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Influence of the doping element on the electron mobility in n-silicon
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We present a theoretical approach to study the dependence of the electron mobility on the dopant
species inn-doped silicon under low electric fields. The electron charge distribution of the
impurities is calculated by the Thomas—Fermi theory using the energy functional formulation.
lonized impurity scattering has been treated within the Born approximation. Our model accounts for
degenerate statistics, dispersive screening and pair scattering, which become important in heavily
doped semiconductors. The dielectric function is accurately approximated by a rational function. A
new expression for the second Born amplitude of a Yukawa-like charge distribution is derived,
which now depends on the atomic and electron numbers of the impurity ion. Monte Carlo
simulations including all important scattering mechanism have been performed in the doping
concentration range from 10to 16?* cm 3. The agreement with experimental data is excellent. The
results confirm the lower electron mobility in As-doped silicon in comparison to P-doped silicon.
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I. INTRODUCTION The basis of our theoretical approach is the Thomas—
Fermi (TF) theory!!? This semiclassical treatment of the
The electron mobility in silicon is an important param- atom in the energy functional formulation yields the impurity
eter for device design and analysis. Accurate mobility mod-charge density as a function of the atomic and electron num-
els are necessary for predictive simulation due to the diredver as well as a variational parameter which defines the size
dependence of the current on mobility, which is often theof the valence electron charge cloud. Knowing the charge
most desired quantity. It is well known that under low fields density we obtain analytical expressions for the differential
the mobility depends on the doping concentration and orcross section using the Born formalism up to second order to
temperature. However, it is less known that the electron moaccount for the charge sign of the impurity cerlfefThis
bility in n-type Si depends as well on the chemical nature ofapproach from first principles explains the dependence of the
the dopant atom. electron mobility on the impurity element. To our knowledge
There is no theoretical model to date which explains thehis is the first physical based model which explains the
lower mobility data for As-doped samples compared to plower electron mobility in As-doped silicon than that in P-
doped Si for impurity concentrations higher thart®ém~3,  doped silicon for concentrations higher thari®iém™2. As
The difference between the electron mobility in As- and P-all relevant quantities are calculated analytically, the compu-
doped samples monotonically increases from 6%Nat tational burden is only slightly higher than for the simple BH
=10"cm 3 up to 32% forN,=4x10?* cm 3. Ignoring model, so that this approach is well suited for device simu-
these phenomena can lead to incorrect interpretation of dédation.
vice data which strongly depend on doping concentration. || cHARGE DENSITY OF IONIZED IMPURITIES

There were several attempts in the past to explain these The total electron charge densiin units of the electron

. . . 4 .
differences by |mpur|ty-corg effects’ Ralph et aI.. Intro- . .chargee) of an unscreened impurity atom with atomic num-
duced a central-cell scattering potential determined eMPiriper 7, and electron numbeX, in a solid is given by

cally using bound state energies of donors. Later, EI-Ghanem

— |
and Ridley employed a square-well impurity core potential. ~ P1(")=Z18(r) = pe(r), (2.9
Both approaches cannot explain experimental data suffi- | 5
ciently. Bennett and Lowney made extensive studies of the NFJ pe(r)d-r. (2.2

majority and mmonty electroq mobility in 5i anq GaA§ The first term in Eq(2.1) describes the nuclear charge den-
They used phase shift analysis to calculate the ionized impu-,, =~ .~ .~ . : . )
. . . S . sity distribution concentrated in the origin, apb(r) is the

rity scattering cross sections of minority and majority elec- ; X o

tron ttering. Thev introduced different le factors in th electron charge density of the impurity ion. There are numer-
ron scattering. 1hey introduce erent scale factors %us methods to calculate the electron charge density distri-
interaction potential for majority and minority electrons. The

-k Brooks—Herrina BH i lects th bution. As we are interested in analytical solutions, we use
well-known Brooks— erringBH) approactl” negiects the o semiclassical TF model. Its basic idea is to treat the va-
chemical nature of dopant species by assuming point-lik

q tat h t bei ble t \ain the ab fence and core electrons as a degenerate Fermi gas of non-
iopant atoms, thus not being able 1o explain the above Melyicq iy spherically symmetric electron density in a posi-
tioned experimental observations.

tively charged backgrountiat zero temperature. Under this
assumption we get a local relation between the electron
dElectronic mail: kaiblinger@iue.tuwien.ac.at charge density and the Fermi energy. The total energy con-
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sists of the classical Coulomb potential energy of electronto zero, as soon as the donor level merges the conduction
electronE,_. and electron-nucleus interactios,_,,, and band. As a consequence the dielectric constant, which is a
the kinetic energyE,. Hence we define the total energy measure of the polarization of a solid in an electric field,

functional increases in value.
To our knowledge there is still no theoretical explanation
Eo=Ex+Ee_n+NEe_q, 23 for these effects, n%r any experimental studies ofpthese de-
o 533 pendencies at room temperature could be found. Considering
E(=cie aof pe(r)>=der, (24 all these uncertainties and for efficiency reasons we used the
usual background value=11.7¢, (in units of the vacuum
_ E w 43 2.5 permittivity €,) for the dielectric constant in Si. However, if
e € r ' ' further studies on the dependencies oih concentration and
2 , wavenumber show significant differences to the background
Ee_e:e_ f f Pe(N)pe(r’) d3rd3r’ (2.6  Value, itwill have a strong impact on the size parameten
2e [r=r’| case, thate is in the order of the vacuum permittivity, the
with the Bohr radiusa,, c,=(3/10)(372)?3 and a correla- Parameter will increase by an order of magnitude. Then the
tion parametei. Let influence of theg dependence of the atomic form factor de-
>t creases strongly, so that the finite size of the charge density
ph(r)= Nya” e _ 2.7 cannot sufficiently explain the differences in the mobility.
€ A7 r Thus, the physical origin of the dependence of the electron
be the electron charge density distribution. Its Fourier trans[nObIIIty on the dopant species would still remain unclear.
form
N|a2 Ill. SCATTERING POTENTIAL
Fi@)= 3 (2.8 , e :
qQ°+a The scattering potential is induced by an effective charge

is called the atomic form factor of the charge distribution. 4€NSityperr, Which can be expressed by E@-1) minus the
The variational parameter has to be determined by mini- total charge density of the host material,

m.izing Ey. Calculating t.he.first derivative of the total energy pei(1)=pi(1) = psi(r)=(Z,— Zs) 8(r) — (pL—p3).

with respect to the variational parameterand N, we get (3.2

i f : . . . . .
two equations for and Equation(3.1) ensures that, if a Si atom is placed on a lattice

_JE 9 site, the scattering potential vanishes.

da’ ' s an external charge in a solid is screened by free car-
0= (2.9 A | ch lid d by f
riers, the effective scattering potential withy=e?/ ¢ is re-
JE
0="" . (2.10 duced to
INily -7 U
=2 W(q)zpeff(Q) 0 (32
Condition (2.10 makes the chemical potential vanish for a ‘/ g°e(q) '
neutral atom. Solving Eq¢2.9) and(2.10 with respect tox Let us assum&! randomly located ionized impurities in
and a, we obtain finally silicon. With increasingVl the average distand® between
Z two impurities decreases such that scattering processes be-
7113 1- 2<N—” come important in which two or even more ions are involved
a= *' '1/3 , (2.11) simultaneously. Assuming linear superposition the Fourier
Ck 8o€ §_4 4 potential ofM impurities located at; becomes
3 N, M
U .
. (413 (37\%33\78 %(q.rl,rz,..-,rM)=%E e ', 3.3
“«=—>2 17| |5 - (212 b e

o . ___ The squared scattering potent{8l3) after averaging over a
Deriving (2.11) we assumed a spatially constant permittivity it sphere is essentially given by
e. In this way an approximation is introduced sineale-

. 2
pends on the wave number and varies between the vacuum

Per(d)

‘//5(qaRij)|2=2US

value for largeg and the static dielectric constant of the host g°e(q)
material for smallg. :

In addition, there is experimental evidence of a strong x| M+2> M) M=2 (3.4
increase ofe approaching the critical donor concentration in i aR;

n-Si.!® Even a dopant dependence has been observed NeRfth 1<i<M—1, 2<j<M andi<j. The Lindhart dielec-
the Mott transition at very low temperaturéswWe can un- tric function is gi;/en by’ '

derstand this effect quantitatively by noticing that the ioniza-
tion energy of dopants depends both on the doping concen-
tration and on the dopant species. The ionization energy goes

BZ
f(Q):lﬂL?G(&?]), (3.9
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FIG. 1. The squared effective charge in momentum spZeeF (6)]? of P FIG. 2. An even stronger increase of the effective charge is obtained for As
with the atomic numbeZ and the atomic form factd¥ is shown using Eqs.  due to the higher atomic number. Again, E(@58) and(2.11) is used for the
(2.9 and (2.11). Note, that with increasing kinetic electron energies and atomic form factorF with the variational parameter.
scattering anglegt higher dopingone obtains values well above un{®H
limit).
concentration we can s®—», G(¢,7)~G(0,7)=1, and
F(g)~F(0)=N so that(3.8) reduces to the well-known BH
where the inverse Thomas—Fermi screening length for aﬁesult. .
uncompensated semiconductor is defined by The momentgm-dependent form fE'lCtOI’ .stron.gly mflu-
ences the scattering strength of the ionized impurity. Figure
_ 1 shows the factor of3.4/(Z—F(#6))? for P for different
2_ e’ 7 udn) (3.6) energies. Only in the forward directidh becomes equal to
ekgT Ty m) ' the number of electron®@H limit). Yet, with increasing dop-
ing concentration and carrier energy the angle dependence of
kgT is the thermal energy anad the free carrier concentra- the atomic form factor becomes important. A similar effect is
tion..7; denotes the Fermi integral of ordgrand 7 is the ~ shown in Fig. 2 for As with an even stronger angle depen-
reduced Fermi energy. The screening function dence of the form factor explaining the lower electron mo-
bility for As-doped Si compared to P-doped samples.

G(&nm)=— : F . 7 In X+§|dx, IV. SCATTERING RATE
Tl m) gm Jo L+expx®—m) " |x—¢|
(3.7 With a given scattering amplitudg(q) the differential
, %2q2 Er—Ec scattering cross sectianis defined a¥
C ket 7T KeT 2h3

U(Q)Zm”(QNZP(E)- (4.1
represents the dielectric response of the conduction electrons 9
to an external potential. Equation(4.1) is valid for arbitrary density of states and
In principle, Eq.(3.4) can be calculated, if one has an group velocityv,. Considering low field electron transport
information of all distances;;=r;—r; between two arbi- only we can assume a nonparabolic dispersion,
trary impurities. Note, that to first order only the average
distanceR between neighboring impurities has to be known.
Having no information about thig;; and noting that the con-
tributions of higher order decrease wlﬂﬁl, we consider in
our further discussion only the cagé=2. Using Eq.(3.5  with a nonparabolicity factof. Thusp can be expressed by
we finally obtain for Eq(3.4)

2k2
E(1+6E)= 5 (4.2

m* 3/2

)
p(E)= 75~ VE(L+ 5E)(1+20E). 4.3

(Z)—Zg)—(Fi— Fsi))z( sin(qR)

0°+B°G(&,7) qrR /)’
(3.9

| 74(q,R)[?=2U3
Using the total cross section

27 (2K
whereZ; and F; denote the atomic number and the form  owl(K) =17z f a(q)qdq, (4.4
factor of Si. Note, if dopant and host atom are identical, there 0
is no perturbation, so that E¢3.8) vanishes. At low doping the total scattering rate is given by
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MK)=Npv oK), (4.5 As a consistent derivation of the second Born amplitude in-

. ) . . . ~ cluding dispersive screening is impossible, we set the screen-
whereN,=N,/2 is the density of impurity pairs. In the first ;¢ f,nction equal to unity. For the same reason we drop the
Born approximation the scattering amplitude is related to the[wo-ion correction in the following discussion. After several
scattering potential By

transformations and tedious integratioisee, e.g., Ref. 20

2m* the second Born amplitude for a charge distributidr?) can
fea(q)= 7z #(q). (4.6 be written as
|
% [Z—F(rk—ky)][Z-F(k—kp)]
fga(k,ky,ky)==—=lim | d .
eallkale) =502 IM | O T (B2 [ kD (B [ Kol
%
= 52 [(Z=N*)2755(Q) +2N* (Z=N*).7,4(Q) + N*27 . o(q)] 4.7
|
with 1+ag?+beg?
G(fin)~l+052+d§4+e§6 (51)
7. (q)= m’ atanf/”w(q)jL%W(q) with unknownsa,b,c,d,e which have to be chosen such as
iald T(Q) T to match the screening function at zero and for infiﬁ'f’tSF.he
two-ion contribution to the scattering rate can then be ex-
= pressed in terms of sine and cosine integral functions with
—atan'/w(q)_%w(q) complex argument. Thus, numerical integration can be

T v avoided. However, even the repeated evaluation of the sine

Y@+ (@) 2 and .cosine integral functions turned out to be very time ip—
. 1+<' po Al TRV ) tensive. Therefore, we resort to an acceptance/rejection
: v scheme which does not require the scattering rate to be

+=lo ; — , -
2199 L (D)= 2,,(a) 2 known explicitly?
+ T uv The total scattering cross section in the Born approxima-

tion Eq.(4.4) is
oK) = 01(K) + o (K). (5.2

Tl ) = K0P+ a2+ V) 2= 202 A= ),
Lk =K@+t )2, T =ur(u+v), (48

:V_ To first order,o; is essentially the integral of E¢3.8) over
N* = N Vo= m*e the solid angle. The correctionm, is obtained by expanding
1—(B%a?)’ 'O 2mhle the second Born amplitude E@#.9) in powers of
For a—, we obtain the well-known result for a point-like A(q)+kq
nucleus of charg&,— N, Ref. 19: z(q)= A —Kq' (5.3
2 _ .
f,(q)= Vot~ Ny atan P, L log A(@) +kg ' Retaining only the zero order term we obtain
qA(q) 2A(q) 2 T A(@)—kq ()~ (K 5.4
4.9 g ~a g1 , .
A(Q)= B+ 4B7CT KA. (49 T
The validity of the Born approximation for impurity scatter- afwz— (5.5
ing in doped semiconductors has been discussed extensively A(1+4k°/B7)
in Ref. 21. with J=U0/,B.
Considering Eq(4.4) we have to construct a supremum
V. MONTE CARLO METHOD Psup holding the inequality
In the following we briefly describe the details how the a sin(qR)
ionized impurity scattering model can be implemented in a  Psud @)= [0+ B2G (£, 7)]2 gR (5.6
Monte Carlo procedure in a computationally efficient way. In
principle it is possible to analytically integrate the differen- The simple function
tial scattering cross sectidB.8) when a rational approxima-
tion is used for the screening function. An appropriate func- 28,
o 9 : pprop Psud @)= r2 572 (5.7)
tion is (9°+B7)
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1000 T ; T glected screening in case of phonon scattering as it seems to
be of little importance at finite temperaturé<® Especially
800 at high doping concentrations ionized impurity scattering is
— the dominate scattering process.
§ The Pauli exclusion principle has been included by
e 600 means of a rejection technique assuming equilibrium Fermi—
< Dirac statisticsf (k") for the final state&’. Having selected
% 400 the final state the transition is acceptediff (k') otherwise
2 rejected and treated as self-scattefihg.
200 We adopt an isotropic effective mass of* =0.32m,
and a nonparabolicity factor af=0.5 eV 1.2 As previous
- work is indicating that binary electron-electron scattering is
%7 o7 0" 0P o not significant inn-Si?"?8 it has been neglected. Figure 1

and Fig. 2 show the effective charge in momentum space as
a function of the scattering anglé for different electron
FIG. 3. The majority electron mobility vs the ionized impurity concentration energies. This prefactor of the scattering rate strongly affects
in P and As-dgped Si at 77 K. The atomic form factor becomes importanthe scattering cross section at high doping concentration,
above 16 o>, where higher scattering angles are more pronounced, so that
the g dependence of the atomic form factor cannot be ne-
glected. Only at low doping concentrations the BH model of
a constant effective charge is valid. The squared difference
betweenZz andF(6) is higher for As than for P at the same
energy because the effective charge of As ions is larger than
that in P iongFigs. 1 and 2 Hence, the electron mobility is

- _ ; . _always lower in As-doped samples than in P-doped samples.
propriateq the so-called combined technidtecan be ap Ln Fig. 3 and Fig. 4 the electron mobility is plotted versus the

plied. If aq value has to be rejected, the scattering event has' . . . : ;
to be rejected as well, and self-scattering has to be pen‘ormt—:!ygmzeOI impurity concentration at 77 and 300 K, respectively.
' ote the proposed maximum in the electron mobility at

instead. Otherwise, th lue i ted, and is th PR ) ;
nstea erwise, thg value Is accepled, and S0 18 1€ 4 po cy-3n Fig. 4, which results from the fact, that differ-

scattering event. . . - :
g ent physical effects affecting the mobility have a maximum
impact at different doping concentrations. Due to the exclu-
VI. RESULTS AND DISCUSSION sion principle the electron mobility trend to go up, whereas
We present calculated mobilities for silicon at 77 andVarious scattering processes decrease the mobility.

300 K. In addition to ionized impurity scattering which is the

main scattering process in heavily doped semiconductors, wéll. CONCLUSION

take into account acoustic intravalley scattering, six different We have shown that consideration of the spatial charge
types of phonon intervalley scattering and electron-plasmoRyis i tion of the ionized impurities can explain the dopant-
scattering following the approach of Ref. 24. We have néyenandent electron mobility in heavily dopeesilicon. Dif-
ferences in the spatial extended charge distribution result in
different effective charges of the ionized dopants. However,

Impurity Concentration [cm '3]

can be used as supremum for the scattering(daf, where
B2= B2Gin, With G, being the screening function evalu-
ated atq,,.,=2k. The scattering rate employed in the Monte
Carlo procedure is calculated from E¢p.7), and is thus
larger than the physical scattering rdte5). To find an ap-

300 T T . . . . . .
if further studies on the dielectric constant in Si show sub-
stantially smaller values than the usually used background
value, the influence of thg-dependent atomic form factor
- on the mobility decreases significantly. This, in turn, would
= As\\ p mean that the dopant-dependent electron mobility cannot be
E; 150 | explained sufficiently by the atomic form factor of the impu-
Z rity atom.
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