
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 12, DECEMBER 1997 1431
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Abstract— A rigorous three-dimensional (3-D) simulation
method for photoresist exposure and development is presented
in which light scattering due to a nonplanar topography is
calculated using the Maxwell equations. The method relies on a
Fourier expansion of the electromagnetic field and extends the
two-dimensional (2-D) differential method [1], [2] to the third
dimension. The model accounts for partial coherent illumination
and considers the nonlinear bleaching reaction of the photoresist.
For the development process, the cellular-based topography
simulator of [3] has been extended. A detailed description
of the theory behind the simulation method is presented, the
computational efficiency is discussed, and simulation results
are given.

Index Terms—Nonplanar topography, photo lithography, resist
development, resist exposure, rigorous electromagnetic scattering,
three-dimensional simulation.

I. INTRODUCTION

AMONG all technologies, photolithography holds the lead-
ing position in pattern transfer in today’s semiconductor

industry. The reduction of the lithographic feature sizes toward
or even beyond the used wavelength and the increasing non-
planarity of the devices place considerable demands onto the
lithography process. A better understanding of the fundamental
physical effects governing submicrometer photolithography is
necessary for further improvements.

One critical problem arises from the electromagnetic (EM)
light scattering, caused by a nonplanar topography, which
results in specular reflections into nominally unexposed re-
gions of the photoresist. Rigorous solutions of this general
scattering problem can be classified into time-domain and
frequency-domain methods. In three dimensions representative
examples are the time-domain finite-difference method that
has been implemented on a massively parallel supercomputer
[4]–[6], and the workstation-based waveguide model [7]–[9]
that belongs to the frequency-domain methods.

Our approach corresponds to the three-dimensional (3-D)
formulation of the differential method that was originally
developed for the simulation of diffraction gratings [1] and
adapted for two-dimensional (2-D) photolithography simula-
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Fig. 1. Basic steps in photolithography simulation. Each module can be
treated independently since well-defined interfaces exist.

tion in [2]. The differential method is based on a Fourier
expansion of the EM field in the lateral coordinates and is
therefore a frequency-domain method.

This paper describes the 3-D extension of the differential
method and its implementation on a common engineering
workstation. In Section II, we give an overview of the overall
simulation model including the vector-valued aerial image
simulation and the exposure/bleaching model of the photo-
resist. In Section III, we present the 3-D formulation of the
differential method focusing on our implementation and the
numerical performance. Section IV describes the interface
to the development/etching simulator of [3], and Section V
contains some simulation results.

II. SIMULATION MODEL

The result of a photolithography simulator is the final de-
veloped resist profile. As shown in Fig. 1, the overall process
can be divided into three major phases, namely imaging,
exposure, and development [10]. Each of these steps requires
its own specific simulation approach. Fortunately, well-defined
interfaces exist between the three modules so that the involved
physical phenomena can be treated independently. In this
section, we describe the imaging part as it yields the input
to the exposure simulation and give an overview of the
exposure/bleaching model.
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A. Imaging Simulation

Our aerial image simulator is based on a vector-valued
extension [2], [11] of the scalar theory of Fourier optics
[12]. The mask pattern is thereby assumed to be laterally
periodic and the photo mask is infinitesimally thin with ideal
transitions of the transmission characteristic. To account for
partial coherent illumination or more general illumination
forms like annular and quadrupole illumination, the distributed
light source is discretized into mutually independent coherent
point sources [13]. The resulting image on top of the
wafer, due to one coherent point source, can be expressed by
a superposition of plane waves. For a numerically efficient
exposure simulation, it is necessary that all the individual
point source contributions are periodic as will be explained
in Section III. Therefore, the spacing between the individual
point sources has to be chosen in a way that the lateral
wavevector components and of the waves incident
onto the mask equal an integer multiple of the sampling
frequencies and in the Fourier domain, i.e.,

and (1)

whereby and are the mask periods. This requirement is
illustrated in the wavevector diagram of Fig. 2. Due to the
periodicity of the EM field, the individual point source terms
can be expressed by Fourier expansions

(2)

which have the physical interpretation of a superposition
of homogeneous plane waves with wavevectors

and wavenumber

The actinic wavelength is denoted by , and the
time dependence of the EM field is a time-harmonic one, i.e.,

and
with angular frequency The amplitudes
of the electric and magnetic diffraction orders and
respectively, follow from the vector-valued diffraction theory
[2], [11]

(3)

Here, stands for the Fourier coefficients of the mask
transmission function. They are computed by first triangulating
the piecewise constant transmission function and then super-
posing weighted analytical Fourier transforms of the triangular
patterns. The second term in (3) is the vector-
valued counterpart to the pupil function of the scalar diffraction
theory [12] and follows from ray tracing through the optical
system [2], [11]. is essentially a low-pass filter
(no evanescent waves can travel toward the photoresist) and
accounts for the polarization state, defocus, and higher order
aberrations terms.

Fig. 2. To account for partial coherent illumination, the light source is
discretized into mutually independent coherent point sources located inside the
illumination cone. The radiusk0NA� of the illumination cone is determined
by the wavenumberk0 = 2�=�0; the numerical apertureNA, and the partial
coherence factor�: The spacing between the individual point sources is chosen
to yield a periodic incident EM field.

The aerial image itself is the light intensity incident
on top of the photoresist and, therefore, equals the real part
of the vertical component of the Poynting vector of the EM
field. It is calculated by a weighted incoherent superposition
of the mutually independent terms and writes to

(4)

whereby the asterisk denotes complex conjugation. For a
uniform bright source, the weights are determined by
the portion of the discretization area within the
illumination cone (Fig. 2).

The Fourier coefficients of (3) are the input to the expo-
sure/bleaching simulation, whereby it is important to point
out, that the specific choice of the wavevector sampling in (1)
results in a periodic incident field. This periodicity is essential
for the efficient implementation of the differential method for
multiple coherent point sources and will be further discussed
in Section III.

B. Exposure/Bleaching Simulation

The exposure state of the photoresist is described by the
photoactive compound (PAC) Part of the incident
photons of the exposing light are absorbed by the photoresist
and destruct the PAC. Thereby, the resist’s optical properties,
e.g., the refractive index , are changed. We use Dill’s
“ABC” model1 [14] to model the exposure/bleaching process

where is the exposing light intensity. The application of
the Dill model in its original form is restricted to conventional
positive photoresists. For chemically amplified resists, the
photoactive compound generates a strong acid that has to be
thermally activated after exposure. Such post-exposure bake
steps are also applied in the case of conventional resists to
smooth out variations in the bulk image of the PAC. In our

1Originally the Dill model was proposed for vertical field propagation only
[14]. In [15] the model was extended to the general context of the macroscopic
Maxwell equations.
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application, we neglect this important processing step and use
the relatively simple Dill model, as we are mainly interested
in the impact of the EM field. However, the computation
of the exposing EM field is relevant for any photoresist
technique. Because the bleaching rate of all photoresists is
small in comparison to the optical frequency, a quasi-static
approximation can be applied, i.e.,

(5)

whereby the initial PAC distribution is homogeneous
Furthermore, we assume a steady-state field

distribution within a time step Therefore, the
EM field is time-harmonic and obeys the Maxwell equations
in the form of

(6)

The complex permittivity is related to the refractive
index by Maxwell’s law [16], , and the
exposing light intensity is given by [15]

(7)

The equation set (5)–(7) represents the simulation model for
the exposure/bleaching reaction, whereby an efficient solution
of the Maxwell equations (6) is the crucial point for the
applicability of the model. We propose the 3-D extension of
the differential method [1], [2] as it can be implemented on a
common engineering work station.

III. T HREE-DIMENSIONAL DIFFERENTIAL METHOD

The simulation domain is one period of a laterally
periodic geometry. A typical formation is shown in Fig. 3.
The vertical extension is chosen to comprise exactly the
inhomogeneous photoresist and all nonplanar layer parts. The
differential method itself can be divided into two stages.
First, the dependence of the EM field on the lateral-
and -coordinates is transformed into the frequency domain.
Thereby, the partial differential equations are mapped onto
a system of ordinary differential equations (ODE’s). Once
the boundary conditions (BC’s) are determined and the ODE
system is solved, the obtained field coefficients are transformed
back to the spatial domain.

A. Lateral Discretization

Due to the periodic nature of the incident light (2) and
the laterally periodic assumed simulation domain (Fig. 3), the
EM field inside the simulation domain can be expressed by a
Fourier expansion2

(8)

Here, it is most important to emphasize that the above ex-
pressions are valid independently of which point source

2For the sake of a compact notation we omit from now on the subscriptk

indicating the time steptk:

Fig. 3. The rectangular shaped simulation domain(a� b� h) can contain
arbitrary inhomogeneous and nonplanar regions. In the given example, the
simulation domain consists of the inhomogeneous photoresist, the nonplanar
oxide, and the nonplanar part of the nitride. Above(z < 0) and below(z >h)
multiple planar homogeneous layers form a stratified medium that can be
treated analytically.

is chosen (Section II-A). That is why we can treat, for the
moment, all incoherent contributions equivalently. The super-
script is therefore omitted.

Additionally, the inhomogeneous permittivity and its
reciprocal can be expanded in Fourier series

(9)

Insertion of (8) and (9) into (6) transforms the partial differ-
ential equations into an infinite dimensional set of coupled
ODE’s for the Fourier coefficients of the lateral field compo-
nents

(10)

with the vertical components given by

(11)

To solve this infinite dimensional ODE system numerically,
the Fourier expansions are truncated, i.e., only coefficients
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symmetrically
centered around the principal incident ray are
considered. The introduced truncation error thus is not a simple
low-pass filtering of the field due to the 2-D convolution-like
relation of the Fourier coefficients (10) and (11). An analytical
investigation of the truncation error is not straightforward,
although qualitatively it is clear that the error increases with
the inhomogeneity of the photoresist and the nonplanarity of
the wafer topography. In the special case of a homogeneous
photoresist and a planar substrate, no approximation error
occurs at all. Numerical investigations have shown that above
a certain truncation level the solution converges and additional
Fourier coefficients do not alter the result significantly. For an
isolated feature over a nonplanar geometry a typical value
for the cutoff frequency is However, our
approach is practicable for smooth geometries only, because
otherwise the number of relevant Fourier coefficients becomes
too large.

Next, we rewrite (10) using a matrix-vector notation

with

(12)

The complex-valued vector
comprises the Fourier coefficients of the lateral

field components, e.g., , and
the elements and of the system matrix
contain the Fourier coefficients of the permittivity and its
reciprocal . Each of the and vectors has dimension

due to the symmetric truncation of
the Fourier sums. Therefore the entire ODE system is of
dimension

(13)

Furthermore, the special structure of the system matrix in (12)
is worth mentioning. The derivative of thevectors is only
related to the vectors, and vice versa, which directly follow
from the Maxwell equations (6). Consideration of this property
relaxes the memory requirements and computational demands
for the numerical solution of the ODE system. As the BC’s of
the ODE system are decisive for the choice of the numerical
solution algorithm, we will discuss them next.

B. Boundary Conditions

Above and below the simulation domain we have homoge-
neous planar layers (Fig. 3). Inside one layer the EM field can
be expressed by a plane wave or Rayleigh expansion [16]. The
mathematical formulation is that of a Fourier expansion with
vertically known dependence of the coefficients (Section II-
A). Above the simulation domain we have to consider
incident and reflected waves

(14)

below only outgoing waves occur disregarding mul-
tiple planar layers

(15)

whereby stands vicariously for both EM field vectors
and The extension to the general situation of a vertically
stratified medium is straightforward [16] and therefore skipped
in this article. Matching the two Rayleigh expansions (14)
and (15) with the field representation (8) valid inside the
simulation domain, and eliminating the unknown reflected and
outgoing wave amplitudes and respectively, yield
exactly half of the BC’s at the top and at the bottom

of the simulation domain. The incident amplitudes
are of course involved in the BC’s as they excite the

EM field inside the simulation domain. They are the output of
the illumination simulation, and given by (3). This means that
we have different BC’s for each coherent point source. Using
the above introduced vector notation we find

and (16)

The two rectangular matrices and are independent of
the chosen point source, whereas the vectorcomprises the
incoming wave amplitudes and of one coherent
point source contribution (3). This means that we have trans-
formed the Maxwell equations (6) into a linear complex-valued
two-point boundary value problem (12), (16) with multiple
BC’s.

C. Vertical Discretization

We adapted the memory saving “shooting method” [17] as
it allows a very efficient treatment of the multiple right-hand
sides of the first BC in (16). The algorithm is based on the
observation that the system matrix in (12) as well as the
two boundary matrices and of (16) are independent of
the chosen point source Exploiting this situation, we first
establish a relation between the two boundary points
and This is accomplished by applying an explicit
discretization scheme to (12). The obtained recursion formula

between two adjacent mesh points
and is then successively evaluated

(17)

whereby is the number of vertical discretization points.
Combining this equation with the second BC of (16) yields

which forms together with the
first BC of (16) a linear algebraic system for the initial values

due to one excitation vector

(18)

This linear system is solved by performing an LU decom-
position, which is an extremely efficient solution method for
linear systems with multiple right-hand sides [18]. Once the
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Fig. 4. Aerial image of a 0.75�m� 0.5�m wide contact hole centered in
the middle of the 1.5�m � 1.5 �m large simulation domain.

initial values are found, the solution vector
inside the simulation domain is calculated by integrating the
ODE system (12). As the elements of correspond
to the Fourier coefficients of the EM field, they have to be
transformed back to the spatial domain. Finally, the point
source contributions are incoherently superposed to build up
the absorbed light intensity within the photoresist needed in
(7) for the exposure/bleaching model.

D. Computational Efficiency

The proposed algorithm has the big advantage that the
vertical mesh size does not influence the storage con-
sumption as the recursion matrices in (17) do not have
to be stored individually. The memory usage is therefore
only determined by the rank of the ODE system
(13) and is of order

Fig. 5. Contour plot of the PAC and developed photoresist profile over a
planar substrate. The oval contours are caused by standing waves within the
photoresist which result from substrate reflections.

Typically 30 Fourier coefficients are needed for each lateral
direction. In this case, , the ODE system
is of rank Assuming 16 bytes for a double
precision complex number, approximately 250 MB of memory
are required to store the system matrix. For a 3-D rigorous
photolithography simulation, this storage consumption is in
accordance with other frequency-domain methods, e.g., [9],
and lies dramatically below time-domain methods, e.g., [6].

For the investigation of the numerical costs, we have to
bear in mind that the Maxwell equations (6) have to be solved
for multiple time steps (Section II-B). The numerical costs for
one time step are mainly determined by the evaluation of the
recursion (17) and by the solution of (18). Both operations
are of order Hence, the total run time grows
for time steps and vertical discretization points with

, and is typically under a few hours on
a DEC-600 workstation.
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Fig. 6. Contour plot of the PAC and developed photoresist profile over a
dielectric oxide step and silicon bulk. Due to the variation in optical thickness,
the oval contours are distorted as compared to Fig. 5. Certain regions within
the photoresist are overexposed.

IV. DEVELOPMENT SIMULATION

The development of the photoresist is modeled as a surface-
controlled etching reaction [14]. We use Kim’s “R” model
to relate the final PAC distribution of the exposure/bleaching
simulation to a spatially inhomogeneous etch or development
rate [19]. This development rate is stored on a tensor product
grid because the above discussed differential method requires
a laterally uniformly spaced grid to apply the numerically
highly efficient 2-D fast fourier transform (FFT) algorithm.
For the simulation of the time evolution of the development
front, we have adapted the recently proposed cellular-based
topography simulator of [3] and [20] to read the development
rate from the tensor product grid. The basic idea behind
this surface advancement algorithm is to apply a structuring
element along the exposed surface which removes succes-
sively photoresist cells of the underlying cellular geometry
representation. Within the scope of lithography simulation, the
shape of the structuring element depends on the precalculated
development rate multiplied by the chosen time step. As the

Fig. 7. Contour plot of the PAC and developed photoresist profile over a
silicon step. The reflective silicon forces a node in the intensity distribution
along the surface of the step. Thus, the impact of the nonplanarity is more
severe than in Fig. 6.

development rate exhibits a strong dependence on the spatial
coordinates, e.g., due to standing waves or notching effects
during photoresist exposure, a sufficiently high number of cells
has to be chosen to resolve these variations.

For example, in case of standing waves, we know that the
distance between the maxima and minima of the absorbed light
intensity, and therefore, also of the development rate, is
yielding approximately 50 nm for I-line illumination
nm) and a refractive index of 1.8 for the photoresist. For an
accurate movement of the development front, this significant
distance should be resolved by 15 cells [3]. Hence a cell
density of 300 cells/m is needed. The applicability of the
advancement algorithm for this cellular geometry resolution
has been demonstrated in [3].

V. SIMULATION RESULTS

To demonstrate the capability of our approach, we simulated
contact hole printing over a planar and a stepped topography
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(Figs. 4–7). In all cases, the simulation domain was 1.5m
1.5 m 1.0 m large, and the bulk material underneath
was silicon with a refractive index of
In the nonplanar cases, the step was centered in the middle
of the simulation domain, the height was and the
slope was 45 In Fig. 6, the step material was oxide with a
refractive index of , and in Fig. 7 silicon was
used throughout.

For the imaging and exposure/bleaching simulation, 31
Fourier modes or were used to represent
the EM field consuming 250 MB memory. The number of
vertical discretization points was 100 and five time steps were
used for the bleaching reaction. The run time was about six
hours on DEC-600 workstation.

The development simulation was performed with a cell
density of 300 cells/m The memory usage was 60 MB
assuming 1 byte per cell and the run time was 30 minutes
on a DEC-600 workstation.

In Fig. 4, we show the aerial image obtained by the vector-
valued approach discussed in Section II-A. Conventional I-line
illumination with a numerical aperture of and a
partial coherence factor of was used. Nine mutually
incoherent point sources were needed to account for the
partial coherence. The point source location is shown in the
wavevector diagram of Fig. 2.

In Figs. 5–7, a contour plot of the PAC is shown in the
upper picture and the developed photoresist profile in the lower
picture. The simulation of the post-exposure bake step was
omitted because the original shape of the EM field and its
plain influence on the resist profile should be demonstrated.
The post-exposure bake can easily be accounted for by a
diffusion simulation with constant diffusion coefficient [21].
The contours are given for PAC The
exposure dose was 120 mJ/cmand the development time
was 50 s. The simulation parameters were for the Dill-model

m m
cm /mJ, and for the Kim model m/s

m/s [19, Table IV].
A comparison of the simulations exhibits a wider opening

in the developed photoresist for the stepped topographies in
Figs. 6 and 7 than for the planar substrate in Fig. 5. Hence,
the effective diameter of the contact hole depends on the
nonplanarity of the wafer topography. This dependence is
stronger for the reflective silicon than for the dielectric oxide.
The standing waves, and thus the resist profiles, are also more
conformal along the step in Fig. 7 than in Fig. 6.

Further comparisons with experiments are not presented,
as the main scope of this article is to formulate the 3-D
differential method and to demonstrate its applicability for
rigorous 3-D work station based photolithography simulation.
The intrinsic physical correctness of the differential method for
photolithographic applications has already been demonstrated
in two dimensions [2] and can therefore be taken for granted.

The fundamental tradeoff between computational demands
and accuracy can best be seen by considering the proposed
wave-vector sampling in (1). Too small periodsand in
proportion to the wavelength yield a coarse grid not suited
to describe the physical phenomena adequately. On the other

hand, as the number and of required Fourier coeffi-
cients increases proportionally to and respectively,
the method is limited by its computational requirements in
case of too large periods and The given simulations of
this crucial ratio was four, which seems to be a reasonable
compromise.

VI. CONCLUSION

The 2-D differential method was extended to the third
dimension. The 3-D formulation was presented, and it was
shown that the approach is extremely efficient to account
for partial coherent illumination. The method was imple-
mented on a common engineering workstation and embedded
in the exposure/bleaching part of an overall photolithography
simulation program. The interface to the two other parts,
namely the vector-valued aerial image calculation and the
development/etching simulator, was described. The capability
of the approach was demonstrated by showing simulation
results of contact hole printing over a planar and nonplanar
topography.
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