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SPIN — A Schrodinger-Poisson Solver Including
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Nonparabolicity effects in two-dimensional electron systems are quantitatively
analyzed. A formalism has been developed which allows to incorporate a nonparabolic
bulk dispersion relation into the Schrodinger equation. As a consequence of
nonparabolicity the wave functions depend on the in-plane momentum. Each subband
is parametrized by its energy, effective mass and a subband nonparabolicity coefficient.
The formalism is implemented in a one-dimensional Schrodinger-Poisson solver which
is applicable both to silicon inversion layers and heterostructures.
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1. INTRODUCTION

To accurately model the high-field transport in
silicon inversion layers, several authors [3, 4] have
introduced a nonparabolicity correction in the
subband dispersions. In this work we quantita-
tively analyze nonparabolicity effects in various
two-dimensional electron gases. For this purpose a
self-consistent Schrodinger-Poisson solver has
been developed, capable of dealing with silicon
inversion layers and heterostructures. For hetero-
structures, position-dependent material para-
meters are taken into account. As a result each
subband is characterized by three parameters, £,
M, o, which denote the subband energy, mass

and nonparabolicity coefficient, respectively. This
set of parameters is intended to serve as input for
high-field transport calculations.

Our approach relies on the effective-mass
approximation which is applicable if the confining
potential, ¥(z), satisfies two conditions [3]:

1. ¥(z) is slowly varying over a unit cell,
2. matrix elements of V{(z) between Bloch func-
tions of different bands are negligible.

2. SILICON INVERSION LAYERS

Within the effective-mass approximation a one-
dimensional Schrédinger equation can be derived
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from the three-dimensional one provided that the
potential only varies in one dimension.

(8(_%;@ + V(z))(,,(z;K) = E(K)G(2,K)
(1)

In this equation, ¢, denotes the envelope function,
K is the in-plane wave number, and E(K)
represents the in-plane dispersion relation. The
bulk dispersion relation, £(k), is assumed to have
ellipsoids as equi-energy surfaces, e(k) = c(K?/
my, + k2/m;). In principle, (1) can be solved
numerically for different values of K so as to
obtain a point-wise representation of E(K).
However, since the bulk dispersion is given by an
analytic function one usually is interested in
obtaining analytic subband dispersions as well.
The latter can be found by applying perturbation
theory at K=0. The kinetic energy operator is
expanded into a Taylor series, and terms up to K 4
arc retained in order to get information on the
subband nonparabolicity.

Kr 1 98?
s(m 4;@) = Ty+ TiK2+ TKY  (2)
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The unperturbed problem is defined by T, and the
terms containing the in-plane wave number are
considered as perturbation. The operators 7; are

given by:
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3. HETEROSTRUCTURES

For heterostructures we assume nonparabolic
dispersion relations for the different semiconduc-

tors. The usual implicit definition of the kinetic
energy can be generalized to a kinetic energy
operator, even when the parameters are position-
dependent.
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This equation, which is self-adjoint, can be solved
for the kinetic energy operator.

T = o 2h(Gy + G K% ? (4)
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In analogy with (2} the kinetic energy operator has
to be decomposed as follows,

I(Go+ G KD = Ty + T\K* + TK*,  (5)

where the determination of the operators T; for
heterostructures is more complicated than for
uniform material parameters since the operators
G, and G, no longer commute.

4. SUBBAND DISPERSION RELATION

The eigenvalues of (1) at K=0 are denoted by E?
and the eigenfunctions by (?(z) (n=0,1,2...). The
matrix elements of T; and T in the {0} basis are
T\ nn and T,,,, respectively. Perturbation theory
yields a polynomial representation for E, (K):

T 2
En(K)=E) + T mK* + ( Jgo‘j"‘E'O + Tz,,m) K*
m#n 1 m

(6)

This expression allows to characterize each sub-
band by an effective mass, m,, and a nonparabo-
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licity coefficient, o,, defined by

h2
= — 7
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Although (6) suggests a representation of E,(K) as
a polynomial in X it appears favorable to assume a
second-order polynomial in the energy instead.

BK?

(E~ ES)(1 +0n(E~ ED) =,

(9)

By comparison with E,(K) obtained from a
solution of (1) at discrete K-points it was found
that (9) gives an excellent approximation for E,(K)
in a wide K-range, whereas the polynomial (6) is
applicable only for sufficiently small K.

5. ELECTRON DENSITY

The electron density is given as the sum of all
position probabilities of the states |n, X) weighted
by their occupation probabilities.

n(z) =g > |Gz K)f(En(K))  (10)
n K

In (10) f denotes the Fermi-Dirac distribution
function and g, the valley degeneracy factor. The
summation over X is usually converted to an
integral by employing the two-dimensional density
of states, pap n.

My
PDA(E)Y = gv;h—z(l +2a,(E - E})) (11)

=3 fE, " 6o BB prommdE (12)

The hole density is calculated using Boltzmann
statistics. Once the carrier densities are known the
electrostatic potential is obtained by solving the
one-dimensional Poisson equation. During each

self-consistent iteration step the Schrodinger equa-
tion and the linearized Poisson equation are
solved.

6. DISCRETIZATION

The wave functions, which are assumed to vanish
at the boundaries, are represented by a Fourier
series. After truncation of the series the Schrodin-
ger equation (1) is converted into an algebraic
eigenvalue equation [1].

The linearized Poisson equation is discretized in
real space using the finite difference method. This
yields a tridiagonal equation system which can be
efficiently solved. During each iteration step the
Fast Fourier Transform is applied to transfer the
required quantities from real-space representation
to momentum representation and vice versa.

7. RESULTS AND DISCUSSION

7.1. Silicon Inversion Layer

A MOS capacitor has been simulated. The
parameters were chosen as follows: m;=0.98,
m=0.19, a=0.7eV"", t,,=7nm, N,=510'
em™, Vgp=2.5V, T=300K. A nonparabolic bulk
dispersion relation was assumed:

2y K (K Kk}
E=r——, Y= +—=.
1++/T+day 2 \my m,

(13)

In Figure 1 the Fourier coefficients of the first two
wave functions are plotted. This corresponds to a
representation of the wave functions in momen-
tum space. The number of harmonics equals
N=64. Due to nonparabolicity the motion of the
carriers normal to the interface is no longer
decoupled from the motion parallel to the inter-
face, as is the case for parabolic bands. For non-
vanishing K narrower wave functions are observed
than for K=0.
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FIGURE 1 Spectrum of the first three wave functions in a

silicon inversion layer.

7.2. InP-Based Pseudomorphic HEMT

A heterostructure after [2] has been simulated
(Tab. I). In the simulation both nonparabolic and
parabolic bulk dispersions have been considered.
When moving across this heterostructure an
electron will experience considerable variations of
the bandstructure parameters.

The subband parameters m,, and o, are plotted
in Figures 2 and 3 for 20 subbands. Strong varia-
tions of these parameters can be observed. In the
nonparabolic case, the mass increases significantly
when going from subband 3 to 4, while in turn the
nonpatabolicity coefficient decreases. This means
that the changes of m, and «, are correlated. This
behavior can be understood when considering the
wave [unctions (Fig. 4). While an electron in
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FIGURE 2 The subband masses for the InP heterostructure
for both the nonparabolic and parabolic case.
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FIGURE 3 The subband nonparabolicity coefficients for the
InP heterostructure. Although for the lower curve parabolic
bulk dispersions are assumed, the subbands are nonparabolic
due to the material inhomogeneity.

subband 3 resides preferably in the InGaAs o-14 P
channel (low mass, high «), an electron in subband o1z b n=4 ----
4 feels predominantly the material properties of  § o
the AllnAs barrier, g ’
T o008 -
2
- P i
TABLE I Parameters of l:ht:1 EInli' hfterostructure. The donor E )
layer is doped with Np=2.10"" cm § oosl i
Layer Material t mass a g
(nm) (my) @vh o0z r T
barrier  AlgaglngsAs 20 0.082 0.84 o . :
donor Alg aglng s2As 12.5 0.082 0.84 1] 10 20 30 40 &0 70 8¢
spacer Alg 4gTng 52AS 2 0.082 0.84 depth (nm)
zﬁﬁgg the In0,53ﬁ!51|)0,47As %g gg;_g,’ ég% FIGURE 4 Wavefunctions 3 and 4 in the InP heterostruc-

ture.
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