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ABSTRACT 

We present an object-oriented approach to distribute 
simulation data (like e.g., geometrical information, mesh­
ing information, distributed quantities) used for the simu­
lation of semiconductor fabrication processes such as 
Monte-Carlo ion implantation [1], etching [2, 3), dif­

fusion [4], and oxidation [5] on a heterogenous clus­
ter of workstations. The approach is based on a finite 
oct-tree where the data are spread over the network. On 
SYMMETRIC MULTI PROCESSING (SMP) machines sev­
eral elements can be handled in parallel (multi-threaded) 
to speed up insertion, searching, and deletion. 

Keywords: parallel and distributed simulation, distributed 
data structures, microelectronics, modelling 

1 INTRODUCTION 

Three-dimensional simulations require large amounts 
of computer resources like CPU time and memory. In order 
to reduce resource consumption an often proposed solution 
is to parallelize the simulation task and utilize several com­
puters instead of only one. 

To allow for a distributed simulation not only the 
program must support parallelization, there is also the 
need for a distributed representation of data on the net­
work. To illustrate this fact we take, for instance, a 
Monte-Carlo simulation of an ion implantation step in 
a modern Technology CAD (TCAD) environment like 
VISTA [6] or SIESTA (7). The simulation domain is split 
into several sub-domains and an instance of the simulator 
is started on each host participating in the simulation. Each 
process holds only the data contained in its associated sub­
domain. Thereby the amount of memory required on each 
host is reduced. When the simulator partitions the simu­
lation domain into sub-regions each resulting in roughly 
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equal CPU time consumption there is also a reduction in 
the overall real time of the whole simulation. 

2 STANDARD OCT-TREE 

The parallel oct-tree is based on an object-oriented 
implementation of a standard (non-parallel) algorithm as 

suggested in [8]. 

The oct-tree 's geometrical extension is defined by a 
cuboidal region called root-leaf. When elements are in­
serted this leaf is split recursively until a certain truncation 
condition (expressed by means of so called terminal leafs) 
occurs. The terminal leafs are not split any further. These 
Leafs are used to (a) express the truncation conditions and to 
(b) hold the desired geometrical structure in memory. The 
Leafs store references to the objects they represent. The fol­
lowing Leaf types are in use: 

• point-leaf 
Contains a reference to a point and a reference to the 
object(s) sharing this point. 

• line-leaf 
Contains a reference to a line and a reference to the 
object(s) sharing this line. 

•face-leaf 
References a face and the object(s) sharing this face. 

• solid-leaf 
The leaf is completely surrounded by the object. 
Stores a reference to this object. 

The leaf type used depends on the element to be in­
serted and is determined by applying certain geometry tests 
to the elements. The geometry tests were implemented 
with special emphasis on numerical stability. To cope with 
roundoff errors all tests were reduced to pure point compar­
isons. It is worth mentioning that, for a finite oct-tree the 



accuracy of the arithmetic operations themselves is not as 
important as the uniqueness of the tests when they are ap­
plied for different sub-leafs of a node. Figure 1 illustrates 
this fact: The test, in which of the four drawn sub-leafs the 
element has to be inserted usually (except if one or more 
points of the line are completely within the leaf) results in a 
"line overlaps rectangle" test as depicted. The drawn "line­
to-test" must either overlap the upper left or the lower right 
leaf, but must not overlap both (or none), or the correct 
terminal leaf cannot be determined and the insert method 
might end up with an endless recursion. Therefore, exact 
arithmetic as proposed in [9] would not guarantee the de­
sired stability in our case. Since an epsilon based solution 
always results in a loss of resolution (maximum recursion 
depth) all tests are reduced to pure point tests instead, and 
half open intervals (Figure 2) are used for the leafs. Hence 
the maximum resolution only depends on the data type used 
to store a coordinate. We use an 8 byte double as defined in 
the IEEE standard 754 [10). With a significant of 52 bits 
the maximum recursion depth is also limited to 52. 

upper left leaf 

Line to test 

I lower right leaf I 

'- - - ---------' 
Figure 1: Projection of an oct-tree leaf onto a plane to 
illustrate the numerical problems occurring with geometry 
tests applied for different sub-leafs 

---------------------- -------
upper left leaf upper right leaf 

• 
lower left leaf lower right leaf 

......, 

' I 

----------------------------' 
Figure 2: Half open intervals used in point comparisons. 
The dark drawn point is contributed to the upper right leaf 
whereas the grey shaded point is contained in the lower 
right leaf 
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3 PARALLEL OCT-TREE 

The parallel oct-tree extends the capabilities of its 
non-parallel counterpart by the ability to transparently store 
leafs on several machines, thus allowing for the utiliza­
tion of a whole workstation cluster. This functionality is 
achieved by extending the standard oct-tree by a new leaf 

type, the network-leaf. 

The network-leaf is responsible for handling all net­
work communications. The method used for the low­
level communication between the hosts is hidden be­
hind the network-leafs' interface and can be changed 
by sub-classing the interface and implementing a new 
network-leaf class. The current implementation uses the 
MESSAGE PASSING INTERFACE (MPI [I I, 12, 13]) for the 
communication over the network. 

The parallel oct-tree is implemented as a library 
which is linked against the application. Since MPI provides 
a powerful way to start a program on several machines no 
additional startup-code was necessary for the oc1-tree itself. 
The communication is organized so that each host can con­
tact any other host without the need for a master process. 

Hl MPI H2 

initiate operation idle loop 

..>:: I .... 
0 1 
:l: I 
i) I 
z , apply operation 

wait for 
result 

idle loop 

Figure 3: Protocol between two hosts 

When a request for an operation (insert, delete, 
search) geometrically lies on a network-leaf (Figure 5(b)) 
the appropriate method of the leaf contacts the host as­
sociated with this region via a certain MPI message. The 
oct-tree instance on the remote host performs the required 
operation and returns the result via another MPI message 
type (Figure 3). Note, that every oct-tree instance has to 
periodically listen for incoming requests (idle loop). In or­
der to avoid a deadlock in case two oct-tree's demand data 
from each other, the send and receive operations are non­
blocking, that is, they return immediately. 



3.1 INITIAL PARTITIONING 

When a new instance of a parallel oct-tree is created, 
the initial partitioning of the simulation domain needs to be 
specified. Figures 4(a) to 4(c) show possible configurations. 
There is no limitation on the number of regions/hosts which 
can be defined, however, the regions must be cuboidal and 
non-overlapping. 

The partitioning should be chosen in such a way that 
each of the participating computers is equally loaded. Note, 
that it is left to the application to optimally balance the 
available computational resources. In order to allow the ap­
plication to dynamically change the size of a region, i.e., to 
migrate parts of a region, statistics to detect an imbalance 
such as load or locality of point-locations are available. 

H3 
HI H4 

H5 

H2 H6 

(a) Configuration using six hosts 

HI H3 

H2 H4 

(b) Configuration using four hosts 

HI H2 

(c) Configuration using two hosts 

Figure 4: Possible configurations of parallel oct-tree 's 

3.2 INSERT/DELETE OPERATIONS 

When an element is inserted into or deleted from the 
oct-tree a certain number of geometrical operations is com­
puted. The number of operations depends on the type ofter­

minal Leaf and on the size and shape of the element. Since 
there are several instances of the oct-tree running on dif­
ferent machines elements which lie on disjunct geometrical 
regions can be inserted in parallel. 
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If two consecutive elements overlap the same 
network-leaf the insertion is done sequentially. It is quite 
obvious that, the order of the elements, directly influences 
the insertion performance. The situation is quite similar 
when elements are to be removed. Again, elements should 
be removed from distinct regions so that a maximum of the 
required geometrical operations is performed in parallel. 

3.3 POINT LOCATION 

Once all elements have been successfully stored, a 
transparent point-location (search) can be invoked on ev­
ery host. Figures 5(a) and 5(b) show the two possibilities of 
a point-location from the host Hl 's point of view: 

• Local point-location (Figure 5(a)) The element to be 
located is on the local host (HI). 

• Remote point-location (Figure 5(b)). The element to 
be located is on a remote host (H2). The element is 
requested from the remote host. 

Note that the point-location is fully transparent, the 
application does not "know" on which host the data actu­
ally are stored. It is, however, worth mentioning that in 
order to keep the network traffic low, the application has to 
keep the operations as local as possible. Statistics about the 
locality of the operations are available so that the simulator 
can initiate a migration of a certain part of the simulation 
domain from one host to another. In case an element over­
laps more than one host a copy of this element is kept on 
each computer, which conforms to a primitive caching al­
gorithm. 

3.4 MIGRATION 

When the simulator discovers that the hosts are 
severely imbalanced it might be useful to change the size 
of a region on a certain host or even to migrate a whole re­
gion from one host to another. In this case the application 
simply requests a cuboidal region to be transferred. All el­
ements are then deleted from the first region and inserted 
into the second one the same way a regular insert operation 
would take place. Note, that not only the elements have 
to be transferred over the network, but also the geometrical 
tests are performed twice (for the delete and for the insert 
operation). This rather drastic measure makes sense in long 
lasting simulations where the load shifts from one host to 
another during the simulation and, as a consequence, the 
communication overhead increases dramatically. 

4 CONCLUSION 

We present a new method to distribute simulation data 
as they occur in standard semiconductor fabrication pro-
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(a) local point-location 
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Figure 5: Projection of an oct-tree leaf onto a plane. 

The grey shaded part denotes the host (H 1) where the 

point-locations take place 

cess simulations like Monte-Carlo ion implantation, etch­
ing, diffusion or oxidation over a cluster of heterogenous 

workstations. The method assists the simulators in perform­

ing parallel simulations. 

The parallel oct-tree is used in our parallel wafer state 

server which integrates several services like gridding, dif­

ferent file fonnats, visualization. This wafer state server is 

used to assist the TCAD frameworks in simulating whole 

process flows. 

The chosen programming language for implementing 

the parallel oct-tree is C++. This language facilitates a full 

object-oriented design as employed in the act-tree's core 

classes as well as a good level of abstraction from operat­

ing system specifics like multi-threading or network com­

munication. Due to the very object-oriented design of our 

standard oct-tree the parallel extensions were implemented 

without the need to change or even recompile the standard 

oct-tree. 
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