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Influence of the doping element on the electron mobility in n -silicon
G. Kaiblinger-Grujin,a) H. Kosina, and S. Selberherr
Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria

~Received 17 June 1997; accepted for publication 2 December 1997!

We present a theoretical approach to study the dependence of the electron mobility on the dopant
species inn-doped silicon under low electric fields. The electron charge distribution of the
impurities is calculated by the Thomas–Fermi theory using the energy functional formulation.
Ionized impurity scattering has been treated within the Born approximation. Our model accounts for
degenerate statistics, dispersive screening and pair scattering, which become important in heavily
doped semiconductors. The dielectric function is accurately approximated by a rational function. A
new expression for the second Born amplitude of a Yukawa-like charge distribution is derived,
which now depends on the atomic and electron numbers of the impurity ion. Monte Carlo
simulations including all important scattering mechanism have been performed in the doping
concentration range from 1015 to 1021 cm23. The agreement with experimental data is excellent. The
results confirm the lower electron mobility in As-doped silicon in comparison to P-doped silicon.
© 1998 American Institute of Physics.@S0021-8979~98!03406-9#
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I. INTRODUCTION

The electron mobility in silicon is an important param
eter for device design and analysis. Accurate mobility m
els are necessary for predictive simulation due to the di
dependence of the current on mobility, which is often t
most desired quantity. It is well known that under low fiel
the mobility depends on the doping concentration and
temperature. However, it is less known that the electron m
bility in n-type Si depends as well on the chemical nature
the dopant atom.

There is no theoretical model to date which explains
lower mobility data for As-doped samples compared to
doped Si for impurity concentrations higher than 1018 cm23.
The difference between the electron mobility in As- and
doped samples monotonically increases from 6% atNI

51019 cm23 up to 32% for NI5431021 cm23.1 Ignoring
these phenomena can lead to incorrect interpretation of
vice data which strongly depend on doping concentration

There were several attempts in the past to explain th
differences by impurity-core effects.2,3 Ralph et al.4 intro-
duced a central-cell scattering potential determined emp
cally using bound state energies of donors. Later, El-Ghan
and Ridley5 employed a square-well impurity core potentia
Both approaches cannot explain experimental data s
ciently. Bennett and Lowney made extensive studies of
majority and minority electron mobility in Si6–8 and GaAs.9

They used phase shift analysis to calculate the ionized im
rity scattering cross sections of minority and majority ele
tron scattering. They introduced different scale factors in
interaction potential for majority and minority electrons. T
well-known Brooks–Herring~BH! approach10 neglects the
chemical nature of dopant species by assuming point-
dopant atoms, thus not being able to explain the above m
tioned experimental observations.

a!Electronic mail: kaiblinger@iue.tuwien.ac.at
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The basis of our theoretical approach is the Thoma
Fermi ~TF! theory.11,12 This semiclassical treatment of th
atom in the energy functional formulation yields the impur
charge density as a function of the atomic and electron n
ber as well as a variational parameter which defines the
of the valence electron charge cloud. Knowing the cha
density we obtain analytical expressions for the differen
cross section using the Born formalism up to second orde
account for the charge sign of the impurity center.13 This
approach from first principles explains the dependence of
electron mobility on the impurity element. To our knowledg
this is the first physical based model which explains
lower electron mobility in As-doped silicon than that in P
doped silicon for concentrations higher than 1018 cm23. As
all relevant quantities are calculated analytically, the com
tational burden is only slightly higher than for the simple B
model, so that this approach is well suited for device sim
lation.

II. CHARGE DENSITY OF IONIZED IMPURITIES

The total electron charge density~in units of the electron
chargee! of an unscreened impurity atom with atomic num
ber ZI and electron numberNI in a solid is given by

r I~r !5ZId~r !2re
I ~r !, ~2.1!

NI5E re
I ~r !d3r . ~2.2!

The first term in Eq.~2.1! describes the nuclear charge de
sity distribution concentrated in the origin, andre

I (r ) is the
electron charge density of the impurity ion. There are num
ous methods to calculate the electron charge density di
bution. As we are interested in analytical solutions, we u
the semiclassical TF model. Its basic idea is to treat the
lence and core electrons as a degenerate Fermi gas of
uniform, spherically symmetric electron density in a po
tively charged background14 at zero temperature. Under th
assumption we get a local relation between the elect
charge density and the Fermi energy. The total energy c
6 © 1998 American Institute of Physics



on

y

n

n
i-
y

a

ity

u
s

n
in
n

a
ce
o

tion
is a
ld,

on
de-
ring
the

if

und

e
e

e-
sity
y.
ron
.

rge

ce

ar-

be-
ed
rier

3097J. Appl. Phys., Vol. 83, No. 6, 15 March 1998 Kaiblinger-Grujin, Kosina, and Selberherr
sists of the classical Coulomb potential energy of electr
electron Ee–e and electron-nucleus interactionsEe–n , and
the kinetic energyEk . Hence we define the total energ
functional

E05Ek1Ee2n1lEe2e , ~2.3!

Ek5cke
2a0E re~r !5/3d3r , ~2.4!

Ee2n52
Ze2

e E re~r !

r
d3r , ~2.5!

Ee2e5
e2

2e E E re~r !re~r 8!

ur2r 8u
d3rd3r 8 ~2.6!

with the Bohr radiusa0 , ck5(3/10)(3p2)2/3 and a correla-
tion parameterl. Let

re
I ~r !5

NIa
2

4p

e2ar

r
. ~2.7!

be the electron charge density distribution. Its Fourier tra
form

FI~q!5
NIa

2

q21a2 ~2.8!

is called the atomic form factor of the charge distributio
The variational parametera has to be determined by min
mizing E0 . Calculating the first derivative of the total energ
with respect to the variational parametera and NI we get
two equations fora andl:

05
]E

]a
, ~2.9!

05
]E

]NI
U

NI5ZI

. ~2.10!

Condition ~2.10! makes the chemical potential vanish for
neutral atom. Solving Eqs.~2.9! and~2.10! with respect tol
anda, we obtain finally

a5
ZI

1/3

ck* a0e

F122S ZI

NI
D G

F5

3
24S ZI

NI
D 1/3G , ~2.11!

ck* 5
G~4/3!

2 S 3p

4 D 2/3S 3

5D 7/3

. ~2.12!

Deriving ~2.11! we assumed a spatially constant permittiv
e. In this way an approximation is introduced sincee de-
pends on the wave number and varies between the vac
value for largeq and the static dielectric constant of the ho
material for smallq.

In addition, there is experimental evidence of a stro
increase ofe approaching the critical donor concentration
n-Si.15 Even a dopant dependence has been observed
the Mott transition at very low temperatures.16 We can un-
derstand this effect quantitatively by noticing that the ioniz
tion energy of dopants depends both on the doping con
tration and on the dopant species. The ionization energy g
-

s-

.

um
t

g

ear

-
n-
es

to zero, as soon as the donor level merges the conduc
band. As a consequence the dielectric constant, which
measure of the polarization of a solid in an electric fie
increases in value.

To our knowledge there is still no theoretical explanati
for these effects, nor any experimental studies of these
pendencies at room temperature could be found. Conside
all these uncertainties and for efficiency reasons we used
usual background valuee511.7e0 ~in units of the vacuum
permittivity e0! for the dielectric constant in Si. However,
further studies on the dependencies ofe on concentration and
wavenumber show significant differences to the backgro
value, it will have a strong impact on the size parametera. In
case, thate is in the order of the vacuum permittivity, th
parametera will increase by an order of magnitude. Then th
influence of theq dependence of the atomic form factor d
creases strongly, so that the finite size of the charge den
cannot sufficiently explain the differences in the mobilit
Thus, the physical origin of the dependence of the elect
mobility on the dopant species would still remain unclear

III. SCATTERING POTENTIAL

The scattering potential is induced by an effective cha
densityreff , which can be expressed by Eq.~2.1! minus the
total charge density of the host material,

reff~r !5r I~r !2rsi~r !5~ZI2Zsi!d~r !2~re
I 2re

si!.
~3.1!

Equation~3.1! ensures that, if a Si atom is placed on a latti
site, the scattering potential vanishes.

As an external charge in a solid is screened by free c
riers, the effective scattering potential withU05e2/e is re-
duced to

U~q!5
reff~q!U0

q2e~q!
. ~3.2!

Let us assumeM randomly located ionized impurities in
silicon. With increasingM the average distanceR between
two impurities decreases such that scattering processes
come important in which two or even more ions are involv
simultaneously. Assuming linear superposition the Fou
potential ofM impurities located atr i becomes

U~q,r1 ,r2 ,...,r M !5
reff~q!U0

q2e~q! (
j 51

M

e2 iq•r j . ~3.3!

The squared scattering potential~3.3! after averaging over a
unit sphere is essentially given by

uU~q,Ri j !u252U0
2F reff~q!

q2e~q!G
2

3S M12(
i , j

sin~qRi j !

qRi j
D M>2 ~3.4!

with 1< i<M21, 2< j <M and i , j . The Lindhart dielec-
tric function is given by17

e~q!511
b2

q2 G~j,h!, ~3.5!
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where the inverse Thomas–Fermi screening length for
uncompensated semiconductor is defined by

b25
ne2

ekBT

F 21/2~h!

F 1/2~h!
. ~3.6!

kBT is the thermal energy andn the free carrier concentra
tion. F j denotes the Fermi integral of orderj and h is the
reduced Fermi energy. The screening function17

G~j,h!5
1

F 21/2~h!

1

jAp
E

0

` x

11exp~x22h!
lnUx1j

x2jUdx,

~3.7!

j25
\2q2

8m* kBT
, h5

EF2EC

kBT

represents the dielectric response of the conduction elect
to an external potential.

In principle, Eq.~3.4! can be calculated, if one has a
information of all distancesRi j 5r i2r j between two arbi-
trary impurities. Note, that to first order only the avera
distanceR between neighboring impurities has to be know
Having no information about theRi j and noting that the con
tributions of higher order decrease withRi j

21, we consider in
our further discussion only the caseM52. Using Eq.~3.5!
we finally obtain for Eq.~3.4!

uU~q,R!u252U0
2S ~ZI2Zsi!2~FI2Fsi!

q21b2G~j,h! D 2S 11
sin~qR!

qR D ,

~3.8!

whereZsi and Fsi denote the atomic number and the for
factor of Si. Note, if dopant and host atom are identical, th
is no perturbation, so that Eq.~3.8! vanishes. At low doping

FIG. 1. The squared effective charge in momentum space@Z2F(u)#2 of P
with the atomic numberZ and the atomic form factorF is shown using Eqs.
~2.8! and ~2.11!. Note, that with increasing kinetic electron energies a
scattering angles~at higher doping! one obtains values well above unity~BH
limit !.
n

ns

.

e

concentration we can setR→`, G(j,h)'G(0,h)51, and
F(q)'F(0)5N so that~3.8! reduces to the well-known BH
result.

The momentum-dependent form factor strongly infl
ences the scattering strength of the ionized impurity. Fig
1 shows the factor of~3.4!(Z2F(u))2 for P for different
energies. Only in the forward directionF becomes equal to
the number of electrons~BH limit !. Yet, with increasing dop-
ing concentration and carrier energy the angle dependenc
the atomic form factor becomes important. A similar effect
shown in Fig. 2 for As with an even stronger angle depe
dence of the form factor explaining the lower electron m
bility for As-doped Si compared to P-doped samples.

IV. SCATTERING RATE

With a given scattering amplitudef (q) the differential
scattering cross sections is defined as18

s~q!5
p2\3

m* 2vg~k!
u f ~q!u2r~E!. ~4.1!

Equation~4.1! is valid for arbitrary density of statesr and
group velocityvg . Considering low field electron transpo
only we can assume a nonparabolic dispersion,

E~11dE!5
\2k2

2m*
~4.2!

with a nonparabolicity factord. Thusr can be expressed b

r~E!5
&m* 3/2

p2\3 AE~11dE!~112dE!. ~4.3!

Using the total cross section

s tot~k!5
2p

k2 E
0

2k

s~q!qdq, ~4.4!

the total scattering rate is given by

FIG. 2. An even stronger increase of the effective charge is obtained fo
due to the higher atomic number. Again, Eqs.~2.8! and~2.11! is used for the
atomic form factorF with the variational parametera.
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l~k!5Npvgs tot~k!, ~4.5!

whereNp5NI /2 is the density of impurity pairs. In the firs
Born approximation the scattering amplitude is related to
scattering potential by19

f B1~q!5
2m*

\2 U~q!. ~4.6!
e

r-
iv

e

In
n-
-
nc
e

As a consistent derivation of the second Born amplitude
cluding dispersive screening is impossible, we set the scre
ing function equal to unity. For the same reason we drop
two-ion correction in the following discussion. After sever
transformations and tedious integrations~see, e.g., Ref. 20!
the second Born amplitude for a charge distribution~2.7! can
be written as
f B2~k,k1 ,k2!5
V0

2

2p2 lim
e→0

E dk
@Z2F~k2k1!#@Z2F~k2k2!#

~k22k22 i e!~b21uk2k1u2!~b21uk2k2u2!

5
V0

2

2p2 @~Z2N* !2I bb~q!12N* ~Z2N* !I ab~q!1N* 2I aa~q!# ~4.7!
s

ex-
ith
be

sine
in-
tion
be

a-

m

with

I mn~q!5
p2

Rmn~q! F atan
S mn~q!1Rmn~q!

T mn

2atan
S mn~q!2Rmn~q!

T mn

1
i

2
log

11S S mn~q!1Rmn~q!

T mn
D 2

11S S mn~q!2Rmn~q!

T mn
D 2G ,

Rmn~q!5Ak2~q21m21n2!22m2n2~4k22q2!,

S mn~q!5k@q21~m1n!2#, T mn5mn~m1n!, ~4.8!

N* 5
N

12~b2/a2!
, V05

m* e2

2p\2e
.

For a→`, we obtain the well-known result for a point-lik
nucleus of chargeZI2NI Ref. 19:

f 2~q!5
V0

2~ZI2NI !

qA~q! Fatan
bq

2A~q!
1

i

2
log

A~q!1kq

A~q!2kqG ,
A~q!5Ab414b2k21k2q2.

~4.9!

The validity of the Born approximation for impurity scatte
ing in doped semiconductors has been discussed extens
in Ref. 21.

V. MONTE CARLO METHOD

In the following we briefly describe the details how th
ionized impurity scattering model can be implemented in
Monte Carlo procedure in a computationally efficient way.
principle it is possible to analytically integrate the differe
tial scattering cross section~3.8! when a rational approxima
tion is used for the screening function. An appropriate fu
tion is
ely

a

-

G~j,h!'
11aj21bj4

11cj21dj41ej6 ~5.1!

with unknownsa,b,c,d,e which have to be chosen such a
to match the screening function at zero and for infinity.22 The
two-ion contribution to the scattering rate can then be
pressed in terms of sine and cosine integral functions w
complex argument. Thus, numerical integration can
avoided. However, even the repeated evaluation of the
and cosine integral functions turned out to be very time
tensive. Therefore, we resort to an acceptance/rejec
scheme which does not require the scattering rate to
known explicitly.23

The total scattering cross section in the Born approxim
tion Eq. ~4.4! is

s tot~k!5s1~k!1sc~k!. ~5.2!

To first order,s1 is essentially the integral of Eq.~3.8! over
the solid angle. The correctionsc is obtained by expanding
the second Born amplitude Eq.~4.9! in powers of

z~q!5
A~q!1kq

A~q!2kq
. ~5.3!

Retaining only the zero order term we obtain

sc~k!'ac~k!s1~k!, ~5.4!

ac5
Ū~41Ū !

4~114k2/b2!
~5.5!

with Ū5U0 /b.
Considering Eq.~4.4! we have to construct a supremu

psup holding the inequality

psup~q!>
ac

@q21bs
2G~j,h!#2 S 11

sin~qR!

qR D . ~5.6!

The simple function

psup~q!5
2ac

~q21b1
2!2 ~5.7!
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can be used as supremum for the scattering rate~4.5!, where
b1

25bs
2Gmin , with Gmin being the screening function evalu

ated atqmax52k. The scattering rate employed in the Mon
Carlo procedure is calculated from Eq.~5.7!, and is thus
larger than the physical scattering rate~4.5!. To find an ap-
propriateq the so-called combined technique23 can be ap-
plied. If a q value has to be rejected, the scattering event
to be rejected as well, and self-scattering has to be perfor
instead. Otherwise, theq value is accepted, and so is th
scattering event.

VI. RESULTS AND DISCUSSION

We present calculated mobilities for silicon at 77 a
300 K. In addition to ionized impurity scattering which is th
main scattering process in heavily doped semiconductors
take into account acoustic intravalley scattering, six differ
types of phonon intervalley scattering and electron-plasm
scattering following the approach of Ref. 24. We have

FIG. 3. The majority electron mobility vs the ionized impurity concentrati
in P and As-doped Si at 77 K. The atomic form factor becomes impor
above 1018 cm23.

FIG. 4. The majority electron mobility vs the ionized impurity concentrati
in P- and As-doped Si at 300 K. Simulation: solid lines; experimental d
from Ref. 1: open circles~As; filled squares~P!. Note the proposed maxi
mum at 1020 cm23 caused by different contributions to the total electr
mobility.
s
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glected screening in case of phonon scattering as it seem
be of little importance at finite temperatures.25,26 Especially
at high doping concentrations ionized impurity scattering
the dominate scattering process.

The Pauli exclusion principle has been included
means of a rejection technique assuming equilibrium Ferm
Dirac statisticsf (k8) for the final statesk8. Having selected
the final state the transition is accepted ifr . f (k8) otherwise
rejected and treated as self-scattering.23

We adopt an isotropic effective mass ofm* 50.32m0

and a nonparabolicity factor ofd50.5 eV21.23 As previous
work is indicating that binary electron-electron scattering
not significant inn-Si,27,28 it has been neglected. Figure
and Fig. 2 show the effective charge in momentum spac
a function of the scattering angleu for different electron
energies. This prefactor of the scattering rate strongly affe
the scattering cross section at high doping concentrat
where higher scattering angles are more pronounced, so
the q dependence of the atomic form factor cannot be
glected. Only at low doping concentrations the BH model
a constant effective charge is valid. The squared differe
betweenZ andF(u) is higher for As than for P at the sam
energy because the effective charge of As ions is larger t
that in P ions~Figs. 1 and 2!. Hence, the electron mobility is
always lower in As-doped samples than in P-doped samp
In Fig. 3 and Fig. 4 the electron mobility is plotted versus t
ionized impurity concentration at 77 and 300 K, respective
Note the proposed maximum in the electron mobility
1020 cm23 in Fig. 4, which results from the fact, that differ
ent physical effects affecting the mobility have a maximu
impact at different doping concentrations. Due to the exc
sion principle the electron mobility trend to go up, where
various scattering processes decrease the mobility.

VII. CONCLUSION

We have shown that consideration of the spatial cha
distribution of the ionized impurities can explain the dopa
dependent electron mobility in heavily dopedn-silicon. Dif-
ferences in the spatial extended charge distribution resu
different effective charges of the ionized dopants. Howev
if further studies on the dielectric constant in Si show su
stantially smaller values than the usually used backgro
value, the influence of theq-dependent atomic form facto
on the mobility decreases significantly. This, in turn, wou
mean that the dopant-dependent electron mobility canno
explained sufficiently by the atomic form factor of the imp
rity atom.

1G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electron DevicesED-
30, 764 ~1983!.

2O. Daga and W. Khokle, J. Phys. C5, 3473~1972!.
3P. Csavinsky, J. Phys. Soc. Jpn.16, 1865~1961!.
4H. Ralph, G. Simpson, and R. Elliot, Phys. Rev.11, 2948~1975!.
5H. El-Ghanem and B. Ridley, J. Phys. C13, 2041~1980!.
6H. Bennett, Solid-State Electron.26, 1157~1983!.
7H. Bennett and J. Lowney, J. Appl. Phys.71, 2285~1992!.
8H. Bennett and J. Lowney, inWorkshop on Numerical Modeling of Pro
cesses and Devices for Integrated Circuits NUPAD IV~IEEE, Seattle,
1992!, pp. 123–128.

9J. Lowney and H. Bennett, J. Appl. Phys.69, 7102~1991!.
10H. Brooks, Phys. Rev.83, 879 ~1951!.

t

a



r

3101J. Appl. Phys., Vol. 83, No. 6, 15 March 1998 Kaiblinger-Grujin, Kosina, and Selberherr
11E. Fermi, Rend. Accad. Naz. Lincei6, 602 ~1927!.
12L. Thomas, Proc. Cambridge Philos. Soc.23, 542 ~1927!.
13R. Dalitz, Proc. R. Soc. London, Ser. A206, 509 ~1951!.
14L. Scarfone, J. Phys. C8, 5585~1996!.
15H. Hess and K. DeConde, Phys. Rev. B25, 5578~1982!.
16T. Castner and N. Lee, Phys. Rev. Lett.34, 1627~1975!.
17D. Ferry,Semiconductors~Macmillan, New York, 1991!.
18A. Messiah,Quantenmechanik, Bd. 2~deGruyter, Berlin, 1990!.
19C. Joachain,Quantum Collision Theory~North-Holland, Amsterdam,

1975!.
20R. Lewis, Jr., Phys. Rev.102, 537 ~1956!.
21J. Meyer and F. Bartoli, Phys. Rev. B23, 5413~1981!.
22H. Kosina and G. Kaiblinger-Grujin, Solid-State Electron.~in print!.
23C. Jacoboni and P. Lugli,The Monte Carlo Method for Semiconducto

Device Simulation~Springer, New York, 1989!.
24M. Fischetti, Phys. Rev. B44, 5527~1991!.
25B. Ridley, Quantum Processes in Semiconductors~Clarendon, Oxford,

1993!.
26P. A. B. A. Sanborn and G. Mahan, Phys. Rev. B46, 15123~1992!.
27J. Meyer and F. Bartoli, Phys. Rev. B36, 5989~1987!.
28B. Sernelius, Phys. Rev. B41, 3060~1990!.


