
Proceedings of the IASTED International Conference
Applied Modelling and Simulation ·
August 12-14, 1998, Honolulu, Hawaii - USA

OBJECT-ORIENTED ALGORITHM AND MODEL MANAGEMENT

R. MLEKUS and S. SELBERHERR

Institute for Microelectronics, TU Vienna
Gusshausstr. 27-29, A-1040 Vienna, Austria

Phone +43-1-58801-3692, FAX +43-1-5059224
e-mail: mlekus@iue.tuwien.ac.at

ABSTRACT

We present a new C++ library , the ALGORITHM LIBRARY,
which provides an object-oriented approach to the man­
agement of algorithms and models. The ALGORITHM LI­
BRARY offers a class hierarchy describing arbitrary algo­
rithms, their parameters and documentation. Any pro­
gram using this library gains a byte code compiler for the
MODEL DEFINITION LANGUAGE which allows to define
algorithms and their parameters on the input deck. New
models can be defined in an object-oriented manner by in­
heriting features from prepackaged models supplied by the
program without the need to edit the source code of the pro­
gram or to link a new simulator executable. An implemen­
tation of the ALGORITHM LIBRARY in the process simu­
lator PROMIS-NT [l) is described to give an example for
the basic features of the MODEL DEFINITION LANGUAGE.

KEYWORDS

Simulators, Software Engineering, Model Design, Object­
Oriented.

INTRODUCTION

The increasing complexity of simulation tools combined
with the requirement for short development cycles for the
implementation of new models and algorithms raises a
strong demand for object-oriented development tools and
languages supporting the separation of the simulator into
modules which can be maintained without interfering other
modules.

For that reason a new library based concept was devel­
oped, which provides an object-oriented approach to the
implementation, parameterization and selection of models 1,

without any changes to the source code of the simulator.

The ALGORITHM LIBRARY is designed to support any
kind of algorithm using arbitrary user defined data struc­
tures as parameters, which are handled in their native C++

1 In this text no conceptual distinction is made between the nouns
"model" and "algorithm".

28~065 -437-

representation and are forwarded to the models using refer­
ences. It offers a set of C++ classes and methods to handle
these algorithms and parameters directly in C or C++ code
and the object-oriented MODEL DEFINITION LANGUAGE
(MDL). The MDL can be used as an interpreted language
(using a "just in time" byte code compiler) to ease the devel­
opment of new algorithms, or - by using a two pass concept
- as a compiler language to optimize the speed of simula­
tions. Therefore algorithms and data structures used in the
innermost simulation loops can be handled using the mech­
anisms of this library with almost no performance loss com­
pared in relation to traditional implementations based on
function calls.

Sets of models, appropriate parameter types, their oper­
ators and functions are packaged into dynamic link libraries
which can be loaded during run time to be extended by ad­
ditional models defined on the input deck by using MDL.
Thus binary distributions of simulators can be compiled
which are extendible by additional user defined algorithms
and models for certain purposes.

These features distinguish the ALGORITHM LIBRARY
from general purpose extension languages like TCL [2) or
specialized approaches as presented in [3), [4) or [5), where
modeling languages are introduced which are specialized
to solving PDEs on specific mesh representations and the
automatic generation of a Jacobian matrix.

BASIC STRUCTURE

Algorithms and models defined with the ALGORITHM LI­
BRARY are represented by C++ classes derived from the
base class Model or other previously defined model classes
[6). The thereby defined inheritance tree (Figure 1) is used
to classify the various model algorithms and for check­
ing the user supplied definitions on the input deck during
the initialization of the ALGORITHM LIBRARY. Model­
classes encapsulate the algorithm itself, private data values
used to evaluate the algorithm, an interface containing the
required input and output parameters, and the documenta­
tion (Figure 2).

The ALGORITHM LIBRARY provides an interface
mechanism which separates .arbitrary algorithms and/or

r----""'
I Model 1 ____ .,,/

I"-- --""'
I Grid Generator 1
....... -~----./

FIGURE 1: A SAMPLE MODEL HIERARCHY

Model:

type and parent types, instance name,
documentation
private data

Interface:

Parameter:
name, type, value, default value
documentation

Parameter:
name, type, value, default value
documentation

FIGURE 2: THE DATA STRUCTURE OF A MODEL

model instances from the rest of the simulator. These inter­
faces contain the information about the type of algorithm
to be used (requested model type), a specific instance name
for the model and all the input and output parameters which
are necessary to evaluate an algorithm of the requested type
("fat" interface concept). The actual algorithm used for a
certain model instance can be selected on the input deck of
the program, or by supplying a default type in the interface
definition. During the initialization the ALGORITHM LI­
BRARY checks whether the model instances are either equal
to or derived from the requested model type.

Parameter classes contain a reference to the value, a
name which has to be unique inside of the given interface,
and optionally documentation and default values (Figure 2).
Several types of parameters according to the standard C++
variable types are predefined. New parameter types can be
instantiated by specializing the template class Parameter
with arbitrary C++ classes describing the values. For each
of these parameters a set of operators and functions can be
specified which can be used in calculations defined on the
input deck as well as in algorithms defined in C++.

To evaluate the algorithms the parameter values are for-

-438-

warded to the model instances by reference. Therefore the
interfaces of the program and the model have to be linked
by the ALGORITHM LIBRARY in the initialization phase of
the program, so that the value references of affected param­
eters are set to equal values as shown in Figure 3. To sup­
port optimization of data structures as needed by advanced
CPU architectures these references can explicitly be set to
specified values.

,
I Interface

Variable ~
T - - . : P..u:ameter "T" - I

·• '

'" ' *'-'' ~·I;. !-;.;·- • I .. '· .. ,.
" ._

Model "TestModel" r
Interface I Parameter

~·
°'temp

"

Model "SubModel"
~

Interface I Parameter I
"TO"

.,
·~r ""· - ~h (ii.;,; .. ~·'

FIGURE 3: LINKING OF PARAMETERS

Parameters with the same name and type are linked au­
tomatically; other links can be specified in the C++ code
of the program and on the input deck using the MODEL
DEFINITION LANGUAGE. A run time type check of the
parameters ensures the software integrity of the input deck
and the program. Since default values for parameters can be
specified in the interface definition of a model, in the defi­
nition of the program interface, and on the input deck, the
actual default value of linked parameters is determined by
the source with the highest priority as depicted in Table 1.

priority source of default value
3 input deck definition
2 interface definition
1 model definition

TABLE 1: DEFAULTVALUEPRIORITIES

Different sets of algorithms and appropriate parameter
definitions can be collected in separate libraries of object
code or MDL source files. Rapid prototyping of new algo­
rithms is supported by an interpreter for the object-oriented
MDL which is used to parse model definitions on the in­
put deck of the program. Additional models can be im-

plemented and tested during the run time of the program
and added later to the model libraries by using the MDL­
compiler which translates the definitions on the input deck
into C++ code.

Program:

(

(

...
Model Manager Initialization

Interpretation of the Input Deck

Interface Definition

...
Request Model Instance

...
-

Main Loops . . .
Evaluate Model

...

)

)

(Delete Model Instance)

...
FIGURE 4: STRUCTURE OF A PROGRAM

An instance of a specific algorithm can be generated by
forwarding the model type name to the ALGORITHM LI­
BRARY or by giving an instance name for the algorithm. In
this case the actual class type is determined at run time by
parsing the input deck. To evaluate the algorithm, its class
instance is connected to an interface providing the neces­
sary parameter values.

MODEL DEFINITION LANGUAGE

The ALGORITHM LIBRARY contains an interpreter and a
compiler for the MODEL DEFINITION LANGUAGE which
allows to:

• Define the actual algoritluns (model instances) to be
used for a specific task.

• Define the parameter values for model instances and
default values for the parameters of certain types of
algorithms.

• Define new MDL algorithms by inheriting and com­
bining methods and interfaces from previously defined
ones.

• Define global parameters which can be used to ex­
change parameter values between model instances
where the author of the program didn't anticipate the
necessity for such communication.

• Request a database record, describing all available al­
goritluns, their interfaces and documentation, and the
thereby defined model hierarchy.

• Request a debug report describing the actually used
algorithms, the values and default values of parameters
for specific model instances, and a table showing how
these parameters are linked together.

MDL classes contain private and protected interface pa­
rameters, private and protected local parameters, and sub­
models defined on previously scanned MDL source files
or object libraries of compiled C++ code. The inheritance
rules for protected and local parameters are similar to the
C++ inheritance rules and support multiple inheritance of
parameters and single inheritance of the evaluation rule .

The evaluation and initialization rules of MDL classes
can contain calculations with parameters of any type. For
the predefined C++ compatible parameter types the stan­
dard C++ operators are predefined with C++ compatible
precedence rules. Operators for user defined parameter
types can be used if they are supported by the classes de­
scribing the parameter values. These calculations can be
combined with evaluations of sub-models by using condi­
tional and loop expressions and evaluations of sub-models
provided from the ALGORITHM LIBRARY.

A minimal program using the ALGORITHM LIBRARY
to evaluate a single algorithm may be structured as shown
in Figure 4:

-439-

I. The ALGORITHM LIBRARY is initialized by parsing
and analyzing the input deck.

2. The "fat" interface containing all parameters a certain
type of algorithm might need, the required model type,
and a default model type is created. Optionally the
documentation of the interface can be defined in this
place, too.

3. The model instance is requested from the ALGO­
RITHM LIBRARY and linked to the parameter inter­
face.

4. Repeat as necessary: Compute the values of the input
parameters; evaluate the model; use the resulting pa­
rameter values for further computations.

5. To release the acquired resources cleanly, the required
model instance has to be deleted after the last evalu­
ation. A shutdown function for the ALGORITHM LI­
BRARY resets the library into the initial state, so that
new definitions can be parsed independently from any
previous ones.

Steps 1-3 should take place during the initialization
phase of the program because they require the rather time
consuming parsing and interpretation of the input deck.
Once the internal data structures of the ALGORITHM LI­
BRARY are assembled, the additional time consumption
caused by the usage of the ALGORITHM LIBRARY are typ­
ically between 5-30 % depending on the complexity of the
models.

EXAMPLES

In the process simulator PROM IS-NT [1] the ALGORITHM
LIBRARY is used for the complete control of the simulation
flow. Several interfaces and parameter and model types are
implemented and prepackaged to be used in the MDL input
deck files:

• All information needed to execute a specific simula­
tion (e.g. input files, simulation time, ...) is given
to the simulator by using an initialization algorithm
which overwrites a number of predefined default val­
ues. (Figure 5)

• The process temperature progression can be specified
as a function of the actual time and the start and end
time of the simulation.

• For every impurity or stress distribution considered an
initialization function depending on the values of all
other distributions and the position values can be de­
fined which is applied after reading the distributions
from the input file.

• The coefficients aij, /i, aii, bij, Cij, di, f3iJ and ~ i of
the transport equations 1, 2 and 3 can be specified
as functions of process temperature, time and position
and all but f3iJ can be functions of all distributions.

0 = N aw. -
'°"a··· --1 + divJ· + ,..,. L...t i1 at i ,i
j=l

N

.h = L (aij • gradWj + bij · Wj · grad'¢+
j=l

(1)

CiJ · WJ)+~ (2)
N

o = L !3ij • J.f + ~i (3)
j=l

Wj denotes the dependent variables giving values of
the affected distributions and N is the number of equa­
tions. '¢ is one of the dependent variables Wj. Jj is
the current of the j-th distribution perpendicular to the
surface.

• Filter algorithms can be applied to the distributions be­
fore writing them into the result file.

-440-

Figure 5 shows an excerpt of a PROMIS-NT input
deck. The respective distributions are denominated with
their material names which is equivalent to certain values
of i and j in the equations 1 to 3. The model developer
needs no further information but the names of the required
Modelinstances (e.g. ProcessTemperature forthe al­
gorithm specifying the process temperature) and the names
of the appropriate input and output parameters. These in­
formations are documented in the manual of the specific
simulator or can be requested using MDL commands like
listModels which would provide a complete list of all
available Model classes;

CONCLUSION

With the ALGORITHM LIBRARY simulators can easily be
built in a modularized manner by specifying interfaces be­
tween distinct user definable algorithms and the simulator
kernel. As shown in the PROM IS-NT example, simulators
can be adapted to specific tasks by instantiating different
prepackaged or user defined models without coding efforts
within the simulator kernel or knowledge about the internal
data or the process flow itself.

Due to the almost negligible run time performance loss
and the great simplifications in introducing new algorithms
into simulators, the ALGORITHM LIBRARY is a valuable
tool for the developers as well as for the users of a simu­
lator. Developers gain methods to write modularized user
extensible programs whereas the users of these programs
can customize them to their own needs with the powerful
extension language MDL.

ACKNOWLEDGMENT

The authors would like to thank Siemens AG, Munich, Ger­
many for the support.

REFERENCES

[1] H. Puchner, Advanced Process Modeling for VLSI
Technology. Dissertation, Technische Universitiit
Wien, 1996.

[2] J. Ousterhout, Tel and the Tk Toolkit. Addison Wesley,
1994.

[3] D. Yergeau and R. Dutton, "Alamode: A Layered
Model Development Environment for Simulation of
Impurity Diffusion in Semiconductors," 1997. Docu­
mentation for release 97.06.18.

[4] J. Litsios, A modeling language for mixed circuit
and semiconductor device simulation. Hartung-Gorre,
1996.

II load prepackaged rndl-definitions
II from objeckt-libraries and MDL-files
set $VMODELPATH=".:$HOMElprornis-ntlrnodels";
#include "promis-defaults.mdl"
LoadObjectLibrary "promis";

II general simulator setup
NewModel PromisNT_Init DiffinitModel

evaluate {
:inputPBF
:endTime
:quantityList
:deviceinitialization
:processTemperature

"exarnple.pbf";
"15 ._min";
"Quantities";
"Deviceinit";
"RarnpUpTemp" ;

II list of quantities to be used
NewModel Quantities QuantityListModel
{

evaluate {
:quantity["B_active"] ={ { B active } } ;
:quantity['As_active")={{ As active }};
:quantity["Sxx"] ={{ Sxx }};
II code snipped . . .

II the process temperature model
NewModel

RarnpUpTemp ProcessTernperatureModel

evaluate {

} }

if (: time < 60. 0 l {
:T = 300.0 + :time * 973.0 I 60.0;
else {
:T = 1273.0;

II Setup:
II segment initialization of quantities
II coefficient table for each segment
NewModel Exarnpleinit : SegmentinitModel

evaluate {
: quantityinit ["Si" J "Siinit";
: quantityinit ["Si02" J = "Defaultinit";

: coefficients ["Si" J "SiCoeffs";
:coefficients["Si02")= "Si02Coeffs";

II specify the quantity initialization
II models for the Si Segment
NewModel Siinit : QuantityListModel

} }

evaluate {
:qList['B_active") = "B_Init";
: qList ["sxx• J

"DefaultQuantityinitModel";

-441-

II code snipped . ..

II Initialization check for neg. values
NewModel B_Init : QuantitiyinitModel {

evaluate {
if (:B_active < 0.0) {

::cout << "Error: ... ";
:result= ::false;

}

II Select Coefficient Models for Si
NewModel SiCoeffs : CoefficientinitModel
{

evaluate {

}

:alpha["B_active") ["B_active" J =alphal;
:alpha["B_active"] ["Sxx"] =alpha2;
II code snipped ...

II code snipped

NewModel alphal : Coef fModel
Instance D = DiffusionCoefficentBoron;
evaluate {

:Coeff = 1.0 I D. Coeff;
:dCoeff_dB_active = -
D.dCoeff_dB_active I pow(D.Coeff,2.);

II code snipped ...

FIGURE 5: EXAMPLE INPUT DECK FOR PROM IS-NT

[5] M. Radi, E. Leitner, E. Hollensteiner, and S. Selber­
herr, "AMIGOS: Analytical Model Interface & Gen­
eral Object-Oriented Solver," in International Confer­
ence on Simulation of Semiconductor Processes and
Devices, pp. 331-334, 1997.

[6] B. Stroustrup, The C++ Programming Language.
Addison-Wesley, 1986.

BIOGRAPHY

Robert Mlekus was born in Tulln, Austria, in 1968. He
studied electrical engineering at the Technical University of
Vienna, where he received the degree of 'Diplomingenieur'
in 1994. He joined the 'Institut filr Mikroelektronik' in De­
cember 1994, where he is currently working for his doctoral
degree. His work is focused on object-oriented techniques
for the integration of physical models into process and de­
vice simulators.

