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ABSTRACT 

Progress in today's semiconductor industry has been mainly achieved by decreasing the minimal feature size and 
increasing the complexity and thus the nonplanarity of the devices. Therefore lithography tools have to provide 
high resolution with a reasonably large depth of focus. Well-established methods to achieve both requirements are 
off-axis illumination techniques. As topography effects such as non planar electromagnetic scattering and notching are 
critical for line-width control, a rigorous three-dimensional exposure simulation considering both nonplanar surfaces 
as well as off-axis illumination is of utmost interest. We propose a rigorous method that meets the two challenges of 
nonplanar substrates and off-axis illumination. Our approach is based on a novel extension of the differential method 
to the third dimension. It is based on a Fourier expansion of the electromagnetic field in the lateral coordinates 
and thus belongs to the category of frequency-domain solvers. Due to the moderate computational costs nonplanar 
topography simulations including off-axis illumination can be performed on common engineering workstations. We 
will give a survey over the numerical algorithm of the differential method, describe the interface to the imaging 
and development module, and demonstrate the ability of the overall simulator by comparing simulation results for 
contact-hole printing over a dielectric and reflective substrates for various illumination apertures. 

Keywords: Off-axis illumination simulation, exposure simulation, rigorous electromagnetic, vector-valued, three­
dimensional, nonplanar topography, development simulation, cellular-based 

1. INTRODUCTION 

A rigorous electromagnetic (EM) field calculation becomes necessary to cope with the phenomena that determine the 
performance of today's semiconductor photolithography. The major reasons are that (i) the resolved lithographic 
feature size is on the order of or even below the actinic wavelength, (ii) the incident light is considerably oblique 
due to the usage of high-numerical aperture projection systems, (iii) reflection and notching effects are caused by a 
nonplanar topography, and (iv) the exposing light scatters inside the inhomogeneous resist. Unfortunately rigorous 
modeling of EM problems in photolithography simulation is particularly computation-intensive since the assumptions 
made throughout geometric optics as well as throughout Rayleigh's method fail as the radii of curvature cannot be 
neglected with respect to the disturbances caused by the discontinuity of the medium. The general problem of EM 
scattering from an inhomogeneous medium and/or a reflective topography has been addressed in various ways. 

The first attempts were based on the finite-element method together with the boundary-element method. 1- 3 

However, the meshing of the simulation domain is in three-dimensions an extremely difficult task, and the bandwidth 
of the system matrix, and thus to a large degree also the CPU time, is determined by the number of boundary elements 
since the radiation boundary conditions establish tight relations between all boundary points. 

An alternative method relies on the time-domain finite-difference technique. This method was successfully imple­
mented in the lithography simulator TEMPEST at the UC Berkeley.4- 6 Problems arise from the iterative computation 
of the steady-state field distribution since the number of iteration cannot easily be determined as well as from the ex­
treme computational requirements that prohibit a workstation based application in three dimensions. An advantage 
is its short computation time-typically 20 minutes6-due to the massively parallel implementation. 

A totally different approach is pursued in case of frequency-domain methods. Here the EM field is represented 
by a superposition of some basis functions. A compromise between storage and CPU demands-typical values are 
250 MB of memory and 6 hours run-time on a modern engineering workstation-is thereby realized and workstation 
based rigorous simulations also for three dimensions become thus feasible. If harmonic basis functions are chosen, 
the EM field representation refers to a Fourier expansion. Then two different discretization techniques can be 
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employed to the Maxwell equations. Either the partial differential equations are directly transformed to a linear 
algebraic system by solving repeatedly an eigenvalue problem or, alternatively, an ordinary differential equation 
(ODE) system is set up first that is then discretized resulting also in an algebraic system. The two techniques are 
commonly called waveguide method and differential method, respectively. The waveguide method was incorporated 
into the lithography simulator METROPOLE at the Carnegie Mellon University,7-9 whereas the differential method 
was implemented in the two-dimensional lithography simulator iPHOTO developed at INTEL. 10 Its extension to the 
third dimension was developed at the Technica1 University of Vienna.11- 13 The differences between waveguide and 
differential method are of sophisticated nature and will be sketched in some detail in Sect. 2.2. 

The paper is organized as follows: In Sect. 2 a survey of the three-dimensional formulation of the differential 
method is given. In Sect. 3 the incorporation of the field solver into the overall lithography simulator is described, 
whereas in Sect. 4 simulation results for resist exposure and development over nonplanar topography and off-axis 
illumination are presented. 

2. THREE-DIMENSIONAL DIFFERENTIAL METHOD 

We chose the differential method among the suitable rigorous simulation techniques for the following reasons: Meshing 
problems are avoided since only a simple equally spaced ortho product tensor grid is needed due to the usage of 
the FFT algorithm to evaluate the Fourier expansions of the EM field. Furthermore the boundary conditions are 
met in a natural way since the EM field outside the simulation domain can also be expressed by Fourier or Rayleigh 
expansions. The perhaps most important reason is the possibility to run rigorous nonplanar lithography simulation 
on a common engineering workstation. In the following two sections we will first give an overview of the operation 
principle of the differential method and then describe its performance. 

2.1. Operation Principle of the Differential Method 

The differential method requires a laterally periodic wafer topography. The simulation domain is one period (a x 
b x h) of such a periodic formation and is thus always rectangular shaped. Inside the simulation domain arbitrary 
inhomogeneous as well as nonplanar regions can be treated. For example, in the presented simulation results in Sect. 4 
the simulation domain consists of the inhomogeneous resist and the nonplanar step. Above and below multiple planar 
but homogeneous mat~rial layers can be treated. In our situation we have vacuum above and a silicon substrate 
below (cf. Fig. 1). 

The differential method itself can be divided into two stages. First, the dependence of the EM field on the lateral 
x- and y-coordinates is expressed by Fourier expansions. Such expansions presume a periodic EM field. For that 
two requirements have to be fulfilled: (i) The incident light is periodic, which holds since we assume a periodic 
mask pattern and consider only point sources located at specific p0sitions in the source plane (cf. Sect. 3.1); (ii) 
The permittivity is periodic, too, which is true due to the specific choice of the simulation domain. Insertion of 
the expansions into the Maxwell equations transforms the partial differential equations into an ODE system. Once 
the boundary conditions (BCs) are determined the ODE system is solved and the obtained EM field coefficients are 
transformed back to the spatial domain. The mathematical formulation of this procedure reads as follows. 

Since the light sources used in Lithography are strictly monochromatic and only the steady-state field distribution 
has to be calculated, a phasor notation for the EM field vectors applies, i.e., U(x; t) = Re{U(x)eiwot}, whereby the 
phasor U(x) stands vicariously for the electric and magnetic phasors, E(x) and H(x), respectively, w0 = 27T / .Je0µ0 >.0 
is the angular frequency, and >.0 denotes the actinic wavelength. The phasors E(x) and H(x) obey the time-harmonic 
version of the Maxwell equations, 14 

curl H(x) = -jwe:oe:(x)E(x) and curl E(x) = jwµoH(x). (1) 

The two EM phasors U(x) as well as the inhomogeneous permittivity• e:(x) are now expanded like 

U(x) = L Unm(z)ej21r(nx/a+my/b) and e:(x) = L E:nm (z )ej21r(nx/a+my/b). (2) 
n,m n ,m 

•Jn addition to the permittivity also its reciprocal x(x) == e- 1 (x) has to be expanded into Fourier series. For details see Ref. 13. 
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Insertion of Eq. (2) into Eq. (1) transforms the Maxwell equations into an ODE system that can be written in 
compact matrix-vector notation as 

d 
dz u(z) = H(z)u(z) with [ 

Q R(z)] 
H(z) = G(z) Q . (3) 

The complex-valued vector u(z) comprises the Fourier coefficients of the lateral field components only, as the vertical 
components can be analytically expressed by the lateral ones. This fact is a big advantage of frequency methods-it 
also applies for the waveguide method9-since the number of unknown quantities for each harmonic frequency (nm) 
is reduced from 6 to 4. The system matrix H(z) contains the Fourier coefficients of the permittivity. Its shape 
reflects the fundamental structure of the Maxwell equations since the derivative of the electric phasor depends only 
on the magnetic phasor and vice versa. The potential run-time speedup is large due the analytical elimination of the 
vertical components and the special structure of the system matrix. To solve the infinitely dimensional ODE system 
numerical,ly, the Fourier expansions are truncated, i.e., only coefficients Unm{z) symmetrically centered around the 
principal incident ray n = m = 0 are considered. The thereby entailed approximations will be discussed in the next 
section. The dimension of the resulting finite-dimensional ODE system equals 

NooE = 4 x (2Nz + 1) x (2Ny + 1) ~ 16 x Nx x Ny, (4) 

whereby Nx and Ny are the truncation frequencies in x- and y-direction, respectively. The factor four is due to 
the four lateral field components, the truncation frequencies have to be counted twice to account for "positive" and 
"negative" harmonics, and the additive one results from the zeroth-order harmonic. 

The BCs for the ODE system are obtained by matching the Fourier expansions valid inside the simulation 
domain {cf. Eq. (2)) to the Rayleigh expansions valid above and below the simulation domain (cf. Eq. (8)). The 
mathematical formulation of a Rayleigh expansion is that of a Fourier expansion with vertically known dependence 
of the coefficients and has the physical interpretation of a superposition of plane waves. Hence, the BCs follow from 
a simple comparison of the Fourier coefficients. It can be shown (see Ref. 13) that half of the required NooE BCs 
are located at the resist/air interface at z = 0, and the other half at the resist/substrate interface at z = h. Using 
again a matrix-vector notation they take the form · 

~u(O) =a and Bhu(h) = 0. (5) 

To clarify the notation we list the dimensions of the involved quantities: The vector u(z) containing the NooE 
unknown vertically dependent Fourier coefficient belongs to u(z) E cNoos, the excitation vectors a and 0 comprising 
the incident field coefficients at the two boundary points are elements of a , 0 E cNooE/2 

I and the two boundary 
matrices & and Bh are of dimension ~. Bh E cNooE xNooE/2. Note that the excitation vector at the lower interface 
at z = h equals the zero-vector 0 since no light is incident at the bottom of the simulation domain. This situation 
is only valid if one homogeneous layer, i.e., the substrate, is situated below the simulation domain. Otherwise a 
stack of homogeneous layers forms a stratified medium that can be treated analytically. A detailed description of 
this different situation can be found in Ref. 15. 

The final step is the numerical solution of the ODE system subject to the BCs, whereby Eqs. (3) and (5) 
constitute a two-point boundary value problem. We adapted the shooting method16 since it can be implemented in a 
very memory saving way. The main ideas of the algorithm are outlined in the following, for a throughout discussion 
see Ref. 15. Firstly, the two boundary points z = 0 and z = h are related by recursively evaluating a relation liket 
u(i;+1) = §iu;(z) between two adjacent mesh points Zj and z;+1, i.e., 

u(h) = (fr § 1) u(O) = §u(O). 
J=l 

(6) 

Combining Eqs . (5) and (6) yields an algebraic system for the initial values at one boundary point, e.g., at z = 0, 

[~] u(O) = [~] . (7) 

!Such a relation can easily be obtained by applying an explicit discretization scheme to (3). However, due to numerical instabilities 
more advanced techniques like multiple shooting, decoupling, and stabilized marching techniques have to be applied.16 
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This algebraic system is solved for u(O) . Since the vector of unknowns is now known at the boundary point z = 0, the 
originally boundary value problem is t ransformed to an ini tial value problem that can be simply integrated to obtain 
u(zj) at any desired vertical discret ization point Zj · T he vector u(zj) comprises the Fourier coefficients Unm(zj) of 
the EM field phasors and the spatial field distribu tion is obtained by transforming them according to Eq. (2). 

2.2. Performance of the Differential Method 

The proposed algorithm has the big advantage that the vertical mesh size Nz does not influence the storage con­
sumption since the recursion matrices ~j in Eq. (6) do not have to be stored individually. The memory usage is thus 
only determined by the rank NooE of the ODE system (cf. Eq. (4)) . It is of order O(Nf>0 E) ~ 256 x O(N'; x N;). 
Typical values for the truncation frequencies are Nx = Ny = 16. 33 Fourier modes are then considered in each lateral 
direction and approximately 300 MB of memory are required, whereby 16 Bytes are assumed to store a complex 
number with double precision. These requirements are in accordance with the waveguide model9 and lie dramatically 
below the time-domain finite-difference approach.4 The numerical costs are mainly determined by the evaluation of 
the recursion formula in Eq. (6) and by the solution of the algebraic equation system in Eq. (7). Both operation are 
of order O(NlmE) . Hence, the total run-time grows for N ., vertical discretization points with O(Nz x N50 E) and 
lies typically under a few hours on a DEC-600/333 workstation. 

In the preceding discussion of the storage consumption it was shown that the memory grows with the second order 
of the number NooE of considered Fourier coefficients. Hence, the truncations frequencies Nx and Ny determining 
NooE (cf. Eq. ( 4)) shall be chosen as small as possible. T he following considerations explain the t radeoff between 
storage costs and simulation accuracy. The truncation of the Fourier expansions of the EM field entai.ls two important 
implications: (i) A low-pass filtering of the field, and (ii) a low-pass fil tering of t he geometry. T he first one is obvious, 
the second, however, is more involved. This stems from the fact that the neglected fi eld coefficients are coupled 
to the considered ones due to the fully occupied matrices R(z) and G (z) in Eq. (3). Hence, the inhomogeneity is 
treated as it would be that smooth that only negligible coupling from and to higher order harmonics occur. This 
assumption is of course only true for small variations of the refractive index or, similarly, for a smooth topography. 
In both cases the permittivity is a low-pass function. For the special situation of a homogeneous medium no coupling 
occurs at all and no approximation errors are caused by the truncation. However, this situation is of no interest and 
can be treated analytically anyway. Numerical investigations show that above a certain truncation level the solution 
converges and additional Fourier coefficients do not alter the results significantly. On the contrary, such high-order 
harmonics aggravate the condition of the ODE system since t hey refer to highly damped or evanescent modes in 
vertical direction. The spectral range of the final linear equation system for the initial values {cf. Eq. (3)) can be 
shown to fall of above a certain truncation level.15 Resembling problems occur if the materials are too absorptive, 
but then even low-order harmonics are strongly damped. 

Similar limitations apply for the waveguide model, since they are implicitly contained in any frequency domain 
method. However, exactly in the treatment of such stability problems the advantage of the differential method over 
the waveguide method lies. To explain this a few notes on the waveguide method are necessary. The waveguide 
method divides the simulation domain into thin layers with a vertically constant refractive index. Within one layer 
an eigenvalue problem is solved. By matching recursively adjacent layers a linear algebraic system is established. 
This procedure refers to the vertical discretization of the ODE system employed throughout the differential method 
(cf. Eq. (6)). Hence we see that the waveguide equals the zeroth-order discretization of the differential method since 
an ODE system with constant coefficients can be reduced to an eigenvalue problem. Consequently, the discretization 
order of the differential method is implicitly higher than that of the waveguide method. It can be chosen arbitrarily 
and numerical problems can thus be reduced by simply increasing it. Computationally efficient algorithms exist to 
solve "stiff" two-point boundary value problems16 that assure good convergence in even stronger absorptive media. 
This is an important advantage of the differential method over the waveguide method. A similar relation is known 
between the modal and the coupled-wave approach 17 that are based on the same theories as the waveguide and the 
differential method, respectively, and are well-known in the study of diffraction gratings . 

3. OVERALL SIMULATOR STRUCTURE 

In this section we describe how the differential method is incorporated into the overall photolithography simulator. 
The simulator consists of three basic modules, whereby each of them accounts for one of the fundamental phases of 
the lithography simulation,18 namely imaging, exposure, and development. 
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3.1. Aerial Image Calculation 

Our aerial image simulator is based on the vector-valued extension 10 of the scalar theory of Fourier optics. 19 The mask­
pattern is thereby assumed to be laterally periodic and the photomask is infinitesimally thin with ideal transitions 
of the transmission characteristic. To account for general illumination forms like circular or quadrupole illumination 
the distributed light source is discretized into mutually independent coherent source points Qpq· This approach is 
commonly referred to as Abbe's method .14 The resulting image incident on top of the wafer due to one coherent 
point source is expressed by a superposition of homogeneous plane waves, i.e., by a Rayleigh expansion . For a 
numerically efficient exposure simulation is is necessary to restrict the location of the source points to an equally 
spaced ortho product tensor grid so that all contributions are periodic. A generalization of this procedure to a finer 
grid resulting in a quasi-periodic incident field is possible but is beyond the scope of this paper. The spacing between 
the individual source points Qpq is chosen in such a way that the lateral wavevector components sx,p and sy,q of 
the waves incident on the mask equal an integer multiple of the sampling frequencies 27r /a and 27r /b in the Fourier 
domain, i.e., Sr.,p = 2rrp/a and sy ,q = 27rq/b, whereby a and bare the periods of the photomaskt and, simultaneously, 
the lateral extensions of the simulation domain required by the differential method. Examples of the wavevector 
sampling for various apertures are shown in Fig. 2. The EM field that is excited by one coherent source point QP

9 
and is incident on the mask can now be expressed by 10 

u~q (x) = "'"""u~q ej27r(nx/a+my/b) ei21r../l-(nx/a)2 -(my/b)2z/ >-o 
i ~ 1,nm , (8) 

nm 

whereby Ufq (x) stands vicariously for the electric Efq (x) and magnetic Hfq (x) field vector. The amplitudes of the 
electric diffraction orders follow from the vector-valued diffraction theory10 

Epq - A T P( . )F( ) j<l>(n,m) i,nm - pq n-p,m-q n, m . p, q n, m e , (9) 

and the magnetic ones can be calculated from Hf.~m = >.o/27rJEo/ µo knm x Ef.~m· In Eq. (9) Apq refers to the 
source point amplitude that depends on the illumination intensity and the discretization area Wpq inside the aperture 
(cf. Fig. 2), Tnm are the Fourier coefficients of the mask transm.ission function, P(n, m: p, q) is the vector-valued pupil 
function, F(n, m) stands for a possible in-lens filter function , and ~{n, m) is the aberration function of the projection 
lens. Expressions for the vector-valued pupil function P(n, m : p, q) can be found in Ref. 10. The aerial image, 
i.e., the two-dimensional light intensity incident on top of the photoresist is given by the incoherent superposition 
of the vertical components of the Poynting vectors of all source point contributions. The amplitudes of the electric 
diffraction orders Ef.~m given in Eq. (9) are the input to the exposure module described next. 

3.2. Exposure Simulation 

The chemical state of the photoresist during exposure is characterized by the concentration of the photoactive 
compound {PAC) M(x; t) in case of conventional DQN resists20 and by the concentration of the photoacid generator 
(PA G) G(x; t) in case of chemically amplified resists. 21 In both situations the interaction of the resist with the 
exposing light can be described by a first-orde.r dissolution law20•21 

81(x; t) at = -CI(x; t)'Y(x; t), (10) 

whereby the concentration 1(x; t) refers either to the PAC or the PAG and I(x; t) denotes the absorbed light intensity. 
Equation (IO) describes the fundamental property of a photoresist: The exposing light I(x; t) is stored in a latent 
bulk image 1(x; t). However, the physical processes governing the conversion of the photosensitive component are 
of different nature for the two considered resist systems. DQN resists exhibit a so-called bleaching phenomenon, 
i.e., the resist becomes more transparent during exposure. This means that the optical properties depend on the 
concentration of the PAC. Dill's 'ABC'-model20 postulates a simple relation between the refractive index n(x; t) of 
the resist and the PAC M(x; t), n(x; t) = no+ j>.o/47r(AM(x; t) + B). In case of chemically amplified resists the 
bleaching phenomenon usually does not occur, but the PAG has to be thermally activated after exposure. Thereby 
the generated acid acts as a catalyzer and the latent image G(x; t) is chemically amplified. Such a post-exposure 

iHere we assume a magnification M of one. Otherwise the sampling frequencies S:r:,p and sy,q have to be multiplied by M or, 
equivalently, the mask transmission function has to be scaled by M. 
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bake step is also often applied to DQN resists. Here they have the purpose to smooth variations in the latent PAC 
image M(x; t) that are caused by standing waves .22 Disregarding any further chemical details we proceed with the 
description of the exposure module. 

By applying a quasi-static approximation to the dissolution law Eq. (10) is explicitly discretized with respect to 
time 

-y(x; tk+I) = -y(x; tk)e-CI(x;tk)(tH1-tk). 

This is justified since the dissolution rate is always negligible in comparison to the optical frequency. For the same 
reason a steady-state field distribution can be assumed within one time-step tk :::; t < tk. Therefore the EM field is 
time-harmonic and obeys the Maxwell equations in the form of Eq. (1), whereby the permittivity €k(x) is related 
to the refractive index by Maxwell's law14 tk(x) = n(x; tk). The absorbed light intensity /(x; tk) can simply be 
calculated from the electric field distribution /(x; tk) = 0.5n0 Jto/µoi1Ek(xll 2. The crucial point of the exposure 
module is the numerical solution of the Maxwell equations. We use the differential method as described in Sect. 2, 
whereby special care has to be taken in case of off-axis or partially coherent illumination. 

As outlined in the preceding section the amplitudes of the electric diffraction orders Ef.~m given in Eq. (9) are 
the input to the exposure module. Assuming N. source points Qpq the Maxwell equations of Eq. (1) have to be 
solved for N5 different BCs. With the proposed formulation of the differential method this can be done in a very 
efficient way. For each source point Qpq we get an own excitation vector aPq in Eq. (5). As all contributions are 
periodic (cf. Eq. (8)) the system matrix H(z) and the two boundary matrices !k and Bh are independent of (pq). 
Hence, the vertical discretization, i.e., the recursion in Eq. (7), has to be evaluated just once. The final algebraic 
system can be simultaneously solved for all Ns right-hand sides, i.e., 

[~] U(O) = [~] (11) 

with 
U(O) = [ · · · uPq(O) · .. ] and A= [ · · · aPq · · ·]. 

The final linear system of Eq. (11) incorporating the Ns right-hand sides can be efficiently solved by employing 
a LU-factorization23 and the therefrom calculated light intensities are incoherently superposed. The extra effort 
due the off-axis apertures is of one order lower than the overall numerical costs and thus negligible. No further 
modifications of the proposed implementation of the differential method are thus required. This is a big advantage 
since in other techniques the Maxwell equations have to solved separately for the N 8 BCs and the computationally 
costs grow proportionally to N 8 • 

24 

Finally, we want to point out that the quasi-static approximation transforms the originally nonlinear problem to 
a series of inhomogeneous but linear problems. Without the bleaching reaction, i.e., the optical properties do not 
depend on -y(x; t), we have to consider only one time step. This situation will usually apply for chemically amplified 
resist systems. Furthermore, we do not treat the required or optional post-exposure bake step in any greater depth 
as the main concern of the paper is the presentation of the rigorous EM field calculation under aperture illumination. 
A simple first order model is a diffusion simulation with a constant diffusion coefficient22 that refers to a convolution 
of -y(x; t) with a Gaussian. 

3.3. Development Simulation 

The development of the photoresist is modeled as a surface-controlled etching reaction. 25 Among the models 
available in the open literature we choose Kim's 'R'-model to relate the chemical state after the exposure simulation 
to a spatially inhomogeneous development rate.26 This development rate is stored on a ortho tensor product grid, 
since the above discussed differential method requires a laterally uniform spaced grid to apply the numerically highly 
efficient two-dimensional FFT algorithm. For the simulation of the time-evolution of the development front we 
adapted the recently proposed cellular-based topography simulator27 to read the development rate from the grid. 
The basic idea behind this surface advancement algorithm is to apply a structuring element along the exposed surface 
that removes successively photoresist cells of the underlying cellular geometry representation. Within the scope of 
lithography simulation the shape of the structuring element depends on the precalculated development rate multiplied 
by the chosen time step. As the development rate exhibits a strong dependence on the spatial coordinates, e.g., due 
to standing waves or notching effects during photoresist exposure, a sufficiently high number of cells has to be chosen 
to resolve these variations. 
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For example, in case of standing waves over a planar reflective substrate we know that the distance between the 
maxima and minima of the absorbed light intensity and therefore also of the development rate is A Resist/ 4, which 
yields approximately 37 nm for DUY illumination at a wavelength of -\0 = 248 nm and a refractive index of 1.65 of 
the photoresist. For an accurate movement of the development front this significant distance should be resolved by 
at least 10 cells. 27 Hence a cell density of 300 cells/ µm is required . The applicability of the structuring element 
algorithm for this cellular geometry resolution has been demonstrated in Ref. 27. 

4. SIMULATION RESULTS 

To demonstrate the capability of our approach we simulated 248 nm DUY contact hole printing over dielectric and 
reflective substrate topography with various aperture systems. Additionally, we investigated defocus effects since the 
advantage of off-axis systems lies in a greater depth of focus. 

In all cases the simulation domain was 1.0 µm x 1.0 µm x 0. 7 µm large and the substrate material was silicon 
with a refractive index of n 5 ; = 1.68 + j3.58. The step was centered in the middle of the simulation domain , the 
height was 0.25 µm and the slope was 45°. The step material was either dielectric oxide with a refractive index of 
ns;o

2 
= 1.508 or reflective a-silicon with a refractive index of na.Si = 1.69 + j2.76. A non-bleaching resist was chosen 

with a refractive index of nResist = 1.65 + j0.02. The mask was located in the center of the geometry, i.e., exactly 
above the slope, and the mask-opening was 0.25 µm x 0.25 µm wide. A sketch of the investigated configuration is 
shown in Fig. l. 

nResist = 1.65 + j0.02 ns;o2 = 1.508 

Figure 1. Schematic of the simulation domain: Cut along YY' (left) and top-view (right). 

For the simulation 51 Fourier modes in x-direction and 21 in y-direction corresponding to cut-off frequencies of 
N, = 25 and Ny = 10, respectively, were used to represent the EM field . The differential method thus consumed 
approximately 300 MB. The number Nz of discretization points were in the dielectric case 50 and in the reflective 
case 75 since the stronger absorption in a-silicon has to be resolved properly. The run-time ranged between 4 to 5 hours 
on a DEC-600/333 workstation depending on the step material. The development simulation was performed with 
a cell density of 300 cells/ µm. The memory usage was 20 MB assuming 1 Byte per cell and the run time was 
25 minutes. 

We investigated three different illumination configurations with a fixed numerical aperture of NA = 0.5, namely 
coherent, partially coherent or circular with a = 0.8, and quadrupole with a = 0.1 and X = Y = 0.7. The number 
and location of the source points are illustrated in the discretized wavevector diagram of Fig. 2. In Fig. 3 and 4 
we show the simulated PAC concentrations after an exposure of dose 120 mJ/cm 2 obtained for the dielectric and 
reflective topography, respectively. The absorption parameter of the resist was thereby set to C = 0.013 cm2 /mJ, 
and the Kim-parameters were taken from Table IV of Ref. 26: R 1 = 0.25 µm/s, R 2 = 0.0005 µm/s, R3 = 7.4. The 
simulations were performed with ideal focus as well as with a defocus of 1 µm above the resist surface. The developed 
resist profiles resulting from the shown PAC concentrations are presented in Fig. 5 and 6. The development time 
was chosen so that in all cases the full contact hole was opened. 
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Figure 2. Source points in the discretized wavevector diagram (left: coherent, middle: circular, right: quadrupole). 

A comparison of the simulation results exhibits a stronger impact of the nonplanar topography on the latent 
bulk image and developed resist profile in case of the reflective step than in case of the dielectric step. The standing 
waves caused by the abrupt change of the refractive index along the material interfaces are in both cases distorted 
due the nonplanarity. In case of a planar substrate the contours are ideally oval12•13 since the optical thickness is 
constant across the whole simulation area. For a nonplanar topography the optical thickness varies which causes the 
distortion. This situation is less pronounced for the oxide since the real parts of the refractive indices of the oxide 
and the resist, Re{nsio2 } = 1.508 and Re{nResist} = 1.65, respectively, are almost matched and no reflection occurs 
at the dielectric, i.e., Im{nsio2 } = 0.0. In case of a-silicon the conductivity, i.e., the non-vanishing imaginary part 
of the refractive index Im{na-si} = 2.76, forces a minimum node in the EM field distribution along the step surface 
which results in a maximum of the PAC concentration within the exposed resist and thus in a minimum of the 
development rate. Additionally, some fraction of the absorbed light intensity is scattered into nominally unexposed 
regions of the resist opposite the step. This can be clearly seen in the developed resist profiles. For the same reasons 
as before this notching effect is more distinct for the reflective topography than for the dielectric. 

Regarding the various illumination forms it can be seen that the circular and quadrupole aperture perform 
better than the coherent one in the defocus situation. The resolution, however, is for the coherent source the 
best. The difference between circular and quadrupole aperture is small. This is most likely caused by the small 
number of considered source points (nine and four as illustrated in Fig. 2). To circumvent such inaccuracies a 
finer grid is necessary for the discretization of the light source into incoherent points. However, the full benefits of 
the proposed implementation of the differential method would be lost as the incident field would consist of quasi­
periodic contributions in addition to the periodic ones of Eq. (9). Such multiple sets of quasi-periodic modes require 
individual reclusion matrices .$.in Eq. (11). B~t similar to the periodic modes also quasi-periodic modes with an 
offset equal to the fundamental frequencies 2n /a and 2n / b can be grouped together. Hence, even in case of a finer 
grid the numerical costs do not grow proportional to the number of point sources but proportional to the number 
of quasi-periodic groups. This is still a big performance gain of the differential method in comparison to other 
techniques. 

5. CONCLUSIONS 

The three-dimensional formulation of the differential method is presented and it is shown that the approach is 
extremely efficient to rigorously calculate the EM field over a nonplanar topography under advanced aperture illu­
mination. The method is implemented into a computer program running on common engineering workstations. It 
is embedded in the exposure module of an overall three-dimensional rigorous nonplanar photolithography simulator. 
The interface to the two other parts, namely the vector-valued aerial image calculation and the development/etching 
module, is described. The capability of the simulator is d·~monstrated by showing simulation results of contact hole 
printing over dielectric and reflective substrate topography with various aperture systems. 
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Figure 4. PAC concentration after exposure over a reAective a-silicon step (left: best focus, right: 1 µm defocus 
above; top: coh erent, middle: circular, bottom: quadrupole) . 
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Figure 5. Resist profiles after development over a dielectric oxide step (left: best focus, right: 1 µm defocus above; 
top: cohc~rent, middle: circular, bottom: quadrupole) . 
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Figure 6. Resist profiles after development over a reflective a-silicon step (left: best focus, right: 1 µm defocus 
above; top : coherent, middle: circular, bottom: quadrupole) . 
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