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Abstract - This paper presents a monolithic low-power,
low-noise analog front-end electroencephalogram (EEG)
acquisition system. It draws only 500 yA from a standard
9 V battery, making it suitable for use in portable systems.,
Although fabricated in a standard CMOS technology,
using current feedback techniques it achieves a CMRR of
100 dB while the total input noise referred to input is kept
as low as 1.5 uV (RMS).

. INTRODUCTION.
The wuse of VLSI techniques in biomedical
instrumentation opened the doors towards the

miniaturization and portability of such systems. The
portability gives among other benefits, more freedom of
movements to the patient (of particular importance in
long duration exams) and allows the of very small leads
between the electrodes and the input amplifiers [1]. This
last point is of great importance as this systems are
usually used in noisy environments, while the signals to
acquire have very low levels (down to few uV). But
portability requires very low-power consumption to
guaranty long life to the battery, what in turn creates
constraints in circuits performance difficult to overcome.

In this paper a monolithic implementation of an analog
front-end of a portable EEG acquisition system is
presented. Besides low-power, the key design points are
high Common Mode Rejection Ratio (CMRR) and very
low noise. Minimum component count is also important
to reduce systems weight and volume.

The system includes 16 instrumentation amplifiers, one
16:1 analog multiplexer, one programmable gain
amplifier, auto-calibration circuitry for nulling mismatches
among the 16 channels (including a test signal
oscillator), a microprocessor compatible digital interface
and an internal current/voltage reference source as
shown in the block diagram of Fig. 1. It was implemented
in the low-cost MIETEC 2.4 uV double-poly/double-metal
CMOS technology opening good perspectives for a
complete system integration, if an ADC and telemetry
circuitry is added.
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Fig. 1. IC block diagram.

II. INSTRUMENTATION AMPLIFIERS

In an acquisition system the overall performance is
strongly dependent on the quality of its input 1As. They
are the most critical elements in the integrated circuit
described here and therefore the component to which
more attention was given.

CMOS is unquestionably the best technology for
micropower circuits [2]. However, among other problems
associated with it, the CMRR behavior is worse than their
bipolar and JFET counterparts. As EEG signals exhibit
low frequencies (0.3 - 150 Hz) [3], the flicker noise
becomes another potential problem as this technology
exhibits higher flicker noise levels. Since we are not
interested in circuits using sampling technigues [4], only
a careful full-custom design can overcome such
difficulties.

A. Current Feedback Instrumentation Amplifiers

Conventional resistive feedback differential amplifiers
(where the classical three opamp structure is included)
are not suitable when low-power, low-cost and high
CMRR are simultaneously required. They need opamps
with low output impedance to drive the feedback
resistors, which implies high currents and large power
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Fig. 2. Block diagram of an Al with current feedback.

drain. They need aiso precisely matched resistors to
achieve high CMRR. This matching usually requires
laser trimmed resistors, an expensive technique not
available in a standard CMOS technology. One way to
overcome these problems is the use of current feedback
amplifiers [5)-[9], whose basic functional block diagram
is presented in Fig. 2. Analyzing the input branch of this
figure, we conclude that a high input impedance is
guaranteed by two unit gain buffers and the current in
resistor Rg is

i, =—I-;—-(v1—v2) (1)

whereas the output voltage equals
Vou = Rs : is + vref (2)

The input and output circuits behave, respectively, as
transconductance amplifier and a transresistance
amplifier. If the current in the input branch is mirrored

into the output one (i, = i, = i, =) we obtain

-(v1 - v2) + V. (3)

the usual relation for an instrumentation amplifier. But it
is important to refer, that contrary to the classical 3
opamps configuration, there is no global feedback (from
the output to the input) and that there is only one high
impedance node, which simplifies the frequency
compensation. Another advantage is that the CMRR
(and the gain as well) do not depend on any matching of
resistor values. The resistor count is also reduced saving
chip area.

B. Implementation Issues

There are different possibilities to design a current
feedback IA. Most of the reported ones are in bipolar
technology [5}-[7] and [8] used CMOS. We implemented
a CMOS variation of [6], as with this configuration only a
reduced number of stacked transistors is necessary
(improving dc behavior at low voltage power supplies)
and solely 2 transistors at input are needed (optimal for
noise reasons). Also, as PMOS transistors exhibit low
flicker noise for the same area, we chose them to the
input as shown in Fig. 3.

The circuit with no signal applied is fully balanced, so all
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Fig. 3. Simplified |A circuit.

currents are equal and v,,= 0. When a differential signal
is applied, the output currents of the transconductance
amplifier GM become unbalanced in order to maintain
the drain currents of M1 and M2 equal. In this situation, if
both transistors are well matched their gate-source
voltages are approximately equal and

. Vi—V,

Iy, =———
We can say that M1 and M2 linearized by GM replace
the input buffers —>— of Fig. 2. The transistors M7 and
M8 linearized by the voltage amplifier Av working in a
complementary (but similar) way, convert an input
current into a voltage according to

. (vout_vref)

le - Rs
Since the output current of the input circuit is mirrored by
M6-M9 and M5-M10 the output/input relation becomes

exactly equal to (3).

With the aim to reduce noise to the minimum, the IA also
incorporates circuitry to make it a bandpass filter (0.3-
150 Hz). For the low-pass filter, a capacitor Cs is
connected in parallel with Rs, which causes a pole at
1
Ju= 2n-R,-C,

The hi-pass filter action is more difficult to implement.
The use of a passive RC filter is not a good solution for
such a low cut-off frequency (0.3 Hz), so it was
implemented using another feedback loop around the
output circuit, as shown in Fig. 4. GMiiter acts as a
resistor, but offers two advantages over a real one: First,
as it is possible to make its transcondutance low, a high
equivalent resistor can be obtained (>1MQ). Second,
there is no resistive loading of the output. The zero is at
frequency

fu= GMﬁlter /(2m- Cﬁlter)

To improve the CMRR and also for low-power
consumption the input transistors were made to work
almost in moderate inversion [2]. For a good matching of
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Fig. 4. Feedback loop realizing the hi-pass filter function.

these devices both W and L are quite bigger than the
minimum feature dimension of the technology used.
Furthermore, the layout was done carefully - the input
transistors have common centroid structures, and all
interconnections were made symmetric.

Load transistors Mr1 - Mr4 are usually designed
according to the rule of thumb which states its
transcondutance should be three times lower than the
one of the input transistors so that these dominate the
noise and offset performance. For thermal noise it is
correct, but unfortunately this transcondutance ratio is
insufficient when considering flicker noise and in case
the input transistors are PMOS (note the load transistors
are NMOS). For flicker noise, the parameter Yr - noise
excess factor [10] - that normalizes the total equivalent
input noise density to the equivalent input noise density
of only one of the input transistors is:

2 2
bl o (s e,
i . FLICKER KfP g mua (W ’ L)

fim

where Kf[11] is the flicker noise coefficient. An
equivalent rule must then be:

Kfy . (W'L)Ml 4)
KfP (WL)

Mrl

Emy,
gmun

>3

Mrl

The condition (4), however is difficult to be verified if we
do not want to waste a lot of area in Mr1. Our option was
to make Yr=4 (the input and load transistors generate
the same noise). To obtain an integrated noise in the
referred bandwidth less than 1.2 uV (RMS), we end up
with relatively large transistors: (W/L)mi= (600/25) and
(W/L)Mr1= (24/200) - all dimensions are in um.

One reason why current feedback 1A are frequently
implemented in bipolar technology is the low
transcondutance gain of these devices. It is important to
guarantee sufficient loop gain in the input and output
circuits to make a good finearization of M1, M2 and M7,
M8. For the input circuit the relative error in the gain (the
ideal transcondutance gain is 1/Rg) as function of the
transcondutance of the block GM is shown in
Fig. 5 (simulation).

For the output circuit we present the relative error as
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function of the voltage gain in Av (with the ideal
transresistence gain being equal to Rs) in Fig. 6. In this,
as well as in Fig. 5, the point P represents the chosen
value, which corresponds to a total error of 0.6%.

As we have to deal with two separate amplifiers the
stability problems are somewhat relaxed. In the input
circuit no special circuitry is necessary. At the output
circuit a compensation capacitor Cc, must be added to
assure stability, because the loop gain is relatively high.
This is done inside the block Av of Fig. 3. The complete
circuit of the instrumentation amplifier is shown in Fig. 7.

ll. OTHER COMPONENTS
A. Programmable Gain Amplifier

The IA has a fixed gain of 500. Then we have an
amplifier with a programmable gain of 1, 2, 4 or 10. This
amplifier is also used as buffer with low output
impedance. As the signal level at its input is already high,
there are no problems related to noise and precision as
in the Al. We decided to use a simple configuration in
which the most important design criteria was the low
power consumption. Therefore, we designed a classical
two stage opamp with a Miller compensation scheme
and a class AB output stage as presented in Fig. 7. The
AB class output stage allows to source/sink high currents
while the biasing current is low. It is in a non-inverting
configuration and the gain is modified switching the
resistor R1 (see Fig. 1).
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Fig. 7. Instrumentation amplifier (complete schematic).

B. Auto-Calibration Signal Oscillator

There are always some gain mismatches among the 16
channels. This effect is easily corrected by software if a
common signal is injected in all channels and used as
reference to determine all gains relative to one given
channel. In EEG systems the usual test signal is a
square-wave with 10 Hz and amplitude of 50 V.

We designed a relaxation osciliator with output levels not
dependent on the power supply, whose schematic is
presented in Fig. 14. Transistors M1-M10 form a
comparator with histeresis [12] and the integration is
performed by the capacitor Ce¢ over a current
independent of the power supply value. Hence, if
S=W/L, the frequency is also stabilized and is given by
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Fig. 8. Output amplifier.
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To obtain a stable level for the test signal we switch a
reference current (with M20 and M21) into the resistor.

C. Voltage/Current Internal References

As the voltage of a battery changes widely from a full-
charge condition to the empty level, we integrated a
stabilized current and woltage sources, We use a
bootstrap type [12] with a start circuit as in Fig. 10 which
always forces the stable operating point N.
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Fig. 10. Voltage/Current reference.
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Fig. 11. Inst. Amplifier: Left - Frequency response; Right - Noise
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Fig. 12. Inst. Amplifier: Left - Inp. voltage offset (hi-pass filter disabled)
Right - Voltage offset at output (with hi-pass filter).
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Fig. 13. Output amp: Transient Resp. (Cp=4.7pF) Ch1: Vi, ; Ch2: Vout.

IV. MEASURED DATA

From Fig. 11 to Fig. 15 we show the measured data on
prototype samples. All circuits functioned properly and
inside the target values. Other important parameters are
presented in Table I.

TABLE |
MEASURED RESULTS
PARAMETER value Note
Active area 24 mm*
Power supply +4.5V
Total current 520 uA typical
Maximal error in gain 0.9 % Any gain
Total noise (inp. Ref.) { 1.4V (RS) 0.3 <BW< 150 Hz
CMRR 99 dB typical (50 Hz)
Offset (input) 0.29 mV typical (hi-filter disabled)
Offset (output) 5.7 mV typical (hi-filter enabled)
PSRR 40dB typical (low-freq)

V. CONCLUSION

We presented a monolithic analog front-end in a
standard CMOS technology drawing 0.5 mA from a
standard 9 V battery. So as to obtain high CMRR and
low noise we designed an instrumentation amplifier
based in current feedback techniques with specifications
suitable for EEG acquisition systems, namely a CMRR of
100 dB and a total input equivalent noise of only 1.4 uV.
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Fig. 14. Oscillator - Ch1: Signal at capacitor ; Ch2: Output signal Vouto

Fig. 15. Left: Reference current versus (VDD-VSS).
Right: Reference voltage versus (VDD-VSS).
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