioned influences on the diffusion
coeflicient share the assumption that the diffusion coef-
ficient is a local function of the electric field and of the
concentration of all involved dopants. Unfortunately,
this cannot be generally assumed. If the high temper-
ature treatment goes with an oxidation of the wafer,
the diffusion, for instance of boron and phosphorus,
is enhanced appreciably (OED - Oxidation Enhanced
Diffusion) [43], whereas the diffusion of antimony is re-
tarded (ORD - Oxidation Retarded Diffusion). The
effect on the diffusion coeflicient depends on the crystal
orientation as well as on the dopant concentration [44].
This suggests some long range influence from the sur-
face which is again attributed to the diffusion vehicles.
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Fig. 4. Source doping profile of a 0.35 um p-channel MOS tran-
sistor. The narrow peak on top of the diffused boron profile
comprises immobile clusters of boron atoms.

In most theories it is assumed that during oxidation of
silicon interstitials are emitted at the oxidizing surface.

Under oxidizing conditions, the concentration of sil-
icon self-interstitials is enhanced and that of vacancies
is decreased. In an attempt do include the point defect
concentrations the intrinsic diffusion coefficient is usu-
ally split into a vacancy and an interstitial contribution
of the form

D:Di'<f1'

G &) ©

with the diffusion coefficient under inert and intrinsic
conditions D;, and the interstitial and vacancy concen-
trations C; and Cy, respectively. The asterisks denote
thermodynamic equilibrium conditions. The factor f;
characterizes the contribution of the interstitials to the
diffusion coefficient. It takes the value one if the diffu-
sion goes exclusively via interstitials and zero if it goes
exclusively via vacancies.

To complete the model additional diffusion equations
for the point defects have to be solved:

aC
a_t’:v(Dl.VCI)~kf-(C'1'Cv—C}"C\*/)v (M)
oCy
*a—;—:V(DV‘VCV)"/Cf'(C/I'CV‘C;"C\*/)' (8)

The symbols Dy, Dv, and k¢ denote the diffusion co-
efficients for interstitials and vacancies, and the bulk
recombination constant, respectively.

The reported values for the diffusion coefficients and
the equilibrium concentrations cover a range of several
orders of magnitude, and very little is known about the
bulk recombination constant. The reason for this might

be that various combinations of parameters, which can-
not be determined individually, give dopant profiles of
nearly the same shape.

As boundary conditions at the oxidizing surface one
commonly assumes surface recombination for intersti-
tials and vacancies, as well as interstitial generation.

1X,
kp-(Cr—C3)—Csi - ©- ‘(”

Ry (Cy—C3) (9)

The parameters k; and ky are the surface recombhi-
nation velocities for interstitials and vacancies, respec-
tively, Cs; denotes the density of lattice sites of silicon,
O the fraction of silicon atoms that is not oxidized, and
d.X,/dt represents the oxide growth rate.

Whereas boron profiles can be well modeled by in-
cluding the effects described so far, the diffusion of high
phosphorus concentrations cannot be described as eas-
ily. The recent approaches to phosphorus diffusion are
based on multistream diffusion {45][46]. For these mod-
els it is assumed that phosphorus diffuses via dopant-
point defect pairs (PI, PV). The formation of these
pairs from interstitials I and vacancies ¥V can be de-
scribed by

Jr-i o=

Jv i =

kq ks
P+I= PI, P+V = PV. (10)
ko ka

The parameters &, to ks denote rate constants. If dif-
ferent charge states of interstitials, vacancies and the
complexes are included, one ends up in quite a num-
ber of coupled nonlinear partial differential equations
for which it is not feasible to determine all the involved
parameters. Therefore, it is crucial for practical simu-
lation to eliminate second order influences where possi-
ble, for instance by assuming local thermal equilibrium
for point defect-dopant pair formation reaction. The
remaining parameters are fitted to experiments, how-
ever, it is often possible to reproduce a certain result
by different sets of parameters. This gives rise to a wide
spread in the parameter values reported in the litera-
ture.

Process simulation tools must be able to deal with
dopant, diffusion in three-dimensional structures in or-
der to be applicable to highly down-scaled processes.
Thus much effort has been expended in finding solu-
tions for related problems such as geometry definition,
grid generation and grid refinement, discretization, lin-
ear solvers, and visualization [47].

Because the electrical behavior of a semiconductor
device strongly depends on the dopant profile an accu-
rately modeled dopant profile is a crucial prerequisite
for the subsequent device simulation.

VI. DEVICE SIMULATION

The vast majority of todays routinely performed de-
vice simulations are based on a numerical solution of
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the basic semiconductor equations which include drift-
diffusion current relations [48]. The efficiency of this
numerical device model allows its extensive use in de-
vice optimization.

A device of a modern ULSI circuit is character-
ized by large electric fields in conjunction with steep
gradients of the electric field and of the carrier con-
centrations. Under these conditions, the accuracy of
the widely used drift-diffusion model becomes ques-
tionable. More sophisticated device models, such
as the hydrodynamic and energy-transport models
([49][50][51][52][53][54][55]), the spherical harmonics ex-
pansion method ([56][57]) and the Monte Carlo tech-
nique ([58][59][60]), overcome these limitations. How-
ever, the increased physical rigor of a model comes at
the expense of increased computation times. This fact
prevented wide spread application of the models in the
past, and probably in the near future.

A. Numerical Aspects

In this section we describe some of the numerical
methods used in the recently developed device simu-
lator MINIMOS-NT [61].

To handle handle complex device structures it is use-
ful to partition the geometry in independent regions,
so-called segments. Specific to each segment are the
material type, the set of models and parameters, and
even the set of partial differential equations. If bound-
ary conditions are generally definedable, it is possible to
connect segments via passive circuit elements. Interface
conditions link segments together and make it possi-
ble to consider hetero-interfaces with abrupt changes of
band-edge energies and other material properties. The
partitioning of the simulation domain into different seg-
ments allows to specify volume models inside the seg-
ments and interface models at their boundaries in an
independent manner.

It is well known that numerical solution methods for
the hydrodynamic transport model suffers from mod-
erate convergence behavior and the propensity for in-
stability. This situation can be improved by a block-
iterative scheme. Iteration is performed over two
blocks, one comprising Poisson’s and the carrier con-
tinuity equations, and one comprising the carrier conti-
nuity and energy balance equations. It should be noted
that the carrier continuity equations are solved in both
blocks, which means that some redundancy has been in-
troduced. However, convergence and stability are con-
siderably improved. The final accuracy is then obtained
by a few full Newton cycles.

When solving the transient semiconductor equations
[48] in a decoupled manner, stability problems arise
with Poisson’s equation. Following the reasoning of
Mock [62], stability independent of the time step can
be achieved by employing instead of the original Pois-
son equation its time derivative. The Poisson equation

differentiated with respect to time states continuity of
the total current within the segments.

As an example an n-channel charge-coupled device
(CCD) consisting of 15 gates has been simulated in two
space dimension. Until now, transient simulation has
not been practicable because of the high requirements
of computational resources, hence only single CCD cells
have been simulated [63][64]. The structure of the sim-
ulated three-phase clock CCD is depicted in Figure 5.
Figure 6 shows the charge that has passed through the
source, drain and bulk contacts, respectively.

clock 1
clock 2

ciock 3

= d
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source

drain

bulk

Fig. 5. Structure of the CCD. The source and drain contacts
were held constant at Ug = Up = 0V, the bulk contact at
Up = —1V. The voltages applied to the gates varied between
Ug = —1V and Ug = 5V.
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Fig. 6. Charge passed through the contacts of a 15 gate CCD

B. Hydrodynamic Simulation

The hydrodynamic approach extends beyond the
drift-diffusion approach by allowing the carrier temper-
atures to differ from the lattice temperature. Coeffi-
cients to be modeled properly such as mobilities and
ionization coefficients can now be functions of some
higher order moments [65]{66].

In the following we summarize the generalized equa-
tions of the hydrodynamic model with extensions for
non-uniform band-edge energies and non-uniform ef-
fective density of states. These parameters become
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position-dependent, for example, in semiconductor al-
loys with spatially changing mole fraction, or in heavily
doped regions where band-gap narrowing occurs. In
the hydrodynamic model the current relations are of

the form:
- Eq ) kg N¢ <nTn)>
o < < q 4 g n Ne
(11)

* Tee) -7 (5)
Jo=gup|V[ZL ) 2B Y (P p
P qu,,p( <q v q p Ny

(12)
Here, Ec and Ev denote the band-edge energies, No
and Ny the effective density of states of the respec-
tive bands. Spatial variation of the mole fraction of
semiconductor alloys results in non-uniform parameters
Ecv and Ne v, an effect properly treated by equations
(11) and (12).
The following equations, also called energy balance
equations, state continuity of the energy fluxes S, and
S, for both electrons and holes.

Wy, . E . " —
Irnwn) g5 —v (l - w) T~ Rewy—n2n 20
ot q Twn

(13)

Ap - wp) = Ey o _wp —wo
o +VS§, =V 7 P |- Jp—Rwp—p o

(14)

Here 7yn and 7y,p are the respective energy relaxation
times, and wq is the average energy in thermodynamic
equilibrium. The average carrier energies w,,w, are
related to the average velocities vy, v, and the hydro-
dynamic temperatures Ty, T, by

T, 3
w.,l:-2—-mn~vi+§-k3-Tn (15)
1 3
w,,:—i-m;-vf)+§-k3-Tp (16)
The energy fluxes have the form
gn = Qn —(wn +kp - Ty) - ?n (17)
§p = Qp + (wp + kg - Tp) - —;1 (18)

@TL, @p denote the carrier heat fluxes.

Discretization of the energy balance equations is not
as straight forward as that of the carrier continuity
equations. For this purpose several attempts to gen-
eralize the Scharfetter-Gummel scheme have been pro-
posed [67][68]. In this work we follow the approach of
Choi et al. [69], with extensions needed to handle spa-
tially varying band-edge energies and effective density
of states [70].

There are two mobility models commonly used in hy-
drodynamic simulations. Baccarani and Wordeman [51]

assume that the diffusion coefficient can well be approx-
imated by a constant. The Einstein relation, general-
ized to the non-equilibrium case, immediately yields

wo

n = fo - (19)

Wy,
In [51] this expression has been combined with
the empirical Caughey-Thomas relation for the field-
dependent mobility. As result a weak temperature de-
pendence of the energy relaxation time can be derived.
Hénsch et al. [71] propose an energy dependence for
the mobility of the form

1+ a- (w, —wo)

" (20)

- Mo 2

“ (q *Twn * v'i,sat) (h1>
a contains parameters describing the asymptotic be-
havior for small and large electric fields. The energy
relaxation time is assumed independent of any moment.
Within this approach, a field-dependent mobility can be
derived, which agrees very well with measured data in
case of silicon.

The models (19) and (20) predict a behavior like
w ~ w~t for high energies. For compound semiconduc-
tors, however, Monte Carlo calculations reveal severely
different power laws, in the range between p ~ w™?
and p ~ w™®. A mobility model for this case has been
proposed by Kopf et al.[72].

A well known characteristic of the method of mo-
ments is that the moment equation of order ¢ always
contains an (7 + 1)th order moment. In the case of the
energy balance equation this next higher moment is of
third order

G0 = [ G clfpaf) gEA EE 2
which has the physical meaning of a macroscopic heat
flux density. Here ("'(l?) denotes the random velocity
defined as &k) = @(k)— <@>. In order to close the set
of moment equations this higher order moment has to
be related somehow to the lower order moments. For

the heat flux one conventionally assumes Fourier’s law

Q(F) = —k(F) - grad T(7)

in conjunction with a generalized Wiedemann-Franz

law N
m<m:(§+c')~<~’?§> o) TG (24

(23)

q

for the thermal conductivity s of the considered carrier
gas.

In the following results of a hydrodynamic simula-
tion of a high electron mobility transistor (HEMT) are
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Fig. 7. Distribution of the electron temperature in a low-noise
HEMT (Vps =5V, Vgg = 1V).
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Fig. 8. Output characteristics of the low-noise HEMT

presented. HEMT are widely used in high frequency
applications. Numerical simulation requires the abil-
ity to handle abrupt parameter variation across hetero-
interfaces. Gate length of the simulated pseudomor-
phic HEMT is Lg = 0.23pm. Applied bias voltages are
Vps = 5V and Vgg = 1V. Figure 7 shows the struc-
ture of the device and the electron temperature pro-
file. The interface condition at the channel-to-barrier
heterojunction is given by the thermionic field-emission
model. A significant temperature peak can be observed
at the drain-sided end of the channel. The simulated
and measured output characteristics are plotted in fig-
ure 8.

VII. TCAD FRAMEWORKS

Besides the progress in physical models and compu-
tational techniques, which has dominated Technology
Computer Aided Design (TCAD) in the past, aspects
purely related to software technology are attracting in-
creasing attention.

The fabrication of a modern integrated circuit may

involve several hundreds of individual process steps.
Virtually for each of these steps a variety of simula-
tion tools exist. These tools are more or less peculiar
about their control parameters and their representation
of the wafer data. Aiming at the simulation of complete
process flows the need for coupling different simulation
tools in a unified manner arose. For unambiguous wafer
state description the Profile Interchange Format (PIF)
[73] has been proposed, and its application to couple
heterogeneous tools is reported in [74]. Automatic opti-
mization of semiconductor devices requires the repeated
execution of entire simulation flows to compute a set of
response variables as function of a set of control vari-
ables [75]. All these needs lead to the introduction of
the framework concept in the TCAD field. The essence
of this concept is to distinguish between specialized sim-
ulation tools, and the integrating framework which ties
together these tools to solve actual TCAD design tasks
[76][771[78].

VIII. CONCLUSION

The present situation of process modeling has been
outlined. Despite the variety of process steps for each
of which simulation tools have been developed the fol-
lowing trends can be observed: (1) modeling of three-
dimensional effects is gaining importance in modern
technologies; (2) the involved processes are not always
understood on an atomistic level, and many parame-
ters cannot be determined uniquely from experiments.
Therefore, there is still room for model developments;
(3) -Automatic consecutive invocation of different pro-
cess simulators is required to simulate complete process
flows. Optimization of process parameters and sensitiv-
ity analysis are more complex tasks which have called
for the introduction of TCAD frameworks.

Compared to the uncertainties in process modeling
the mechanisms governing the electrical behavior of a
device are much better understood. The widely used
drift-diffusion and the hydrodynamic transport models
are consistently derived from the well accepted Boltz-
mann equation. Basic physical parameters such as mo-
bility and recombination rate are well accessible by ex-
periments. However, due to the steep gradients oc-
curring in highly miniaturized devices the accuracy of
these transport models has become subject of discus-
sion. Bigger uncertainties are observed when modeling

“hot carrier effects, which were not discussed in this pa-
. per, such as gate current or interface trap generation.

Process and device simulation have become an indis-

" pensable aid for the development of new semiconductor

manufacturing processes. It can be foreseen that the
importance of TCAD will further increase.
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