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The contribution of the Markovian component of a quantum-kinetic model to the carrier dynamics
in photoexcited semiconductors is studied for intermediate evolution times. It is shown that for
zero lattice temperature two unphysical effects arise due to an exponential damping in the memory
kernel, which results in the long-time limit in a Lorentz broadened energy delta function. A finite
carrier density is observed in the semiclassically forbidden energy region. Also the carriers with
energy below the LO phonon threshold are in mutual exchange, having a nonvanishing total out-
scattering rate. It is shown that in the inverse hyperbolic cosine damping model, which corrects the
Lorentzian to an inverse hyperbolic cosine, such effects are suppressed. The results provided by
the two models are obtained by a Monte Carlo algorithm based on the iteration approach and
allowing one-dimensional simulation.

1. Introduction

The kinetics of a system of carriers, excited by a laser pulse in a semiconductor involves
processes within the femtosecond time scale and hence requires a quantum description.
Several approaches can be followed. One can use the Green’s functions formalism or,
alternatively, one can work in terms of density matrices. If one expresses the Hamiltonian
in second quantization, the physical observables are expressed as statistical averages of
combinations of single particle creation and annihilation operators. Due to the interaction
part of the Hamiltonian, the equations of motion of the density matrix elements as a rule
introduce averages of higher number single particle operators, thus leading to an infinite
hierarchy of coupled equations. In order to obtain a closed equations set, the hierarchy
has to be cut to some level by appropriate approximations. Depending on the cut level
and the chosen set of physical variables, a variety of quantum processes can be taken into
account. If the electrons and holes distribution functions and the polarization are chosen
as relevant variables, then in the free carrier description (all interactions but with the
photon field neglected) the set of coherent optical Bloch equations is obtained. These
equations allow to describe effects which can be observed by time-resolved spectroscopy,
like Rabi flopping, photon echo, and quantum beats [1]. The equations placed deeper in
the hierarchy involve a number of interaction processes. In the model proposed in [2] the
set is closed by approximations in the equations of motion for different types of four
operators statistical averages. The obtained semiconductor Bloch equations include
together with the carrier—phonon and carrier—carrier interactions, also interference effects
between different types of interactions. An example is the polarization scattering, which
accounts for electron—phonon and hole—phonon interacting simultancously.
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For dilute systems the carrier—phonon interaction dominates the carrier—carrier inter-
action. In the low-density regime the self-energy corrections of the particle energies are
very small compared to their kinetic energy. In this regime the carrier subsystem is
treated as noninteracting and the carrier—phonon kinetics is explored.

The carrier-phonon kinetics beyond the semiclassical Boltzmann equation (BE) has
been investigated for many years for the case of applied electrical field. In 1969
Levinson [3] derived an equation which introduces the intra-collisional field effect
(ICFE), accounting for the action of the electric field during the scattering process. It
broadens the energy-conserving delta function to a finite width proportional to the
square root of the applied field [4]. The Levinson equation was generalized by
Barker [5] for a degenerate electron gas. In [6] a model accounting for collisional
broadening (CB) and ICFE was proposed and the long-evolution-time kinetics was
investigated.

During the last decade the carrier—phonon quantum kinetics has been investigated
for optically generated carriers [7,8]. A recent contribution is given in [2]. The relevant
observables are the electron and phonon distribution functions. Their equations of
motion couple to the equation for the statistical average of two electron and one pho-
non operators, called phonon-assisted density matrix. The set of three equations ac-
counts for the main terms responsible for the electron—phonon scattering in the semi-
conductor Bloch equations. The finite lifetime of the free carriers appears as an
exponential damping factor.

The set can be reduced by further approximations to an equation, which generalizes
the BE. Its quantum character reveals through the memory character of the scattering
process due to the time-dependent kernel and the CB due to the finite electron states
lifetime. The only effect of the photon field is to introduce a time source thus allowing
to cut the infinite past of the non-Markovian evolution. The source can be a term
accounting for the generation of carriers, or an initial condition.

The properties of the solution can in general be investigated only numerically. The
choice of an initial condition although being not the best approach from physical point
of view, allows both, to ensure that the effects are numerically accessible and to study
conveniently the effects of their variation. In this way the following quantum effect has
been demonstrated: at short evolution times carriers can populate very high energy
regions [2] due to the short-time peculiarities of the kernel. Another effect appears for
large evolution times [9). It is due to the fact that the long-time (Markovian) limit of
the kernel is broadened with respect to the exact energy conservation of the semiclassi-
cal scattering process. This leads to an increasing population of high-energy states in
the solutions of the time-dependent Kkinetic equation, called the run-away effect. The
same property is exhibited by the high-field time-independent model solution [6] com-
pared to the quasiequilibrium distribution (a heated Maxwellian).

The reason for such unphysical behaviour is in the set of approximations used to
obtain the corresponding model. They are valid on the quantum scale and an extrapola-
tion towards classical kinetics requires corresponding corrections. Recently an inverse
hyperbolic cosine model, which connects the short and long times in the kinetics has
been proposed in Ref. [9]. The model improves the long-time kinetics towards the equi-
librium distribution considerably.

It has been shown [10] that the kernel of the integral form of the one-band quantum
kinetic equation is expressed as a sum of a Lorentzian (the Markovian limit of the
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kernel) and an exponentially damped, oscillating time-dependent part. For zero evolu-
tion time both components compensate each other, while for large times the Markovian
limit of the kernel determines the steady state solution. Here we are interested in inter-
mediate times, where the early-time quantum kinetics is taken in its Markovian limit
and to study in detail the effects of different damping models. Since in the correspond-
ing resolvent series only the most significant subseries are taken into account, they will
approximate the exact quantum solutions. However, we can demonstrate by this ap-
proach clearly the Markovian effects introduced by the various damping. For this rea-
son, we choose the lattice temperature to be zero and consider one optical phonon
mode with a fixed energy. Then the semiclassical behaviour of the electron system
obeys simple rules so that deviation from them can be clearly seen.

In the next section we consider the one-band quantum kinetics and the inverse hy-
perbolic cosine model. In Section 3 we present the one-dimensional Markovian form of
the corresponding models, suitable for the used numerical method. It is based on the
Monte Carlo iteration approach. Its algorithm, successively applied for solving the one-
band quantum kinetic model, is now modified for an optimal simulation of the Marko-
vian equations. The Monte Carlo procedure is described in the Appendix. The resuits
and the discussion of the effects are given in Section 4.

2. The Kinetic Model

The linear three-dimensional one-band electron quantum kinetic equation has the fol-
lowing integral form [10]:
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where n is the Bose function for equilibrium phonons, ¢ the initial condition, ¢ the free
electron energies,  the phonon frequency, and g the coupling constant. Here we as-
sume Frohlich interaction.

Vv
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is the contribution of the Boltzmann out-scattering rate giving rise to a finite lifetime of
the carriers.

This equation has the same general structure as the Levinson one (taken in presence
of an initial condition). The differences appear from two sources: In presence of an
electric field F(r), the statistical average is taken with respect to the accelerated free
clectron states. This results in a time dependence of k in the right-hand side of (1)

it
according to a Newton trajectory k(+,¢') = k — [ dvF(7)/h, parametrized by & and ¢ This
I’
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transforms the time factor in the cosine arguments to integration in the corresponding
time limits. The Levinson equation does not account for a lifetime damping factor,
since the hierarchy cut is done earlier with respect to the one-band model.

Above considerations prompt that the ICFE can be also incorporated in the quan-
tum kinetics of optically generated carriers. Also the used Monte Carlo method can be
easily modified to account for the Newton trajectories.

The common way of obtaining the long-time-scale solution of a quantum Kinetic
equation is to use the Markov approximation. With the help of adiabatic and Markov
approximations, one can obtain the BE [11]. Here we follow another approach

Equation (1) can be processed with the help of the identity fdt fdt = fdt fdt to
0 0
obtain a form similar to the BE. The difference with the latter is that the ° scattermg

kernel” depends explicitly on the time, causing memory effects in the carrier dynamics,
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Equation (4) allows an analytical evaluation of the time integral, since
t—t"
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where Q444 & = (Ekvq — &k — hw)/A.

In this way the kernel is decomposed into a time-independent part and a part which
depends explicitly on the time.

It has been proved that the resolvent series of the integral equation (4) converges
[10], so that the solution can be obtained through an iteration procedure. Three sub-
series contribute, containing only the first part of the kernel, the second one and a
mixed one, respectively. Now we can discuss qualitatively the importance of the two
parts of the kernel for larger evolution times. A ready argument is that the oscillations
in the time-dependent part cancel their contribution to the time integral in (4). In addi-
tion there are arguments related to the conditions of the optically generated carriers
kinetics: the initial condition is a sharp function in the energy scale, placed few phonon
energy steps above the energy bottom. The maximum contribution gives states around
the minimum of the denominator in (5) (i.e. the exact energy conservation). If there is
a well-defined direction in the choice of the after-scattering electron state (n <« 1), the
nonzero region of the initial condition will be encountered only within few iterations (7).
Accordingly, the evolution time 1s divided into few intervals ¢, 11, ...,,0. For small time
intervals 7, fx+1 the two terms in (5) have close values. But then, there exist a compen-
sating larger time interval (since their sum equals the evolution time), where the sec-
ond part of the kernel is damped effectively. Above some intermediate evolution times
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t, the mean value of the subintervals ¢/i is such that the time-independent part of the
kernel dominates due to the effect of the exponential damping. These considerations
illustrate the concept of the coarse graining in time — the heuristic base of the Marko-
vian limit in quantum kinetics.

For GaAs parameters a time factor of about 200 fs drops the oscillatory kernel com-
ponent by the order of three times.

By keeping only the Markovian component, (4) appears as a Boltzmann equation
with a Lorentzian replacing the energy-conserving delta function,

flk,t) = jdt’ JEKRISW k) fk,0) — Sk, K) £k, )] + (k) , (6)
0
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The delta function of the Fermi golden rule is recovered if the damping I" is let to zero
in the Lorentzian. Then eqn. (6) becomes the semiclassical Boltzmann equation.

The long-time behaviour of the solution of (6) deviates from the equilibrium distribu-
tion, which is associated with the long-reaching wings of the scattering kernel.

As already noted, the extrapolation of the quantum kinetic equation towards the
semiclassical time scale needs corresponding correction. The quantum kinetic treatment
in terms of nonequilibrium Green’s functions [9] shows where the defects of the Boltz-
mann kinetics with Lorentz resonance lines originate from: The damping is not constant
on a femtosecond timescale, but sets in in a delayed way. In this theory the scattering
memory kernel is determined by a product of the retarded and advanced Green’s func-
tions [13]. An investigation of the time-dependent non-equilibrium Dyson equation for
the retarded electron GF shows that the damping first increases in time until it satu-
rates at later time into the usual exponent. Interpolating this asymptotic behaviour by a
hyperbolic tangent and mnserting this damping law into the Dyson equation one finds an
analytic solution in form of an inverse hyperbolic cosine [9]. Recently it has been
shown, that inverse hyperbolic cosine damping describes the numerical solutions of the
Dyson equation qualitatively rather well [14]. According to this result, e~/ is re-
placed with cosh™(w(t — 1)), @« = I'/w. The alpha parameter is the well-known dimen-
sionless Frohlich coupling parameter. It is essentially the ratio of the polaron-self-en-
ergy and the LO-phonon energy. Thus a « 1 is the weak coupling regime, a =~ 1 is the
intermediate coupling regime, and o > 1 is the strong coupling regime. In our model a
depends on k through I, eqn. (3).

This damping law shows that the coherence of the electron waves is not immediately
destroyed by the collisions, but the decay starts in form of a Gauss function. In the
Fourier space, the modified short-ttime damping has influence on the large-frequency
wings of the resonance. It cuts off the trouble-causing long-ranging wings of the Lorent-
zian resonance. The model provides for evolution times near the equilibrium a distribu-
tion function close to the equilibrium distribution.

Here we investigate the effects carried by the Markovian parts of the two models for
the intermediate evolution time region, where a build-up of the coarse grainig in time is
expected.
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The time-dependent solutions of egn. (6) with the corresponding kernels are ob-
tained by Monte Carlo simulation.

The Markovian limit of the interpolation model is given by the (0 to oc) time integral
of the kernel. A simplification is to insert « in the argument of the inverse hyperbolic
cosine and to use the formula

o0

cos(fx) = ng2
Jd[m—fCOSh( 21_)
0

For GaAs such substitution simply makes the effects to be more pronounced, which is
in correspondence with the aim of this work.

3. The One-Dimensional Equation

An isotropic initial condition reduces the dimensions of the equation to one. In spheri-
cal coordinates, with & and k' denoting the norm of the corresponding vectors, the
equation is

K ( k+k

t K
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where K(k', k) is constructed either by the Lorentzian or by
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cosh | — ’ . (&, is a constant. The k-dependence of I is
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where w, = 2mw/h, g is a constant and the first term is counting if k2 > w.

Egn. (7) cannot be treated as a one-dimensional Boltzmann equation, since there i1s
no symmetry of the kernels with respect to the k — k' exchange. In this case, the tradi-
tional Ensemble Monte Carlo must be carried out in three dimensions, i.e. equation (6)
will be simulated. Here we apply the numerical Monte Carlo approach, which allows a
one-dimensional simulation.

The iteration series for an equation with the structure of eqns. (1), (6), (7) contains
positive and negative terms which have to cancel effectively in the numerics. This leads
to a large variance of the Monte Carlo procedure [12], thus requiring massively parallel
computers for evolution times of the order of hundreds femtoseconds [10]. Fortunately,
the time independent kernel in the Boltzmann equation (7} allows another integral
form,

! .
flk,0y = [d' [d’k' S(K', kY e MOCOF 1) + e H0 (k). (8)
0
Here Ak) = | d*k’'S(k, k') is the probability per unit time for an electron to be scattered

out of state k. In the semiclassical case A = I'. It enables an effective stochastic ap-
proach for large evolution times.
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4. Simulation Results

For long evolution times, the quantum mechanical picture proceeds to the semiclassical
one, where the Boltzmann equation provides the adequate physical description of the
electron—phonon kinetics. The electron—phonon interaction then is presented by the
Fermi golden rule, where the conservation law links the kinetic energies of the electron
before and after the scattering event with the phonon energy. At zero temperature, as
long as the hot phonon effects are excluded, the electrons can only loose their kinetic
energy. It is reduced at each scattering event with a quantity equal to the energy of the
interacted phonon. For the case of constant phonon energy, the evolution of the distri-
bution function is presented by replicas of the initial distribution, shifted towards low
energy. The electrons cannot be scattered out of the states below the phonon energy
(Ak) = 0 if g < hw) and cannot appear above the initial distribution. This simple phy-
sical behaviour of the electron system will be the reference background for the effects
introduced by the two damping models.

The results discussed in the following are obtained by Monte Carlo simulation of the
equations corresponding to the two damping models. Material parameters for GaAs are
used: the electron effecive mass is 0.063, the optical phonon energy is 36 meV, the
static and optical dielectric constants in the Frohlich coupling are 10.92 and 12.9, re-
spectively. The lattice temperature is zero. The initial condition is given by a Gaussian
in energy, corresponding to a 87 femtosecond laser pulse with an excess energy of
180 meV, scaled in a way to ensure peak value equal to unity. The quantity presented
on the y-axes in Figs. | to 6 is k- f(k, 1), i.e. it is proportional to the distribution func-

70 T T T T T T T T T
initial d.f, ——
300fs ------
400fs -------
60 - 600fs . i
800fs
;—" .
=
g
ot J
i TR f 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

k2
Fig. 1. The electron distribution k - f(k,r) versus k2 for the Markovian model. The evolution time
is 300, 400, 600, and 800fs, respectively. The place of the phonon threshold is indicated by the
discontinuity of the curves. The replica-like structure dissapears in the low-energy region
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Fig. 2. The electron distribution & - f(k,t} versus k? for the inverse hyperbolic cosine model. The
evolution time is 300, 400, 600, and 800fs, respectively. The replica-like structure is well pro-
nounced in the low-energy region

tion multiplied by the density of states, and is given in arbitrary units. The quantity K?,
given on the x-axes in units 10'/m?, is proportional to the electron energy.

In Figs. 1 and 2, the solutions of the models with exponential and inverse hyperbolic
cosine damping are presented, respectively. The evolution time varies between 300 fs,
when a small fraction of carriers is below the phonon threshold, and 800 fs when there
are almost no electrons in the initial condition region. Above this interval the peak of
the distribution function exceeds unity, so that the degeneracy of the carrier system has
to be inciuded in the models.

Because of the onset of I, there is a discontinuity of the kernels leading to disconti-
nuity in the solution around the phonon threshold. The jump in the semiclassical distri-

f
bution function is I'(k) [ f(k,, ') dt’, where k, corresponds to the phonon energy. Simi-
0

larly, the jump in the solutions of the two models increases with the time.

The Lorentzian model solution looses the replica-like structure towards the energy
bottom. In contrast the inverse hyperbolic cosine model keeps the pattern in the low-
energy region. Tts peaks are better pronounced as it is seen from the comparison of the
400 and 600 fs solutions in Figs. 3 and 4.

Fig. 5. shows the run-away effect at 10, 40, and 400fs for the Lorentzian model. The
carrier population in the semiclassically forbidden energy region increases with the
time. The ratio between the distribution function values in the run-away region to the
peak value in the initial condition region is of order of 107° for 10 and 40fs, while for
400fs it increases to 1072, For such a time, the number of electrons in the initial peak
region drops by six times. The upper energy region is fed up by the electrons in the
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Fig. 3. Comparison of the electron distribution k - f(k,7) versus k> obtained by the two damping
models for evolution time 400 fs. The replica-like structure for the inverse hyperbolic cosine model

is extended in the whole interval
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Fig. 4. Comparison of the electron distribution & - f(k, ) versus &’ obtained by the two damping
models for evolution time 600 fs. The particle transfer towards the subthreshold region is faster for
the inverse hyperbolic cosine model
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Fig. 5. The electron distribution k - f(k,) versus k* in the region above the initial condition ob-

tained by the Lorentzian model for evolution times 10, 40, and 400fs. The run-away effect in-
creascs with the evolution time

0-8 1 N T T 1 T T
: initial d.f. ——
Lorentzian model
07 k : inverse hyperbolic cosine model -------- B
06 I -
05 -
3
& 04 ; 4
E: :
X 03 8
02 1
01 + ]
0 .__..._._._..__'..*_'j.t‘_t.‘.‘_t'.__t_'_‘_.'__ff._‘..'_.‘..._'.t?!'.‘._*.v_ttg::.t'.l PeA R etk bt
1 L 1 I3 A 1 —
2000 3000 4000 5000 6000 7000 8000 9000 10000
K2

Fig. 6. Comparison of the electron distribution k - f(k, 1} versus k* obtained by the two models for
400 fs evolution time. The run-away effect is not presented in the inverse hyperbolic cosine model
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Fig. 7. Comparison of the total out-scattering rate A(k) in logarithmic scale versus & for the two
models. 2 and & are in units 1/fs and 107/m, respectively. The variation of A above the threshold for
the two models and below the threshold for the Lorentzian model is below one order of magni-
tude, so that, in this scale, their behaviour looks rather flat. Below the threshold, the out-scattering
rate for the classical Boltzmann equation is exactly zero. In the inverse hyperbolic model an out-
scattering event happens once per 10°'fs, i.e. is practically zero. The Lorentzian model out-scatter-

ing rate remains finite for the Boltzmann transport time scale

initial region. For longer times the run-away effect will just continue in form of further
heating of the electron gas.

The inverse hyperbolic cosine model does not exhibit such an effect, as can be seen
from the comparison of the 400{s solutions of the corresponding models, Fig. 6.

Fig. 7. compares the total out-scattering rates of the two models. The Lorentzian
gives a finite probability for the electron to be scattered out of the states below the
phonon energy. This means that there are events, in which the electron can gain energy
from the lattice which is supposed to have no energy. The effect is suppressed in the
inverse hyperbolic cosine model, where 4 is practically zero. Since the rates are time
independent, the effects remain for any evolution time. Thus, for very long times the
Lorentzian model gives rise to deviations from the equilibrium distribution, while the
inverse hyperbolic cosine distribution function is close to the equilibrium one.

The Markovian limit of the one-band quantum kinetic model has major contribution
to the intermediate-time-scale evolution and determines the solution for large times. It
introduces phenomena such as the run-away effect and out-scattering processes under
the phonon threshold. This indicates that the behaviour of the model carrier system
contains unrealistic effects. The inverse hyperbolic cosine model does not introduce
such effects in the carrier kinetics. It corrects properly the one-band model, thus provid-

ing an more adequate description of the evolution process.
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A Monte Carlo approach for solving a Boltzmann-like transport equation with isotro-
pic initial conditions has been developed. It simulates effectively one-dimensional equa-
tions, while in this case the common Ensemble Monte Carlo algorithm must be carried
out in three dimensions. The approach provides a possibility to find the solution in a
fixed phase space point, without being necessary to solve the equation in the whole
definition domain. It should be noted, that the common numerical approaches, based
on finite difference schemes cannot clearly reveal the considered discontinuity of the
distribution function, since such schemes suppose a continuity of the solution f. The
ICFE can be easily incorporated in the algorithm. The algorithm is inherently parallel.
The approach allowed to study rather accurately the differences between different
damping models.

Appendix
The resolvent terms K;¢ of the solution of an integral equation

f) = [dx' Kix, x') f(x) + ¢(x) €)
are given by the following multiple integrals:

(Kig) (xo) = [ ... [ Klxo, x1) ... K(xim1, %) p(x:) dxy ... dx;.
The applied Monte Carlo method [10], is based on the following estimator:

_ K(xo, x1) K(xim1, x)
" Plo, k1) Plxit, X)) Px)

which is used further to provide the solution in the fixed point xo. The transition prob-
ability density P can be arbitrary, but it should satisfy the requirement to be different
from zero in the points where the kernel K is not zero, and should be normalized:
Jdx' P(x,x)=1 Vx.

The method ensures a direct control of the numerical precision in the desired point.
This allows to evaluate effects, e.g. the run-away effect, occuring two to four orders of
magnitude below the peak of the initial distribution for a very reasonable simulation
time.

A smart choice of the transition probability increases further the efficiency of the
algorithm. Here we choose it to be proportional to a Lorentzian with a I'(k), replaced
with a suitable constant. For any before-scattering state k the Lorentzian is divided by
its integral on the after-scattering states &' because of the normalization. Then an analy-
tic dependence of &’ on k and the selected by the random generator value > is possible.
A numerical trajectory consisting of the points xp (fixed), x1,...,x; is then constructed
N times. The mean value of the estimator with respect to these N independent realiza-
tions gives the contribution of the i-th iteration term to the solution. In the code for
each numerical trajectory we calculate the estimator values corresponding to the two
models. The output provides the two solutions with only one trajectory construction
procedure, thus reducing the necessary simulation time.
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