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ABSTRACT 

We present analytical electron mobility formulae for 
Si which treat the dependence on all common dopants, 
such as P, As, Sb, and B in a unified manner. The 
expressions are derived from Monte Carlo (MC) cal­
culations which are based on a new approach to ion­
ized impurity scattering that inherently distinguishes 
the dopant species. By calculating the scattering cross 
section in the Born approximation including momentum­
dependent screening and pair-scattering we finally ob­
tain the total impurity scattering rate which depends 
through the atomic and electron number on the dopant 
species. Using this impurity scattering model in our 
MC simulator we finally obtain the electron mobility as 
a function of temperature and concentration for P-, As-, 
Sb-, and B-doped Si. From these first principle data we 
derive analytical expressions for the majority and minor­
ity mobility valid in the temperature range (70-500 K) 

. . f 1021 -3 and up to an impurity concentration o cm . 

Keywords: electron mobility, ionized impurity scat­
tering, doped silicon, device simulation 

INTRODUCTION 

The electron mobility in silicon is an important pa­
rameter for device design and analysis. Accurate mobil­
ity models are necessary for predictive simulation due to 
the direct dependence of the current on mobility, which 
is often the most desired quantity. It is well knowi:i that 
under low fields the mobility depends on the doping con­
centration and on temperature. However, the mobility 
values in n-type Si may differ by more than 303 even at 
room temperature depending on the donor species [l). 

Many published mobility formulae (e.g [2][3)) are 
based on the approach by Caughey and Thomas [4] who 
used a function of the form 

L min 
LI _ min + µn - µn 

µn - µn ( CI )"' 
1 + c:,e1 

(1) 

(1) fits the majority mobility data up to 1020 cm-3 at 
300 K. Numerical values for the parameters in (1) for P­
doped Si at 300 Kare summarized in [5]. For even higher 
doped Si an additional term has been added to (1)[1). 
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To simulate bipolar transistors it becomes necessary 
to distinguish between majority and minority mobility 
values. E: periments have shown that the minority elec­
tron mobility may exceed the majority electron mobility 
by a factor of 16 at an acceptor concentration of about 
6 · 1019 cm-3 [6]. A review of minority carrier transport 
in Si can be found in [7]. Klaassen [8)[9) proposed an 
analytical model which distinguishes between majority 
and minority electrons. He assumed, besides the con­
centration dependence, a temperature-dependent life­
time for the excess carriers. However, his final model 
proposes a different temperature behavior than experi­
ments [6][10)[11][12] do. The reason lies in the different 
assumptions for the temperature-dependent lifetime. 

There is still no universal electron mobility model for 
Si which is useful for all dopant species. We have derived 
formulae for the electron mobility in Si both for the most 
common donors, i.e. P, As, and Sb and for the com­
monly used acceptor B. These expressions are based on 
a recently published ionized impurity scattering model 
which goes beyond the frequently used Brooks-Herring 
(BH) model based on the linear Thomas-Fermi approxi­
mation (TF) [13]. Using this impurity scattering model 
frcm first principles in a Monte Carlo simulator we cal­
culated the electron mobility for all dopants in the in­
teresting concentration and temperature range. From 
these data we derived analytical expressions of the mo­
bility values for all dopants. Hence, this is to date the 
first physics-based electron mobility model accounting 
for all possible dopants. 

IMPURITY SCATTERING MODEL 

Charge Density of Ionized Impurities 

The total charge density (in units of the electron 
charge e0 ) of an impurity atom with atomic number Z 
and electron number N in a solid is given by 

Pion(r) = Zo(r) - Pe(r) 

N = f Pe(T)d3r 

(2) 

(3) 

The first term in (2) describes the nuclear charge den­
sity distribution concentrated in the origin, and Pe(r) 
is the electron charge density of the impurity ion. The 



atomic form factor F(q), which represents the electron 
charge distribution of the impurity in momentum space, 
is defined as the Fourier transform of the electron charge 
density [14] 

F(q) = j dre-iF Pe(f'J (4) 

The momentum-dependent form factor strongly influ­
ences the scattering strength of the ionized impurity. 
Only for small scattering angles (q = 0) F(q) becomes 
a constant equal to the number of electrons (BH limit). 
However, with increasing doping concentration and car­
rier energy the angle-dependence of the atomic form fac­
tor becomes important, as scattering events with larger 
q are more pronounced [13] . Since the impurity ion in a 
solid is screened by free carriers, the effective potential 
in momentum space in the random phase approxima­
tion for a spatially extented impurity can be expressed 
by [15) 

U(q) 

Vo = 

Vr Z - F(q) 
o q2 + f32G(q) 

2m• e~ 

f;2 fSc 
(5) 

where t:.sc is the dielectric constant of the semiconductor 
and e0 the elementary charge. The inverse Thomas­
Fermi screening length f3 is given by [15] 

/32 _ ne~ F-1;2(T/) 
- fscksT F1;2(1J) ' 

(6) 

where T/ is the reduced Fermi energy, ksT the thermal 
energy, and n the free carrier concentration (no com­
pensation is assumed). The screening function G(q) ~ 1 
represents the dielectric response of the conduction elec­
trons to an external charge [15]. In the BH approach 
G(q) = 1 is assumed (momentum-independent screen­
ing). This assumption becomes questionable in highly 
doped semiconductors, such as silicon at a doping con­
centration of 1018 cm-3 . Note, that IZ-F(q)I is smaller 
than unity in case of acceptor ions in contrast to donor 
ions where this factor is larger than one [13]. 

Thomas-Fermi Atomic Model 

To this end the only unknown quantity is the ex­
act charge density distribution of the impurity ion in 
a solid. There are numerous rather sophisticated meth­
ods to calculate the electron charge density distribution. 
As we are interested in analytical solutions, we use the 
semi-classical TF model. Its basic idea is to treat the 
valence electrons as a degenerate Fermi gas of nonuni­
form, spherically symmetric electron density in a posi­
tive charged background [16] at zero temperature. Un­
der this assumption we get a local relation between the 
electron charge density and the Fermi energy. The total 
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energy consists of the classical Coloumb potential energy 
of electron-electron Ee-e and electron-nucleus interac­
tions Ee-n, and the kinetic energy Ek. Thus the total 
energy functional Eis (in atomic units) 

E = Ek+ Ee-n +A (Ee-e) (7) 

Ek Ck / Pe(r) 513 d3 r , 
3 ( ? 2/3 (8) = Ck = - 311·) 

10 

Ee-n = _ _!_ J Pc(r) d3r (9) 
ESc r 

Ee-e = _l_ /I Pe(r)pe~rl) d3rd3r/ (10) 
2 €Sc Ir - r' I 

In (7) ,\represents the correlation parameter. Assuming 
the charge density distribution 

Pe(r) = 

we obtain for the energy functional 

E -- *Ns/3 2 NZa \ N2a 
ck a - -- + " -­

fsc 4fsc 

ck = r ~t) (347rr/3 (~r/3 

(11) 

(12) 

Calculating the first derivative of the total energy with 
respect to the variational parameter a and the electron 
number N we get two equations for a and ,\: 

0 
oE = 00'. 

(13) 

0 ()El = oN N=Z 
(14) 

{14) is obtained from the vanishing chemical potential 
for a neutral atom in the TF model. Solving (13) and 
(14) with respect to,\ and o we finally obtain the vari­
ational size parameter a as a function of Z and N: 

(15) 

Scattering Rate 

The differential cross section in the first BA can be 
written as (17] 

d;~1 = jU(q)l 2 
( 1 + sinq(~R)) (16) 

The term in brackets takes into account the scattering 
of an electron on pairs of ionized impurities. The average 
separation R between neighboring impurities is defined 
as (18) 

(17) 
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Figure 1: Majority mobility (22) in P-, As-, and Sb­
doped silicon at room temperature. 

The total cross section at(k) is the integral of (16) over 
the solid angle. The total impurity scattering rate is 
defined as [19] 

>.(k) 

O't(k) 

= NI1ik at(k) 
m* 

= aBl(k) + ac(k) (18) 

a c is a correction to the first Born approximation based 
on the scattering amplitude of Schwinger [20). It can be 
shown that to first order a c can be written as 

O'c(k) = a1(k)O'B1(k) (J9) 

a1(k) 
c 

(20) = 
l+*-c 

c = Vo (Z - N) ( l - Vo (Z - N)) 
/3 4/3 

(21) 

In addition to ionized impurity scattering which is the 
main scattering process in heavily doped semiconduc­
tors, we take into account phonon scattering and electron­
plasmon scattering [21]. The latter effect lowers the 
mobility in p-type Si significantly and is responsible for 
the dip in the minority mobility (Fig. 2, Fig. 4), which 
corresponds to the maximum strength of the electron­
plasmon interaction. As the plasmons are usually damped 
an assumption for the damping process and the cutoff 
wave vector has to be made. As damping effects are 
of second order we used a damping constant of 10-16 s 
and the inverse screening length (6) as the cutoff vector 
[22]. Considering the experimental discrepancies in B­
doped Si, we found it not worth putting more effort in 
modeling electron-plasmon scattering. As at higher con­
centrations degeneracy effects become important, the 
Pauli exclusion principle (majority electrons only) and 
the Fermi-Dirac statistics are considered in our calcu­
lations. (18) together with the scattering rates of all 
other possible scattering events is finally used in a Monte 
Carlo simulator to calculate the electron mobility. 

72 

en 
> -"' ~ 
.Q. 
2 
3 
0 

~ 
..... 
0 ..... ..., 
u 
Q) 

~ 

103 

102 

1011 1018 1019 

Acceptor Concentration [cm- 3 ] 

' ' . ' 

1020 

Figure 2: Minority mobility (33) in B-doped silicon at 
room temperature. 

MOBILITY MODEL 

Our theoretical model combines the classic atomic 
model of Thomas-Fermi with a variational principle to 
obtain a unique charge distribution for each dopant. 
With a characteristic charge density we have derived 
scattering rates for each dopant useful for a Monte-Carlo 
simulator to finally obtain the low field electron mobil­
ity. 

Majority Electron Mobility 

The sheet resistance has to be predicted accurately 
to estimate the source and drain resistances which are 
a limiting factor in the performance of MOS devices. It 
is known that the primary limitation in the accuracy of 
simulated sheet resistance calculations is the availability 
of reliable mobility data and models. However, a large 
spread exists in the early mobility data published in 
the past. Almost all simulators still use simple mobility 
models making no distinction between different dopant 
species. 

Masetti et al.(1) made extensive measurements of the 
majority mobility in P- and As-doped Si in the high 
doping range. To fit the data they used (1) with an ad­
ditional term. It has been shown that the simplest, but 
accurate approach to fit our majority mobility data in 
the doping range (1014 , 1022] cm-3 is still to use (1) with 
a second rational term to account for the second local 
minimum of the mobility in the high doping regime: 

µo-g-h g 
µma;(CI,T,Z)= ( )Q+ {3+h. (22) 

1 + CI l + (CI) 
Ci C2 

Using the abbreviations T = T/300K and Z = Z/Zp 
with Zp = 15 the temperature-dependent parameters 
are defined as follows: 

[
cm2] µ0 (T) Vs = 380+20700e-3 1' (23) 
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Figure 3: Majority mobility (22) in P-, As-, and Sb­
doped Si at 100, 300, and 500 K. 

[ cm
2

] g(T, Z) Vs 18 - 8Z + (7Z + 208) e-1.sf"(24) 

[ cm
2

] 
9- z 

(25) h(T, Z) Vs t 
a(T) 0.9- O.l8T (26) 

(J(T) = 0.46 + 1.05 t (27) 

C1-(T) [ -3) 1()16" cm = 11.85 T 3 + 0.45 (28) 

C2 (T, Z) [ -3) 
1020 cm = ( 3 + ; 2 ) · ( 1.2 - fe<3

-
7f")) (29) 

Note that only three parameters are dopant-dependent 
through the atomic number Z: g, h, C2. Using the atomic 
number of boron ZB = 5 (25) and (29) give also the 
temperature-dependence of minority electrons (see next 
section). The dopant-dependence of the parameters is 
evident from (22) as the second rational term becomes 
dominant with increasing donor concentration where the 
dopant-dependence is most pronounced. We found that 
the temperature-dependence of (23) shows an exponen­
tial decrease below 150 K rather than a simple power­
law fall 0ff. In fig. 1 we see a comparison of the majority 
electron mobility for P-, As-, and Sb-doped Si. Note, the 
decreasing slopes of the mobility curves shifted to higher 
concentrations with increasing temperatures (cf. Fig. 3). 
As the effective charge gets smaller with higher doping 
the effective scattering strength is decreased. Despite 
the increase of scattering centers at higher doping we 
have less efficient impurity scattering which results in a 
smaller decrease in the mobility. As screening is becom­
ing weaker at higher temperatures the decrease in the 
slope is shifted to higher doping. The agreement with 
experimental data is excellent for P- an.cl As-doped si l­
icon. Unfortunately, to the knowledge of the authors, 
there are not sufficient experimental data of Sb-doped 
Si available to compare our model for Sb over the whole 
concentration and temperature range (Fig. 1). 
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Figure 4: Minority mobility (33) in B-doped silicon at 
various temperatures. 

Minority Electron Mobility 

There are only few experimental data available in 
only limited doping ranges for the electron mobility in 
B-doped Si [6)[10J[11][12][23J. However, the uncertain­
ties according the experimental error are rather high, 
and pronounced discrepancies among the reported data 
are found (Fig. 2). The origin of these sometimes contra­
dicting results lies in the fact that the minority electron 
mobility is not measured directly, but derived from the 
diffusivity through the diffusion coefficient D. The only 
way for direct diffusivity measurement is by measuring 
the transit time of the minority carriers excited by light 
[10)[11][12]. A different approach allows to derive D 
from measured diffusion length and lifetime. However, 
considering the very small quantities L [µm] and T [ns] , 
the experimental errors can be more than 30 ·3. This 
can easily give an error of a factor of two or more in D . 
The diffusion length L can be written as 

L =.Ji);- (30) 

where T denotes the lifetime of the minority electrons. 
The diffusion coefficient D can be expressed through the 
Einstein relation as 

D = µ kBT 
eo 

The minority electron mobility µ is finally 

leol L2 
µ = TkBT 

(31) 

(32) 

Different assumptions for the temperature-dependent 
lifetime of the excess electrons give finally the contra­
dicting minority mobility data in B-doped Si al low 
temperatures compared to [10]. Swirhun et al . [6][23] 
took the minority carrier lifetime to be independent of 
temperature, while Wang et al. [10][12J used a Lifetime 



increasing linearly with decreasing temperature down to 
30 K. 

In addition to the experimental uncertainties, one 
additional problem arises when dealing with modeling 
of minority transport in Si. The applicability of an ef­
fective mass for the valence band in Si is questionable. 
Moreover, the value for the heavy hole mass strongly 
affects the minority mobility. Data for the effective 
hole mass are found in the literature in the range of 
0.59 m0 [24] to 1.7 m 0 [21] . Lower values let the mobil­
ity behave more monotonically decreasing similar to the 
majority case. Higher values lead to the well-known dip 
in the mobility due to the decreasing electron-plasmon 
interaction. The reason is that the effective hole mass 
enters the plasma frequency and hence the plasmon en­
ergy. Analyzing the density of states data for the valence 
band obtained by full band MC calculations the maxi­
mum reasonable effective hole mass is 1.3 n ~ addi­
tion, damping effects and the questionable CL . if vector 
at low doping make modeling of electron-plasmon scat­
tering in p-type material even more complicated. En­
counting all these problems and uncertainties when deal­
ing with minority transport we found it not worth taking 
additionally electron-hole scattering into account which 
may become an important scattering process in highly 
doped p-material. It is very difficult to treat this process 
correctly as the distribution functions of the electrons 
and holes have to be known. On the other side electron­
hole scattering resembles ionized impurity scattering. 
Under the assumption that the scattering potential can 
be described by a TF potential and the hole mass is 
much larger than the electron mass the scattering cross 
section even becomes exactly the same as for impurity 
scattering. However, considering the experimental data 
for highly B-doped Si we can see that the minority elec­
tron mobility is much higher compared to the majority 
values, especially at lower temperatures. To include an 
additionally scattering process would make the agree­
ment with the experiment even worse. 

The minima in fig. 4 moving to higher concentra­
tions with increasing temperature reflect the vanishing 
electron-plasmon interaction. Whereas fig. 5 shows the 
minority electron mobility as a function of temperature. 
Note, the strong increase in mobility with decreasing 
temperature for higher concentrations due to vanishing 
electron-plasmon interaction. 

Hence to model the minimum in the minority elec­
tron mobility properly we modify (22), so that we finally 
obtain for the minority electron mobility µmin the fol­
lowing expression: 

µo+m-k-h k 
µm;n(CI, T, ZB) = ( )°' + {3 

l+ c1 l+ (1c1-c.1) 
C1 C2 

m 

( )
..., + h 

1 + 1c~c.1 
(33) 
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Figure 5: Minority mobility (33) in B-doped silicon for 
various acceptor concentrations. 

with the following set of equations together with (25) 
and (29) with Z = ZB = 5 for the temperature-dependent 
parameters: 

-y(T) 
0.6 

(34) = f' + 1.4 

k(T) [c;:] = 1~4 + 70 (35) 
T 

m(T) [c~2] = 
6~ + 73 (36) 
T 

Ca(T) [ _3) lQi9 cm = 6 (2 - 3e-2·1'f') (37) 

Cb(T) [ _3) 
1018 cm = 6. 7 - 12.9 f'0.2s e-1.26 'f' (38) 

C3(T) ( _3] 
~cm = 2 (300 + e5

·
5 'f'] . (39) 

µo, a, {3, and C1 in (33) are already defined by (23), 
(26), (27), and (28), respectively. 

CONCLUSION 

We have presented a universal electron mobility model 
for all common dopants in Si. The agreement with ex­
perimental data for P- and As-doped Si is remarkably 
good. For Sb-doped Si further experiments are desired 
to con.firm our results. In case of majorities the mobility 
formulae are in good agreement with experimental data 
over the concentration range (1014, 1022 ) cm-3 in the 
temperature range (70-500 K). For minorities we con­
firm the higher minority mobility compared to the ma­
jority values. One reason is the electron-plasmon inter­
action which is a predominant scattering process in p-Si. 
Secondly, the negative effective charge is increased with 
higher concentrations which results in a smaller scatter­
ing rate at repulsive scattering centers. Unfortunately, 
different approaches to measure the minority mobility 



lead to strong discrepancies in the published experimen­
tal data. Quantitative predictions are therefore almost 
impossible to make. It might be doubtful, if the strong 
temperature-dependence, especially at low temperature, 
claimed by the experimentalists has a physical evidence 
or is due to wrong assumptions for the temperature­
dependence of the excess carrier lifetime. The strong 
temperature-dependent minority mobility with increas­
ing concentration can only be reproduced by increasing 
the hole mass to unreasonable high values. However, full 
band Monte-Carlo data give an upper limit of about 1.3 
(in units of the free electron mass mo) for the hole den­
sity mass. Nevertheless, even higher values for the hole 
mass can be found in the literature (21). 

In conclusion, we can say there are still many open 
questions in minority carrier transport which have to 
be solved to arrive the stage of a quantitative under­
standing of the matter. It is hoped that the results 
outlined here will stimulate more experimental work to 
confirm definitely the decrease of the majority mobility 
observed with increasing Z of donor species in n-Si. Ad­
ditionally, further experiments are necessary to remove 
the remaining uncertainties and discrepancies concern­
ing the electron lifetime and temperature-dependence of 
the electron mobility in p-Si. 
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