
Parallel and Distributed TCAD Simulations using
Dynamic Load Balancing

R. Strasser and S. Selberherr

Institute for Microelectronics, TU Vienna
Gusshausstr. 27-29, A-1040 Vienna, Austria

Abstract

We present the job farming mechanism of the VISTA [1] TCAD framework,
which enables efficient parallel and distributed simulation. A load balancing
mechanism for optimal selection of computation hosts is introduced. Strategies
for controlling the load of computation hosts are presented.

1. Introduction

From the technical point of view the simulation tools which are necessary to carry
out rigorous device and process optimizations are available. Nevertheless, impractical
simulation times prohibit large scale simulations. Therefore, maximum parallelism
has to be exploited and the available computation resources have to be used optimally
in order to reduce the overall simulation time to a minimum. Since simulation tools
which are able to distribute themselves on several CPUs on several hosts are very
rare and their communication overhead tends to degenerate their performance, a
convenient alternative is parallelization of multiple instances of each simulation tool,
as far as this is suitable. For many situations like optimization or split run experiments
the latter approach offers excellent performance.

Fig. 1 shows the components involved in such a scenario. An optimizer is utilized
to search for an optimum set of system parameters with respect to certain system
characteristics. This typically requires the computation of Jacobian matrices, which
needs large numbers of independent model evaluations that can be executed in par­
allel. The process model delivers its jobs to the queue manager which maintains two
queues of waiting and executing jobs, respectively. The queue manager is constantly
looking for hosts which are able to process these jobs while the system load of these
hosts is periodically monitored.

2. Load Balancing

The queue manager is responsible for the efficient distribution of workload on a clus­
ter of workstations, similar to existing queueing systems [2]. Therefore, computation
hosts have to be registered with a performance metric Wj, the number of CPUs nfu

and the desired maximum load If". To cope with simulation tools which require
node locked licenses, these tools have to be registered defining the hosts at which

90

i •

0.8-

0.6-

0.4-

0.2-

0

•0.2

•0.4

•0.8

•OS

estimated effective

operating system

ninningjob finished job

0 50 100 150 200 250 300 350 400 450
IW

Figure 1: VISTA simulation architecture. Figure 2: Running and finished jobs are
used to estimate the effective load.

they are available. For each requested job the host which promises to finish the sim­
ulation within a minimum amount of time is selected, based on current load values,
performance, and the number of CPUs. Thus the overall computation time is mini­
mized on a heterogeneous cluster of workstations with different performance metrics.
If a host exceeds its load limit, the host is automatically disabled. This mechanism
guarantees an optimal usage of computation resources. Furthermore, adjustable load
limits avoid conflicts among concurrent users.
In order to find the optimum host, it is necessary to make the decision based on
an estimation of the current system load. Time delays of the load reported by the
Unix operating system would lead to overloading of machines, since it typically takes
five seconds up to one minute until a job is reflected in the system load. Therefore,
VISTA keeps track of jobs that are executed by itself on each host and calculates an
estimated effective load based on this information and the load reported by the Unix
operating system. For a host with N jobs running and M jobs recently finished, the
effective load is estimated by

W ,. (}sar(M r / ,'top^.tart \

hff = l0s+22e T ~ 2 _ M 1 - e T] * e ~
1=1 t=i L\ /

, _ , ; ' °p -

running jobs finished jobs

as depicted in Fig. 2. In this formula r is an estimate for the time by which the
reported operating system load is delayed. The correction term for running jobs
prevents hosts from being overloaded due to time delays. The contribution for finished
jobs prevents hosts from being considered busy while the operating system still reports
too much system load. Without such an estimation, both load balancing and load
limit based disabling of hosts would give poor results. Either for large numbers of
requested jobs a host would hopelessly be overloaded due to time delays, or if one
limited the number of jobs on a host, inactive jobs, which are for some reason sleeping,
would block hosts. On the other hand the operating system reports an unnecessary
high system load for hosts which recently finished jobs, and therefore computation
resources are unused until the system load drops down to the effective value. Fig. 3
shows a GUI to the queue manager where the status of each computation host is
displayed in the Hosts section. Furthermore, queued and executing jobs are displayed
in the Queue section.

91

3. Job Communication

Due to the parallel and asynchronous execution of system jobs sophisticated mecha­
nisms to control these jobs and to communicate with them are necessary. Therefore,
each job is represented by a VLISP task object which offers the following features:
Input to a job is buffered as long as a job is in the waiting queue. This means that
a client is able to send input to a job while it is still in a waiting state, and a job
actually receives the input when a host becomes available and the job gets activated.
Additionally the task object offers notification when the job is activated, output is
available, the job failed, the job terminated, or the job succeeded. Clients of a job can
subscribe these events and trigger specific actions by them. Thus full transparency is
maintained, and job farming implies no restrictions for client applications exploring
this functionality.
Fault tolerant mechanisms of job control are critical to large scale simulations since
single point failures are likely to stop them. Especially for large numbers of worksta­
tions and heavy loaded networks such failures are very likely if the overall simulation
time is in the range of several days. Therefore failed job executions are recognized and
requeued and the concerned host is temporarily disabled. In practice, this mechanism
has proven to be extremely effective and time saving since simulation experiments are
not susceptible to single point failures and even survive disastrous situations like net­
work failures.

4. Performance

To illustrate the benefits arising from parallelization let us consider the rigorous cal­
ibration of a device simulator. For the estimation of the required simulation time
let us assume the following: Transfer curves (ID/VO) with the overall number of TV
operating points are available, M parameters have to be calibrated, I optimizer iter­
ations are necessary, W workstations are available for computation, and the typical
computation time required per operating point is T.
Given that each optimization iteration consists of gradient computation and evalua­
tion, the overall computation time is roughly {M +1) x J x T x TV. Parallel evaluation
of transfer curves reduces this time to (M + l) x / x T x f For TV = 30, M = 4,
W = 15, / = 100, and T = lmin, this means that VISTA job farming is able to
reduce the time compared to operation on a single workstation from approximately
10 days to 16 hours.

5. Conclusion

A system for parallel distribution of computation workload has been presented. Using
the VISTA queue manager as the front end for job execution in a TCAD framework
ensures maximum computation performance and therefore reduces simulation times
drastically which is of utmost importance, especially for extremely time consuming
experiments like optimization and calibration. In fact, the VISTA queue manager
enables optimizations which would be hopelessly out of a practicable time scale if
they had to be carried out on a system with sequential execution of operating system
jobs. Due to dynamic load balancing the user of the TCAD framework is deliberated
from track the status of hosts and keeping their load below certain limits.
The VISTA queue manager is an integral part of the VISTA TCAD system and is
therefore available on a wide range of Unix platforms including DIGITAL UNIX,

92

iQumuii»v .̂ jj__
Hie - Queuji5pptioos" Window*.

--*»»•. .fet-fa t -Jr .

Qunialfaasmi-
-Hctts-*1- -

L ĉ 135:,94 l . a . l i 9 1 I C I I . l t . 7 1 : . l ' l . r 1B3.14II9 1.B1 A * H 2 X 1 K J S 1.0C l.;< 2
Euni l U l U I I g 1,19 1.W I 4. 1,71 1 U 1 27 .JO J U 3 19 1JB 1 U 1.14 S.S I C7 1 £ 1 H 1 74 f
fantfia 1 tf 2.M 4 « l.Si 1 49 I *. (.711 (9 1J7 . » £ a. g.£ 0.E1 < C J « ;,ft i 8 l |7 2.H 1.91 i

frVM**
CJjSJI — •_

> M Csawd IlrKWV
•*B d m * ./ 'iwfltoM îvmis-'UpitfMtwYa ET
l •! am UMrnnriMT OuCS/1 li> /luraa^nramr m a r W l n u i W U l f if* IM • I
II* Mr* l l H l r i w iMfflT 0X1/1 U/ f i J M t M n u r *IIHU nju/beur OK/1 U liux M
Irtl art . I mXtnv V—\
•38 MA i m u r i f i - —
•& MPI i Mtrrw

•OramSetting- • • " • -In!

"tm^Hi

Figure 3: A GUI to the VISTA queue manager offers a comprehensive view of the
status of computation hosts and it displays queued and executing jobs.

Solaris, HP-UX, Linux, IRIX, and AIX. Minimum prerequisites are necessary to use
this system. Computers which are intended for collaboration have to share the users
file system, and each user has to be able to remotely execute command via the r sh
service. The system load is determined using the standard Unix program uptime.

References

[1] S. Halama, F. Fasching, C. Fischer, H. Kosina, E. Leitner, C. Pichler, H. Pim-
ingstorfer, H. Puchner, G. Rieger, G. Schrom, T. Simlinger, M. Stiftinger, H. Stip-
pel, E. Strasser, W. Tuppa, K. Wimmer, and S. Selberherr, "The Viennese Inte­
grated System for Technology CAD Applications," in Technology CAD Systems
(F. Fasching, S. Halama, and S. Selberherr, eds.), (Wien), pp. 197-236, Springer,
1993.

[2] Platform Computing Corporation, Toronto, Canada, LSF Load Sharing Facility,
May 1998. www.platform.com.

Acknowledgment

This work was significantly supported by the "Christian Doppler Forschungsgesellschaft",
Vienna, Austria and Austria Mikro Systeme, Unterpremstiitten, Austria.

1B3.14II9
1.B1
http://www.platform.com

