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Abstract—We present a method to include the non-
parabolicity correction for the bulk dispersion relation
in the self-consistent solution of Schré dinger and Pois-
son equation. A formalism has been derived which
allows to characterize each subband by its energy, an
effective mass and a subband nonparabolicity coeffi-
cient. A one-dimensional Schrédinger-Poisson solver
has been developed which is applicable to both MOS
and heterostructures. The program is applied to sili-
con inversion layers, and the influence of nonparabolic-
ity on the subband system is quantitatively analyzed.
As a consequence of nonparabolicity the wave func-
tions depend on the in-plane momentum of the carri-
ers.

I. INTRODUCTION

The inclusion of nonparabolic bands in the description
of a quasi two-dimensional electron gas is a prerequisite for
accurately modeling the electron transport at high driving
fields. We present a numerical method to obtain a self con-
sistent solution of Schrodinger’s and Poisson’s equations
for a nonparabolic bulk band structure. The approaches
presented in [2][3] solve the Schrédinger equation in real
space representation, and require therefore some simplifi-
cations concerning the operator of the kinetic energy. We
improved the technique described in [1] to include this
operator without further simplifying assumptions. The
result is a consistent treatment of nonparabolicity for the
dispersion relation, the wave functions and the electron
density. The developed formalism was implemented in a
one-dimensional Schrodinger-Poisson solver which allows
a very general specification of material parameters and
geometrical structures.

II. FORMULATION

A. Schrédinger equation

A parabolic band structure is commonly assumed to
describe a quasi two-dimensional electron gas. Owing to
a strong confinement of the electrons near the Si/SiO;
interface the quantization of electron states have to be
treated by a system of discrete subbands.
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We separate the three-dimensional wave function into
a plane wave parallel to the interface (z,y), describing
the in-plane transport, and an envelope function in the
normal direction (z)

(r) = p(z) exp (1K -1y) , ®

where K denotes the in-plane wave vector. Following the
effective mass approach and including the nonparabolicity
correction in the bulk dispersion relation

RPK?  R’k?
+

1 =
E(1+af) 2meg T 2my

(2)

we have to solve the one-dimensional Schrédinger equa-
tion

(T+V)4() = Bu(z) (3)

In (3) V denotes the operator describing the confining
potential, and the operator of the kinetic energy can be
formally written as

A | R? (K2 .
T=—- | — doy—
20 1+\/1+ 3 (mzy+G> 4)

. 81 9

G= “ P m. s (5)
The form of operator (4) does not allow to separate the
energy term K K? /Zmzy and will therefore introduce a
dependence on the in-plane wave vector K = (kg k,) of
both the eigenenergies and the wave functions. An ana-
lytical treatment of the operator (4) has to be performed
in the eigenfunction space of the operator

N K? “
Gj=_——+G (6)

Mgy

To avoid this, it has become common practice to solve the
Schrédinger equation only for T = A2 /2G” and to treat
the nonparabolic correction by means of a perturbation
theory. For a silicon inversion layer we will neglect the
penetration of the wave function in the oxide and can
therefore choose a vanishing wave function as boundary
condition. Thus the eigenfunctions u, of operator (5)



are sine functions. In fact, if the bulk nonparabolicity
coefficient and the bulk masses do not depend on z, both
G” and G have the same set of eigenfunctions.

To solve the Schrodinger equation (3) we will use a
method similar to the one described in [1]. In the base
system consisting of a truncated set of eigenfunctions u,
of the operator (6) the operator (4) can be written as a
diagonal matrix.

As a consequence the spectral representation a of the
envelope function (z) for a specific value of the magni-
tude K of the in-plane wave vector is then obtained as
the solution of the matrix eigenvalue problem

(Txy + V) ak) = Box) ax)- (7)

Note that because T depends on K so do the the eigenvec-
tors and eigenenergies. In particular, E,(K) represents
the in-plane dispersion relation. In (7) T and V stand for
matrices comprising the matrix elements of the operator
for the kinetic and potential energy:

Vam = / um (2)V (2)un(2)dz, (8)
or,
=
Tn, 1+1+4al, ©)

with T',, denoting the eigenvalues of operator G", and dp,m
as the Kronecker delta. The eigenenergies E, of (7) at
different K-values are shown as points in Fig. 1.

B. In-plane dispersion relation

After (7) the in-plane dispersion relation can be calcu-
lated point wise. However, it is desirable to obtain an
analytic in-plane dispersion. In contrast to [2] [3] pertur-
bation theory will only be used at this point to derive the
K-dependence of the wave function and the eigenenergies
for each subband analytically.

As stated below the deviation AT of the operator of
the kinetic energy from its value at the subband minimum
(K = 0) will be expressed in the eigenfunction space of
the operator (6).

AT = Y (TK* + T K*) Py (10)
l
R —1/2
Ty, = (1+ 4aI})
Mgy
4 -3/2
Ty = —a2m§y (1+ 4ol7)

P,, denotes the projection operator onto the eigenfunction
u,. Now we apply perturbation analysis where T(K =0)
represents the unperturbed problem, and AT is the per-
turbation operator. In this way, the in-plane disper-
sion relations &,(k) are obtained as polynomials in K2.
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Fig. 1. Approximations for the energy to wave vector relation.

The dashed lines in Fig. 1 show the resulting polynomial
for the first, fifth and tenth subband. We want to em-
phasize that this polynomial approximation is only valid
for low energies, while it becomes even meaningless for
larger wave vectors. Therefore, it seems favorable to as-
sume nonparabolic dispersion relations after (11) instead
of polynomials in K.

Kh2K?

(gn - Eg) (1 + C“n(gn - En)) = 2y

0y
The effective subband mass, m,, and the subband non-
parabolicity coefficient, a,,, are obtained by perturbation
analysis.

h2
= 12
Mo 2Tl,nn ( )
- = |T1,mn!2
an = T12,nn T2,nn + mi;;n E?l _ E% (13)

The matrix elements of the operator (10) have to be cal-
culated with the subband wave functions at K = 0. Al-
though perturbation theory was employed the above co-
efficients are exact since the neglected terms are O(K®),
while m,, and o, represent &,(K) up to K*.

C. Self-consistent iteration

The electrostatic potential is computed in real space by
using a finite difference discretization of Poisson’s equa-
tion. This method only necessitates the solution of a tridi-
agonal linear equation system, which can be performed
efficiently.

d

g Lo =elolz) —n(x) +CE).  (19)



The potential energy needed in the Schrédinger equation
is given by

V(z) = —ed(z) + Ec(z) (15)

The net doping concentration C(z) and the conduction
band edge Ec(z) have to be supplied on a grid, which
needs to be uniform in the region where Schrédinger’s
equation is solved. For the hole density Boltzmann statis-
tics and no quantization is assumed. To convert from
momentum to real-space representation and vice verse
the fast Fourier transform is employed. If f denotes the
Fermi-Dirac distribution function the electron density can
be obtained by

n(z) = Y [Ya(z, K)*f(En(K))

K,n

(16)

With the masses and the nonparabolicity coeflicients de-
fined in (11) and the valley degeneracy g,, the density of
states in each subband can be expressed as

v
wh?

This allows to transform the sum over all possible states
into an integral over the energy:

p(€n — E?z) =

mn (1 +2a,(En — Er)) . (17)

w2 =5 [ Wale, K)PFE + Ep())dsy. (18)
v n 0

To stabilize the self-consistent iteration the derivative
dn/d¢ has to be included in the linearized Poisson equa-
tion. An approximate derivative by using its value for the
bulk case turned out to be sufficient.

dn  n F_ip(n)

@ - U_T -7:1/2(77) (19)

F+1/2 denote the Fermi integrals with the reduced Fermi
energy 7 as argument, and Ur is the temperature voltage.

III. REsSuLTS

Fig. 1 shows a comparison of the point wise calculated
solution of (7) for different values of K with the poly-
nomial dispersion relation (dashed lines) and the non-
parabolic expression (11) (solid lines). The excellent
agreement in Fig. 1 justifies to use (11) along with the
masses and nonparabolicity coefficients defined in (12) for
the characterization of the dispersion relation instead of
the polynomial representation.

In Fig. 2 and Fig. 3 we have drawn the parameters de-
fined for the characterization of the subband dispersion
relation for different values of the bulk nonparabolicity to
see its influence. For usual values for the electric field at
the interface - for the presented data the value is approx-
imately 120kV/cm - the variation of the subband non-
parabolicity coefficient compared to that of the bulk is
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Fig. 2. Relative subband nonparabolicity ax/a for different values
of the bulk nonparabolicity coefficient.
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Fig. 3. Relative subband mass mp /m for different values of the bulk
nonparabolicity coefficient.

weak. For @ = 0.5/eV and a subband index less than
20 we can see from Fig. 2 that the nonparabolicity co-
efficient for each subband differs by only a few percents
from its bulk value. The dependence of the mass on the
nonparabolicity (Fig. 3) is more pronounced. As a first
approach it seems therefore realistic for the characteriza-
tion of the electrons with a dispersion relation (11) to use
the bulk values for nonparabolicity coeflicients and con-
sider only the mass variations. In Fig. 4 the Fourier coef-
ficients of the first two wave functions are plotted. This
corresponds to a representation of the wave functions in
momentum space. N = 64 harmonics are used.

Due to nonparabolicity the motion of the carriers nor-
mal to the interface is no longer decoupled from the mo-
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IV. CoONCLUSION

The presented formalism can be consider

ed as a step to

a more accurate model for the scattering rates and sub-
sequent transport calculations. Compared to other ap-
proaches a consistent nonparabolic subband dispersion re-
lation has been proposed, that will avoid the problems of
a polynomial representation. With the described method
it is possible to study additional effects introduced by a
non-constant subband density of states and wave function
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Fig. 5. Squared wavefunction of the first, third and fifth subband

for different wave vectors

tion parallel to the interface, as it is the case for parabolic
bands. For non-vanishing K narrower wave functions are
observed than for K = 0 (Fig. 5). This wave function nar-
rowing is more pronounced in higher subbands. Fig. 6
shows the resulting effective widths which are defined as

i s / lon (2, K)[Adz . (20)

This parameter is used for the calculation of the scatter-
ing rates in a subsequent transport simulation [4]. Seen
the variation of the parameters defined in (11) and the
dependence of the two-dimensional density of states on
the energy, the inclusion of nonparabolicity will lead to
higher scattering rates for the nonparabolic case.
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narrowing.
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