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Abstract—The Brooks—Herring approach to ionized-impurity scattering overestimates the low-field
mobility of electrons in doped semiconductors. It relies on a static single-site description of the carrier-
impurity interaction and on the first Born approximation. We present a consistent ionized-impurity
scattering model which accounts for degenerate statistics, dispersive screening and two-ion scattering,
The dielectric function is accurately approximated by a rational function. From the Schwinger scatter-
ing amplitude a correction to the first Born amplitude is derived. Plasmon scattering as another concen-
tration dependent mechanism is included. Despite the various physical effects taken into consideration
the scattering model can be used in Monte Carlo transport calculations without any significant increase
in computation time. Monte Carlo calculations of majority electron mobility in silicon are discussed,
and good agreement with experimental data is found in the doping range [10"* 10®)em™. © 1998
Published by Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

In modern semiconductor devices the carrier mobili-
ties are often reduced considerably because of high
doping concentrations. To predict the electrical
characteristics of such devices by means of Monte
Carlo simulation accurate models for scattering
from charged impurities are needed.

Comprehensive theoretical investigations on the
low-field mobility in heavily doped silicon were
published by Kay and Tangl], Bennett and
Lowney[2], and Sanborn and Allen[3]. These
authors resort to accurate scattering cross sections
derived from phase-shift analysis. Fischetti[4] devel-
oped a scattering model showing good agreement
with experimental data. He stressed the importance
of electron scattering by plasmons at high doping
concentrations.

In this work we aim at the development of an
ionized-impurity scattering model of a complexity
which balances physical rigor and computational
efficiency when being employed in a Monte Carlo
procedure. As a result of this requirement we pur-
sue a model based on the Born approximation,
instead of one based on the more demanding phase-
shift method. The simplest model is that of Brooks
and Herring[5] which, however, predicts too high
mobilities compared to empirical data. The review
of Chattopadhyay and Queisser[6] reports various
causes for the failure of the Brooks—Herring theory,
for example, that screening is overestimated and
that multiple scattering is ignored completely. We
present a model which attempts to overcome some
of the shortcomings of the Brooks—Herring model.
The new model includes a pair-scattering correction,
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an accurate approximation of the dielectric func-
tion, and a second Born correction. A detailed dis-
cussion on the validity of these extensions will be
given.

2. SCATTERING POTENTIAL

We consider a semiconductor with randomly
located impurity centers of concentration Ny. As N,
increases, the average distance between two impuri-
ties decreases such that scattering processes become
important in which two or more ions are involved
simultaneously. To include multi-potential scatter-
ing to the first order, we let pairs of impurities act
as scattering centers. The applied potential is given
by:

Vo(r) =

Ze (1 + 1 )
dnepe, \Jr|  Ir—R|/’
The charge state of the impurity center is denoted
by Z, the distance between the centers by R, and ¢,
is the relative dielectric permittivity of the semicon-
ductor. As the free electrons will respond to the
applied potential a self-consistent potential will
form. In the linear response regime it is convenient
to work with the Fourier components of (1)

Volw) = —S5 (1 +oxp(—iaR) ()
=— exp(—i
olq EOErqz p(—iq

Then the total potential can be expressed by means
of the dielectric function €(q, w).

Vi
Vig) = e(:])(‘(l)))

(3)
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The frequency equals zero since the applied poten-
tial (1) is time-independent. Considering only low
order screening effects one can resort to the
Lindhard dielectric function.
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Here, f, represents the inverse Thomas-Fermi

screening length, F; denotes the Fermi integral of
order j, and 7 is the reduced Fermi energy. For the
screening function G an integral representation
exists which cannot be evaluated analytically[7].
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To normalize the screening function to unity for
vanishing ¢ (G(0, ) = 1) we chose a prefactor of 1/
F_12(n) in (6) instead of 1/F,,5(n) as, for instance,
in[7]. Figure 1 shows the screening function for the
non-degenerate case and for 5 = 5.

In the following the absolute value of V,(q)* will
be needed. After taking an average of the term
[1 + exp(—igR)? over the solid angle one obtains:

N Ze 2 sin(gR)
~2(€0€rq2€(‘170)) (H gR ) @

Further, an average value for the distance between
the ions has to be chosen. Following Ridley[8] we
set R = (2aNy) ™"

Pair-scattering models were used widely to
describe dipole scattering in compensated semicon-
ductors[9-12]. In this work we deal with un-com-
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Fig. 1. Screening function for the non-degenerate case

(MB) and the degenerate case for Ep=S5kT. Solid lines:
exact, dashed lines: rational approximation.
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pensated silicon in which no pair formation process
caused by Coulombic attraction will occur. It can
be argued that if in the presence of only one dopant
type pair-scattering plays a role, i.e. if the dopant
atoms are not diluted, then also multi-impurity
scattering will matter. Meyer and Bartoli[13] criti-
cally remarked that in such a case the two-ion ap-
proximation will be unsuitable for obtaining
quantitative mobility corrections. As a result of a
lack of reliable results from a more general theory
against which this argument can be verified we
think it is worth attempting to use a pair-correction
to include some of the effects of coherent multi-ion
scattering, which would be ignored fully otherwise.

3. SCATTERING RATE

In silicon the lowest conduction-band valleys are
strongly anisotropic giving rise to an anisotropicity
of the total scattering rate, A = A(k). When dealing
with carrier transport in silicon and other indirect
semiconductors one commonly applies the Herring—
Vogt transformation (see e.g.[14]) which transforms
ellipsoidal energy surfaces in k-space to spheres in
the transformed k*-space. One can easily show that
this transformation will not remove the anisotropi-
city of the scattering rate, and it holds 1 = A(k*).
Even if the mass is anisotropic one usually resorts
to an ionized-impurity scattering rate which was de-
rived under the assumption of an isotropic mass,
the value of which is given by the density-of-states
mass of the anisotropic valley. This procedure yields
an isotropic scattering rate, A(k), which represents
some average over the solid angle of k of the aniso-
tropic rate, A(k). It is believed that the error intro-
duced by this approximation is not significant.
Therefore, and for the sake of conciseness, the fol-
lowing formalism for ionized-impurity scattering is
derived as if the bands were isotropic.

With a given scattering amplitude f{g) the differ-
ential scattering cross section ¢ is defined as[15]:

(27r )
mTvg(k)

This expression is valid for general density of states,
p(E), and electron group velocity, vy(k). Using the
total scattering cross section, ¢,,, and the transport
cross section, a,,, which are defined as:

a(g) = | A p(E). ®)

2k
2n
(k) = J(q)q dg, ©
]
2k
om(k) = J o)’ da. (10)

0

the total scattering rate A and the momentum relax-
ation time 1, can be obtained.
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#k) = Npvg(K)aoi(k) an

11 (k) = Npvg(k)om(k) (12)

It is to note that the density of the pair scattering
potentials (1) is half the density of the impurity cen-
ters, N, =N,/2.

A crucial assumption is now to use the first Born
approximation of the scattering amplitude

1
R)=fi(@) = =2~ U@). (13)

where U(g) = — eV{@)2 m*/i*. A discussion of this
assumption follows in Section 3.2.

Combining the equations presented so far the
scattering rate (11) can be expressed as:

)

) 1 sin(qR))
(k) = Clk 1+ dg,
HE) UJW+%G@W( R )1
(14)
with
N, Z%e4
- e 15
c® 2nh (€oer ) vg(k) -

Note that in the limit R — 0 equally charged pairs
of impurities scatter up to twice as effectively as
independent monopoles[13].

The two-ion case can be considered as the highest
order of multi-ion scattering that can be treated by
analytical methods. For the sake of computational
efficiency of our model higher order terms of the
coherent multi-potential interference are neglected.

The Brooks-Herring model can be recovered
from (14) firstly by neglecting the two-ion term
(R — o0), and secondly by assuming momentum-
independent  screening by  including  only
G(0, n) = 1 instead of the full screening function.

3.1. Screening Function

In practical applications the direct use of the
screening functioa (6) in a Monte Carlo procedwie
will take too much computation time because or the
required numerical integration.

In this work we construct a rational approxi-
mation of G, which, on the one hand, is sufficiently
accurate for the considered transport problem, and,
on the other hand, is efficiently to compute. Taylor
series expansions of (6) at zero and infinity yield:

1+ f1E +£E +AE8+0E) -0

G, n) = z < _ "
CM= g gt + g+ O™ Eoo
(16)
The expansion coefficients are:
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For the evaluation of the Fermi integrals see[l6].
We choose a rational approximation of the form:

1+ a&® + bt
1+ & +d&* 4 8

G, n) = (19)
The difference between the degrees of the denomi-
nator and the numerator must be 2 to let G and G
have the same asymptotic behavior (G(&)oc &72,
Comparing both the Taylor series expansions of
G and G yields a linear equation system for the
unknowns (a, b, ¢, d, €). As we consider two Taylor
series, one at zero and one at infinity, we have
some freedom in chosing the powers to match. Let
E, denote the linear equation which has to be
solved to match the power £". Matching the powers
& and &% give two simple equations, namely
a=c+ fiand b = g, e, respectively. These can be
used for substitution to reduce the rank of the final
equation system from 5 to 3. For the remaining
unknowns the following equations are found.

Es=fic+d—gie+ =0
Ec=fic+fid+e+f3=0
Es=——c+gd+ge—-fi =0
Eo=gic+gd+ge—1=0

(20

These are four linear equations for three unknows.
A stable approximation was obtained when also the
the powers &* and ¢~ were matched exactly by sol-
ving E4=0 and E_,=0. Finally, since not both Eg
and E_4 can be solved simultaneously, we solved a
linear combination of them.

uEg + E_g =0 Q1)

We varied the parameter u at different Fermi levels
n and found some optimum where the maximum
relative error of the screening function has a mini-
mum. The p-dependence of the optimum u can
roughly be approximated by o, =7.2 (1 + 1077),

Figure 1 compares the exact screening function
(6) evaluated by numerical integration and the
rational approximation. The approximation is fairly
good for the non-degenerate case (MB) and for
weak degeneracy, and deteriorates slightly for
higher degeneracy (FD, » = 5). It should be noted
that the vast majority of scattering events have ¢-
values smaller or even much smaller than one. This
means that a slightly inaccurate approximation of F
for £>1 will have virtually no_ impact on the calcu-
lated mobility.

3.2. Second born correction

To discuss the validity of the first Born approxi-
mation (BA) we follow the work of Meyer and
Bartoli[17] who introduce the dimensionless vari-
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ables y and F. With a wave number U, defined as:

(22)

2m* Ze?
Yo = ﬁ‘z ' 4nene,

y and F can be written as:

_ 1ol v=—£
:Bs T Uo

For electrons in silicon (¢, =12, m*,=0.32 my) we
obtain Upy=1nm~'. A sufficient criterion for the
first BA to be valid is |[v]> 1, that is, k>|Ug| or
E>120 meV. As this criterion does not give any in-
formation on the vast majority of thermally distrib-
uted electrons we consider the criterion |F |<1
which is also applicable at small energies. IFl<1
implies fs>|Up|. In silicon at room temperature 8,
exceeds a value of |Ug| = 1 nm™" at doping concen-
trations higher than 2.2 x 10" ecm™, i.e. the first BA
performs better at doping concentrations above this
value than below. At such high doping concen-
trations the strength of the scattering potential,
characterized by F, is effectively reduced due to
screening. Note, that the discrepancy between the
Brooks-Herring model and the measured mobility is
large especially in the upper concentration range
(Fig. 2) where the first BA should start to become
valid. Therefore, we suppose that the discrepancy
observed for N;>10"" em™ cannot be eliminated
only by removing the first BA, e.g. by doing phase
shift analysis for a screened Coulomb potential.
Instead, other physical effects being dominant in
this region need to be identified.

In this work we used the Schwinger scattering
amplitude(18] to derive a correction to the first
Born scattering amplitude. Ebden and
Darewych[19] have shown that cross sections calcu-
lated in the plane-wave Schwinger approximation
are always in closer agreement with the exact cross
section than the second BA. The considered poten-

F (23)
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Fig. 2. Electron mobility including momentum-dependent

screening in comparison with the Brooks-Herring model

(G(&, n)=1) and empirical mobility data after Masetti
et.al. (Si, 300 K).
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tials were of Yukawa and Gaussian type. They also
identified a particular strength of the potential
(F =3 in our nomenclature, or ;=2 x 10" cm™)
for which one bound state exists, and for which the
first BA is closer to the exact cross section than the
Schwinger or the second BA.

We performed a Taylor series expansion of the
differential cross section with respect to the variable
z= kq(ﬂ: + 4ﬁszk2 +k*¢*)™"? and retained only the
zero order term which is independent of z and
hence of g. If og; denotes the differential scattering
cross section in the first BA, the lowest order cor-
rection can be written as:

Aa(g) = solk)agi(g).

To be consistent with the derivation of sy(k) the
cross section o¢g; should include single-potential
scattering only and momentum-independent screen-
ing. In 24 so(k) is defined by:

a a U() (] U())
Sp =5, =—1|1-—).
’ 45> B, 4.
— a

Resulting from the g-independence of s, the correc-
tion of the scattering rate can be written simply as:

(24)

(2%

qdg

Adk) = so(k)C(k) - | —224
X ) VO( ) ( (C]2+ﬁ;)2

(26)

o—

One problem encountered when using the second
Born scattering amplitude is that its imaginary part
diverges on f,—0. This divergence problem is also
reflected in (25) since we have limg g so(k) = —1
such that the correction would fully compensate the
first Born term. For the unscreened Coulomb po-
tential it can be shown that the first BA gives the
exact scattering cross section[20]. For semiconduc-
tors this means that for very small carrier concen-
trations, that is when f,—0 or F— oo, scattering
rates calculated from the first BA will suffice.

In this work we consider majority electrons
which are attracted by the positiviey charged
donors (U >0). Meyer and Bartoli [17} computed a
correction factor H, for the first Born cross section
(BCS) and found that Hp > 1 for attractive poten-
tials. This inequality holds for all relevant carrier
energies and potential strengths. Further, for Uy >0
all higher order terms of the Born series are positive
and thus can only lead to an increase of the cross
section compared to the first BCS. Since the com-
plete Born series is a formally correct solution to
the scattering problem we can draw conclusions
about the Schwinger approximation by comparing
it with the Born series. As can be seen from (25)
the correction will become negative if F>4. From
the previous discussion we infer that in case of ma-
jorities a negative correction will be unphysical. We
hence trust the correction only for sufficiently weak
scattering potentials (F < 4 or N;> 10" cm™) and
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neglect the second Born correction for stronger po-
tentials (¥>4). In this way we also enforce the cor-
rect limit, ¢ — og;, for vanishing screening, F — oc.

3. The Friedel Sum Rule

The Friedel sum rule implies charge neutrality
stating that the screening charge must exactly cancel
the impurity charge. Using the first BA for the
phase shifts the Friedel sum rule can be rewritten as
a condition on the potential[21]

o0

12(n) [ Viryridr,

0

4ne
Z=—"—N
ksl cof-

(27
where N denotes the effective density of states of
the conduction band. The Friedel sum rule is valid
as long as the scattering centers do not interact and
the average value of the electron wavelength is
smaller than the mean distance between the cen-
ters[3.22]. In the following, therefore, we shall
restrict our discussion to the single-ion scatting po-
tential given by:

Ze 1

- 28
i g2+ BIGE, ) 2

Vig) =

Having G represented as a rational function the
scattering potential (28) will be a rational function
as well. This function can be decomposed into par-
tial fractions with respect to the variable ¢°.

Ze Z &
ot S g7 + B}

The B are obtained as roots of the denominator
polynomial of ¥V, and will in general be complex
valued. Evaluating (28) and (29) at ¢ = 0 we find
that the coefficients ¢; and the 7 obey the following
equation.

Vilg) = (29)

| 14
=S=) 3 (30)
BB
The inverse Fourier transform now yields a real-
space potential which is the sum of several screened

Coulomb potentials.

Ze Z (‘I exp(—ﬂir)

Te€r T r

Vi(r) = (31

Inserting this equation into (27) and performing the
integration gives:

e NeF_ e*NeF _12(n)
€p€y kBT Z (32)
Obviously, with f defined by (5) and the condition
(30) this equation is satisfied. It is interesting to
note that the sum rule imposes a condition on the
screening parameter f; but not on the g-dependence
of the screening function. Only the fact that
G(0, n) = 1 appears to be relevant in this regard.

Within the second BA the sum rule cannot be
simplified to (27), and an exact analysis by analyti-
cal methods is no longer possible. Patterson and
Lehoczky[23] used phase shifts derived by the
Schwinger variational principle. Assuming only s-
waves to be relevant they find a correction to the
screening length which is applicable at high doping
concentrations. For majority electrons a reduced
screening length is predicted, which also agrees with
a result of Kay and Tang[l] who report a slight
increase of the majority mobility in the upper dop-
ing range when the screening length is corrected so
as to satisfy the sum rule.

In this work we show that multi-potential scatter-
ing plays an important role at high doping concen-
trations implying that in this regime the sum rule is
no longer valid. Therefore, a screening length cor-
rection based on the sum rule seems to be not justi-
flable in the considered case, and hence we refrain
from using such a correction.

3.4. Plasmon scattering

The electron-electron interaction is usually split
into a long-range part, also termed electron-plas-
mon interaction, and a short-range part interpreted
as binary electron—electron scattering (see e.g.[14]).
From the overall electron-electron interaction only
plasmon scattering is considered in this work. In
silicon this mechanism is important at doping con-
centrations above 10'® em™[4].

The plasmon frequency modeled by wf,=e2n/
coeem™ determines the final energy after scattering:
Ey=E t+hwy. Here and in the following the upper
sign refers to absorption and the lower sign to emis-
sion of a plasmon. The final wave number k¢ is
defined as solution of the equation E(ky) =
Energy conservation restricts the possible momen-
tum transfer to an interval between ¢, and G-

Gmin = |k — kel Gmax =k + k¢ (33)

The integrated scattering rate is obtained using the
interaction Hamiltonian after Pines (see e.g.[14]).
e*h 1.1
ﬁ. k e TR N -F =
#k) 16mege m*2co, vy(k) ( (p) + 7t 2)

— k%)2 In%e

dmin

x (k* (34)
The maximum momentum that can be transferred
by plasmon interaction is fB,. Hence the cut-off
wave number in (34) is given by g.=min(gmax, Bs)-
N(wp) denotes the average number of the plasmon
excitations which is estimated by assuming equili-
brium Bose statistics.

-1
N(wp) = (exp(::) ) — l)

The electron temperature 7, in (35) strongly affects
the results of Monte Carlo transport calculations.

(35)
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At high electric fields T,, should be estimated from
the average electron energy in a self-consistent man-
ner by means of an iterative procedure. An initial
guess for T, can be obtained by switching off plas-
mon scattering and employing only the remaining
scattering processes included in the particular trans-
port model. In subsequent Monte Carlo calcu-
lations plasmon scattering is switched on and better
guesses for T, are obtained. Using simply the lattice
temperature in (35) would plasmon scattering make
relax the carrier temperature towards the lattice
temperature, and the resulting averages would be
strongly falsified, especially in the high-field region.

The necessity of a self-consistently determined
electron temperature was also discussed by
Mansour et al.[24]. They found that in the self-con-
sistent case ine resulting plasmon emission and
absorption rates are nearly equal.

4. THE MONTE CARLO METHOD

In the following we describe briefly the details
how the ionized impurity scattering model can be
implemented in a Monte Carlo procedure in a com-
putationally efficient way. In principle it is possible
to analytically integrate the differential scattering
cross section when a rational approximation is used
for the screening function. The two-ion contribution
to the scattering rate can be expressed in terms of
sine and cosine integral functions with complex
argument. Thus, numerical integration can be
avoided. However, even the repeated evaluation of
the sine- and cosine integral functions turned out to
be time consuming. Therefore, we resort to an
acceptance/rejection scheme which does not require
the scattering rate to be known explicitly.

To the integrand of (14) we construct a supre-
mum:

1 ( sin(qR)
(@ + B:G(E, n)) qR

which has a Brook-Herring type g-dependence.

)Spsup(q) (36)

Psup(q) = 37

2
@+ B’
Here, f7=p2Gumin, With Goin being the screening
function evaluated at g.x =2k. The scattering rate
employed in the Monte Carlo procedure is calcu-
lated from (37), and is thus larger than the physical
scattering rate. To find an appropriate g the so-
called combined technique[14} can be applied. If a
g-value has to be rejected, the scattering event has
to be rejected as well, and self-scattering has to be
performed instead. Otherwise, the g-value is
accepted, and so is the scattering event.

H. Kosina and G. Kaiblinger-Grujin

5. RESULTS AND DISCUSSION

The low-field mobility in uncompensated silicon
at room temperature {300 K) will be discussed in
this section. In addition to the scattering mechan-
isms presented so far the transport model comprises
acoustic intra-valley scattering and six different
types of phonon inter-valley scattering[14]. As we
restrict our discussion to low-field transport a
simple, non-parabolic band model appears suffi-
cient. We adopt an isotropic effective electron mass
of my* = 0.32my and a non-parabolicity factor of
o =05ev".

Silicon at 300K will become degenerate for
nx2x10"”cm™. Therefore, the Pauli exclusion
principle is included by means of a rejection tech-
nique(14] assuming equilibrium Fermi-Dirac stat-
istics for the final states.

The upper mobility curve in Fig. 2 based on the
Brooks-Herring model including the Pauli principle
will serve as a reference for the following discus-
sion. The agreement of this model with empirical
data[25] is poor. Disagreement can be observed for
N> 10" em™, For N;=10" and 10% cm™ the pre-
dicted mobilities are too high by a factor of 2.8 and
3.8, respectively. Obviously, there must be signifi-
cant physical effects which are not included in the
Brooks-Herring model. One of these effects is
momentum-dependent screening which affects mobi-
lity for Ny>10"® cm™ (Fig. 2). The concentration
dependence of this effect can be understood as fol-
lows. Screening is primarily a function of the trans-
ferred momentum ¢ (Fig. 1). At small electron
concentrations the distribution of the scattering
angle shows a high probability for small-angle scat-
tering. For the small g-values involved the screening
function virtually does not differ from unity, which
means that momentum-dependent screening effects
are negligible. The situation changes with higher
concentrations where the probability of scattering
events with higher g-values increases. Chung and
Ferry found that momentum-dependent screening
in InP and GaAs has only little influence on the
mobility[26]. As shown in this work, in silicon the
influence is significant (Fig. 2). The reason is that
the decay of the screening function over g is largest
for non-degenerate statistics (Fig. 1). For strong
degeneracy the screening function becomes almost
flat. Resulting from the lower Fermi level in silicon
at a given carrier concentration a much steeper
screening function applies in silicon than in the
above mentioned compound semiconductors.

Addition of the two-ion correction results in a
small mobility reduction for N¥; > 10" cm™ and in a
more pronounced reduction for N;>10'¢m™
(Fig. 3). In the upper concentration range the con-
tribution of the two-ion correction is not negligible.

The second Born correction affects electron mobi-
lity for N;>10"® em™ (Fig. 4), and its influence
decreases for very high doping concentrations. The
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Fig. 3. Electron mobility including the two-ion correction
in comparison with the Brooks-Herring model and
empirical data.

latter behavior is anticipated since the correction
(25) is proportional to Uy/f, a factor vanishing for
fs—o00. In comparison with the mobility reduction
caused by momentum-dependent screening and pair
scattering the second Born correction appears as
the weakest effect. Although for concentrations
below 10'® em™ both criteria |y|>1 and F<l are
violated the first BA reproduces the trend of the
mobility curve very well, while the second Born cor-
rection is ineffective because of the cut-off intro-
duced in Section 3.2.

Plasmon scattering reduces the mobility in an in-
termediate concentration range of about [5x 10",
5% 10" em™ (Fig. 5). For lower concentrations
plasmon momentum is too small to contribute sig-
nificantly to the momentum relaxation of the elec-
trons. For higher concentrations the plasmon
energy is high compared to the thermal energy of
the electrons such that the probability for plasmon
emission is low.

Including all effects gives a mobility curve
depicted in Fig. 6. The new model can be applied in
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Fig. 4. Electron mobility including the second Born cor-
rection in comparison with the Brooks—Herring model and
empirical data.
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Fig. 5. Evaluation of the plain Brooks—Herring model

with and without plasmon scattering in comparison with
empirical data.
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Fig. 6. Evaluation of the full model including momentum-
dependent screening, two-ion correction, second Born cor-
rection and plasmon scattering.

the doping range [10", 10°} cm™ where the agree-
ment with experimental data is much better than
that of the plain Brooks-Herring model. Only for
very high concentrations (> 10" cm™) additional
effects, which are beyond the scope of our model,
starts to become dominant. We think that in this
region the point-ion approximation breaks down.

6. CONCLUSION

An ionized impurity scattering model was devel-
oped which includes three corrections to the widely
used Brooks-Herring model. In contrast to GaAs,
momentum-dependent screening plays an important
role in silicon, especially in the upper electron con-
centration range. The screening function is approxi-
mated by a rational function. Pair scattering is
included within the first BA. From the Schwinger
scattering amplitude a simple expression for a sec-
ond Born correction is derived. All these effects are
modeled in a way which requires no time consum-
ing numerical integration or tabulation of pre-calcu-



338

H. Kosina and G. Kaiblinger-Grujin

lated functions. Plasmon scattering acts at inter-
mediate doping concentrations and must not be

neglected because of its

strong concentration-

dependent nature. The presented model is appli-
cable up to N;=10cm™ and shows very good
agreement with experimental data. The weakness of
the plain Brooks-Herring model cannot be over-
come by just adding one dominant effect but only
by adding several nearly equally important effects.
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