
PARALLEL AND DISTRIBUTED OPTIMIZATION IN 
TECHNOLOGY COMPUTER AIDED DESIGN 

R. Strasser, R. Plasun and S. Selberherr 

Institute for Microelectronics, TU Vienna 
GuBhausstraBe 27-29, A-1040 Vienna, Austria 

Phone: +43/1/58801-3680, Fax: +43/1/5059224, 
e-mail: strasser@iue.tuwien.ac.at, URL: http://www.iue.tuwien.ac.at 

ABSTRACT 

We present the simulation environment SIESTA (SIMU­
LATION ENVIRONMENT FOR SEMICONDUCTOR TECH­
NOLOGY ANALYSIS) which provides facilities for time 
effective parallel distributed simulation. An optimiza­
tion framework and its components which explore these 
features are described. Due to distributed simulation, 
the overall simulation time is drastically reduced by 
SIESTA. Optimizations are performed on a hetero­
geneous cluster of UNIX workstations. A load bal­
ancing mechanism is used for effective selection of 
computation hosts. An example sketches the rigor­
ous calibration of a semiconductor device simulator 
MINIMOS(Simlinger et al. 1995). 

INTRODUCTION 

Technology CAD tools (Halama et al. 1993, 
Pichler 1997) deliver accurate and highly valuable 
predictions of the performance of semiconductor 
devices based on technological parameters. These 
tools reduce the design cycle time by substituting 
simulations for test runs in the fabrication facility. 
However, computation time limited these investiga­
tions to individual simulations with tedious human 
interaction. 

Advances in computing power and the ongoing 
progress in the development of simulation tools pro­
vide the resources that are necessary for simulations 
going beyond traditional simulations in this field. Rig­
orous optimizations with practicable time requirements 
became possible. The major reason why such exper­
iments are often not carried out is the absence of a 
mediator between simulation tools and computer re­
sources. Although at most sites plenty of workstations 
are potentially available, most of them are not used. 
Furthermore, simulations often have to be started man­
ually and simulation results are individually analyzed 
which turns out to be extremely time consuming and 
error prone. In some extreme situations the simula­
tion setup time is the time limiting factor. The frame­
work SIESTA closes this gap by providing a methodol­
ogy for efficient simulation problem formulation and by 

78 

efficiently distributing the workload on a workstation 
cluster. 

OPTIMIZATION DEMANDS 

Initial 
Parameters 

--
Request_ 

-
Optimizer 

Optimized Result Model 
-p arameters ~ 

--

Figure 1: A typical setup for an optimizer applied to 
the optimization of some system parameters of a model 

Figure 1 shows the typical setup for an optimization 
task. Such a configuration is also used for the opti­
mization of semiconductor devices and their fabrication 
processes. Several process parameters (implantation 
energy/dose, annealing time, mask dimensions) which 
determine the electrical characteristics of a semiconduc­
tor device are controlled by the optimizer and altered in 
order to find an optimum of some characteristic device 
parameter (I0 n/I0 ff, vth, gm)· In such a scenario not 
the optimization itself, but the huge amount of model 
evaluations (which themselves incorporate several calls 
to simulation tools) represents the challenge. Despite 
of the existence of high performance workstations, dis­
tributed parallel computation on a workstation cluster 
has to be exploited in order to reduce the overall com­
putation time to a practicable time scale. Nevertheless, 
system components, namely the optimizer and the sys­
tem model, must provide parallelization features. 

MODEL REPRESENTATION 

The model is an abstract vehicle which provides an eval­
uation interface between the optimizer and arbitrary 



kinds of evaluations. Parameters and their bounds 
as well as responses are defined in the model. From 
the implementation point of view it serves as the base 
class which provides the communication protocol for 
more specialized models that inherit this functionality. 
As already mentioned the model has to offer mecha­
nisms which allow for parallel (asynchronous) evalua­
tion. This means that a client of the model is able to 
request several evaluations in parallel and receives no­
tification in the event that individual results are avail­
able. Also errors and other more specific events are 
communicated to the client. To facilitate a clean data 
interface a so called request class has been established 
which is used for data exchange. This means that the 
set of input parameters is handed over to the model 
by means of the request object and the corresponding 
results are returned by the same object. 

OPTIMIZER REPRESENTATION 

Similar to the implementation of the model, an inter­
face which handles communication and data transfer 
to the optimizer exists. Using inheritance again, var­
ious implementations of optimizers can easily be inte­
grated due to a well defined optimizer interface. The 
actual optimizer is usually represented by a separated 
system process which reads data (evaluation results) 
on its standard input and writes data (such as eval­
uation request) to standard output. As mentioned 
before, the more parallelization an optimizer allows, 
the more efficient the computation resources can be 
used. Currently interfaces to a nonlinear optimizer 
with bound constraints DONLPQ (Spellucci 1996) and 
to a Levenberg-Marquart optimizer exist. The former 
is used for global nonlinear optimization of device char­
acteristics and the latter is employed for calibration ap­
plications (Grasser et al. 1998). 

PROCESS MODEL 

The components described so far form a general frame­
work for optimization. Specific models have to be de­
signed to act as a representation for real world systems 
or processes. In this sense the process model is an ab­
straction of a semiconductor device which was derived 
by a technological process with specific parameters. In 
some degenerate cases it can also just represent an ex­
isting device and its electrical behavior (as necessary for 
pure device simulation). Figure 2 depicts the compo­
nents of a process model. In addition to the components 
of the base class there is the so called Bow and a list of 
aliases. 

The flow describes a sequence of filters, each of which 
is identified by a key (gate-etch and ldd-implant 
in the example) representing a specific simulator call. 
Each filter is controlled by its controls which are used 
for simulator control. The output of each filter has to 
be compatible with the input of its successor (Wafer 

79 

Process Model l 

Parameter Definition 

Responses Definition 

Aliases Definition 

Flow T 
I Wafer 

gate-etch 
1-----~ 

Etch 

x 
I Wafer ,__ ___ _ ldd-implant 

Implantation 
Wnfer 

.T.. 

type: dry 
time: 20 sec 

dopant: boron 
energy: 25 keV 
dose: 5el2 

Figure 2: The process model represents a technological 
process and the resulting semiconductor device 

in Figure 2), which is checked by the process model. 
One can imagine a filter as a call to a simulator. How­
ever, the filter represents a general simulator interface 
and several subclasses of the base filter class fulfill the 
needs of specific classes (classified by simulator invo­
cation and input data type) of simulation tools. Ba­
sic functionality like error control, logging, data type 
checking is inherited from the base class. 

This concept of filters allows to cover a wide range 
of simulation tasks; it also serves as a good abstraction 
for actual processing steps a wafer is exposed to. 

The aliases entries map several flow controls (which 
are internal to the process model) to parameters of the 
process model, which are accessible from outside the 
process model. 

QUEUE MANAGER 

To get the work done that arises from the evaluations 
requested by the optimizer one needs to spawn several 
system jobs that perform the actual calls to the simu­
lators. If parallel evaluation is a requirement also the 
parallel execution of system jobs is necessary. Further­
more, a mechanism to distribute workload on a work­
station cluster is a must because otherwise paralleliza­
tion would not result in a decreasing elapsed time re­
quired for the computation. 

The SIESTA Queue Manager offers all these facilities. 
Its task class of objects offers the facilities to create sys­
tem processes, read their input, and receive notification 
when they terminate. To further minimize computation 
time SIESTA performs dynamic load balancing with in­
dividual weights and load limits for computation hosts. 



This mechanism leads to minimization of computation 
time and at the same time prevents hosts from being 
overloaded since the load is continuously monitored. 

The load values that are queried by SIESTA are sub­
ject to time delays due to the common definition of 
the system load of the UNIX operating system. Usu­
ally a system job is reported with a delay of up to one 
minute which inhibits simple implementations of load 
balancing. The SIESTA Queue Manager takes this into 
account by estimating the effective load. 

APPLICATION 

SIESTA has proven to be extremely powerful applied 
to the calibration of the semiconductor device simulator 
MINIMOS. Starting from traditional values for param­
eters (electron mobility, work function) of MINIMOS 
these values are altered in order to minimize the least 
square error between simulated values of device currents 
and available measurements. For the estimation of the 
time required for the calibration let us assume the fol­
lowing: Transfer curves (In/Vo) with a total number 
of operating points of N are available, the number of 
parameters to be calibrated is M, W workstations are 
available for computation, and the typical computation 
time required per operating point is one minute (which 
is a realistic value for a workstation with a 200 MHz 
Pentium Processor). The evaluation of one set of pa­
rameters requires N simulations. Optimization usually 
needs to compute gradients of responses with respect 
to the optimized parameters which results in M x N 
evaluations. Assuming that each gradient computation 
is followed by an additional evaluation the number of 
experiments per iteration is (M + 1) x N. For N = 30, 
M = 4, W = 15 and 100 iterations the resulting com­
putation times are summarized in Table 1. It shows 
that the required time can be reduced from approxi­
mately one week to one day. Furthermore, this means 
that such calibration experiments performed in a way 
as described should be part of the standard simulation 
repertoire of everyone who performs simulations. 

II local I distributed/parallel I 
time II 10 days 10 hours I 16 hours I 

Table 1: An estimation of computation times demon­
strates the potential of SIESTA's facilities for dis­
tributed parallel computing 

ARCHITECTURE AND IMPLEMENTATION 

The functionality comprised by SIESTA is provided by 
strictly separated modules. Reuse of modules for com­
pletely different applications is therefore possible and 
has proven to be effective. Examples of SIESTA mod­
ules are Gui, Queue Manager, Optimizer and the Model 
module. The modular architecture will have positive 
impact on further development and will significantly 

SQ 

improve maintainability. Based on a LISP interpreter 
(Betz 1989, VISTA 1996) with a powerful object sys­
tem, SIESTA is a highly portable system available on 
a wide range of UNIX systems. 

CONCLUSION 

An optimization framework dedicated to the modeling 
and optimization of semiconductor devices and pro­
cesses has been presented. A compact and flexible 
methodology for the specification of simulation prob­
lems has been described. The mechanisms for parallel 
and distributed simulations drastically reduce simula­
tion time which makes the framework very attractive to 
practical problems arising at industrial sites. Optimiza­
tions can be carried out within a reasonable timescale 
with a minimum effort to setup the simulations. 

REFERENCES 

Betz, D. 1989. XLISP: An Object-Oriented Lisp, Ver­
sion 2.1. Apple Peterborough, New Hampshire, USA. 

Grasser, T.; Strasser, R.; Knaipp, M.; Tsuneno, K.; 
Masuda, H., and Selberherr, S. 1998. Calibration of a 
Mobility Model for Quartermicron CMOS Devices. this 
conference. 

Halama, S.; Fasching, F.; Fischer, C.; Kosina, H.; Leit­
ner, E.; Pichler, C.; Pimingstorfer, H.; Puchner, H.; 
Rieger, G.; Schrom, G.; Simlinger, T.; Stiftinger, M.; 
Stippel, H.; Strasser, E.; Tuppa, W.; Wimmer, K., and 
Selberherr, S. 1993. The Viennese Integrated System 
for Technology CAD Applications. In Fasching, F.; Ha­
lama, S., and Selberherr, S., editors, Technology CAD 
Systems pages 197-236 Wien. Springer. 

Pichler, C. 1997. Integrated Semiconductor Technology 
Analysis. Dissertation Technische Universitat Wien. 

Simlinger, T.; Kosina, H.; Rottinger, M., and Selber­
herr, S. 1995. MINIMOS-NT: A Generic Simulator for 
Complex Semiconductor Devices. In de Graaff, H. and 
van Kranenburg, H., editors, 25th European Solid State 
Device Research Conference pages 83-86 Gif-sur-Yvette 
Cedex, France. Editions Frontieres. 

Spellucci, P. 1996. 
QP Problems via 
mented Lagrangian 

Solving General Convex 
an Exact Quadratic Aug­

with Bound Constraints. 
http://www.mathematik.th-darmstadt.de/ags/ag8/spellucci. 

VISTA 1996. VISTA Documentation 1.3-1, VLISP 
Manual. Institut fiir Mikroelektronik Technische Uni­
versitat Wien, Austria. 

ACKNOWLEDGMENT 

This work was significantly supported by the "Christian 
Doppler Forschungsgesellschaft", Vienna, Austria and 
Austria Mikro Systeme, Unterpremstatten, Austria. 




