
Proceedings of the IASTED loteruational Coofereoce
Applied Modelling and Simulation (AMS'99)
September 1-3, 1999, Cairns, Australia

A PARALLEL FINITE OCT-TREE FOR MULTI-THREADED INSERT,
DELETE, AND SEARCH OPERATIONS

T. Binder and S. Selberherr
Institute for Microelectronics, TU Vienna

Gusshausstrasse 27-29, A-1040 Vienna, AUSTRIA
Phone +43-1-58801-36036, FAX +43-1-58801-36099

email: Thornas.Binder@iue.tuwien.ac.at

ABSTRACT

We present an object-oriented approach to distribute
simulation data (like e.g., geometrical information, mesh­
ing information, distributed quantities) used for the simu­
lation of semiconductor fabrication processes such as
Monte-Carlo ion implantation [1], etching [2, 3), dif­

fusion [4], and oxidation [5] on a heterogenous clus­
ter of workstations. The approach is based on a finite
oct-tree where the data are spread over the network. On
SYMMETRIC MULTI PROCESSING (SMP) machines sev­
eral elements can be handled in parallel (multi-threaded)
to speed up insertion, searching, and deletion.

Keywords: parallel and distributed simulation, distributed
data structures, microelectronics, modelling

1 INTRODUCTION

Three-dimensional simulations require large amounts
of computer resources like CPU time and memory. In order
to reduce resource consumption an often proposed solution
is to parallelize the simulation task and utilize several com­
puters instead of only one.

To allow for a distributed simulation not only the
program must support parallelization, there is also the
need for a distributed representation of data on the net­
work. To illustrate this fact we take, for instance, a
Monte-Carlo simulation of an ion implantation step in
a modern Technology CAD (TCAD) environment like
VISTA [6] or SIESTA (7). The simulation domain is split
into several sub-domains and an instance of the simulator
is started on each host participating in the simulation. Each
process holds only the data contained in its associated sub­
domain. Thereby the amount of memory required on each
host is reduced. When the simulator partitions the simu­
lation domain into sub-regions each resulting in roughly

300-173 -613-

equal CPU time consumption there is also a reduction in
the overall real time of the whole simulation.

2 STANDARD OCT-TREE

The parallel oct-tree is based on an object-oriented
implementation of a standard (non-parallel) algorithm as

suggested in [8].

The oct-tree 's geometrical extension is defined by a
cuboidal region called root-leaf. When elements are in­
serted this leaf is split recursively until a certain truncation
condition (expressed by means of so called terminal leafs)
occurs. The terminal leafs are not split any further. These
Leafs are used to (a) express the truncation conditions and to
(b) hold the desired geometrical structure in memory. The
Leafs store references to the objects they represent. The fol­
lowing Leaf types are in use:

• point-leaf
Contains a reference to a point and a reference to the
object(s) sharing this point.

• line-leaf
Contains a reference to a line and a reference to the
object(s) sharing this line.

•face-leaf
References a face and the object(s) sharing this face.

• solid-leaf
The leaf is completely surrounded by the object.
Stores a reference to this object.

The leaf type used depends on the element to be in­
serted and is determined by applying certain geometry tests
to the elements. The geometry tests were implemented
with special emphasis on numerical stability. To cope with
roundoff errors all tests were reduced to pure point compar­
isons. It is worth mentioning that, for a finite oct-tree the

accuracy of the arithmetic operations themselves is not as
important as the uniqueness of the tests when they are ap­
plied for different sub-leafs of a node. Figure 1 illustrates
this fact: The test, in which of the four drawn sub-leafs the
element has to be inserted usually (except if one or more
points of the line are completely within the leaf) results in a
"line overlaps rectangle" test as depicted. The drawn "line­
to-test" must either overlap the upper left or the lower right
leaf, but must not overlap both (or none), or the correct
terminal leaf cannot be determined and the insert method
might end up with an endless recursion. Therefore, exact
arithmetic as proposed in [9] would not guarantee the de­
sired stability in our case. Since an epsilon based solution
always results in a loss of resolution (maximum recursion
depth) all tests are reduced to pure point tests instead, and
half open intervals (Figure 2) are used for the leafs. Hence
the maximum resolution only depends on the data type used
to store a coordinate. We use an 8 byte double as defined in
the IEEE standard 754 [10). With a significant of 52 bits
the maximum recursion depth is also limited to 52.

upper left leaf

Line to test

I lower right leaf I

'- - - ---------'
Figure 1: Projection of an oct-tree leaf onto a plane to
illustrate the numerical problems occurring with geometry
tests applied for different sub-leafs

---------------------- -------
upper left leaf upper right leaf

•
lower left leaf lower right leaf

......,

' I

----------------------------'
Figure 2: Half open intervals used in point comparisons.
The dark drawn point is contributed to the upper right leaf
whereas the grey shaded point is contained in the lower
right leaf

-614-

3 PARALLEL OCT-TREE

The parallel oct-tree extends the capabilities of its
non-parallel counterpart by the ability to transparently store
leafs on several machines, thus allowing for the utiliza­
tion of a whole workstation cluster. This functionality is
achieved by extending the standard oct-tree by a new leaf

type, the network-leaf.

The network-leaf is responsible for handling all net­
work communications. The method used for the low­
level communication between the hosts is hidden be­
hind the network-leafs' interface and can be changed
by sub-classing the interface and implementing a new
network-leaf class. The current implementation uses the
MESSAGE PASSING INTERFACE (MPI [I I, 12, 13]) for the
communication over the network.

The parallel oct-tree is implemented as a library
which is linked against the application. Since MPI provides
a powerful way to start a program on several machines no
additional startup-code was necessary for the oc1-tree itself.
The communication is organized so that each host can con­
tact any other host without the need for a master process.

Hl MPI H2

initiate operation idle loop

..>:: I
0 1
:l: I
i) I
z , apply operation

wait for
result

idle loop

Figure 3: Protocol between two hosts

When a request for an operation (insert, delete,
search) geometrically lies on a network-leaf (Figure 5(b))
the appropriate method of the leaf contacts the host as­
sociated with this region via a certain MPI message. The
oct-tree instance on the remote host performs the required
operation and returns the result via another MPI message
type (Figure 3). Note, that every oct-tree instance has to
periodically listen for incoming requests (idle loop). In or­
der to avoid a deadlock in case two oct-tree's demand data
from each other, the send and receive operations are non­
blocking, that is, they return immediately.

3.1 INITIAL PARTITIONING

When a new instance of a parallel oct-tree is created,
the initial partitioning of the simulation domain needs to be
specified. Figures 4(a) to 4(c) show possible configurations.
There is no limitation on the number of regions/hosts which
can be defined, however, the regions must be cuboidal and
non-overlapping.

The partitioning should be chosen in such a way that
each of the participating computers is equally loaded. Note,
that it is left to the application to optimally balance the
available computational resources. In order to allow the ap­
plication to dynamically change the size of a region, i.e., to
migrate parts of a region, statistics to detect an imbalance
such as load or locality of point-locations are available.

H3
HI H4

H5

H2 H6

(a) Configuration using six hosts

HI H3

H2 H4

(b) Configuration using four hosts

HI H2

(c) Configuration using two hosts

Figure 4: Possible configurations of parallel oct-tree 's

3.2 INSERT/DELETE OPERATIONS

When an element is inserted into or deleted from the
oct-tree a certain number of geometrical operations is com­
puted. The number of operations depends on the type ofter­

minal Leaf and on the size and shape of the element. Since
there are several instances of the oct-tree running on dif­
ferent machines elements which lie on disjunct geometrical
regions can be inserted in parallel.

- 615 -

If two consecutive elements overlap the same
network-leaf the insertion is done sequentially. It is quite
obvious that, the order of the elements, directly influences
the insertion performance. The situation is quite similar
when elements are to be removed. Again, elements should
be removed from distinct regions so that a maximum of the
required geometrical operations is performed in parallel.

3.3 POINT LOCATION

Once all elements have been successfully stored, a
transparent point-location (search) can be invoked on ev­
ery host. Figures 5(a) and 5(b) show the two possibilities of
a point-location from the host Hl 's point of view:

• Local point-location (Figure 5(a)) The element to be
located is on the local host (HI).

• Remote point-location (Figure 5(b)). The element to
be located is on a remote host (H2). The element is
requested from the remote host.

Note that the point-location is fully transparent, the
application does not "know" on which host the data actu­
ally are stored. It is, however, worth mentioning that in
order to keep the network traffic low, the application has to
keep the operations as local as possible. Statistics about the
locality of the operations are available so that the simulator
can initiate a migration of a certain part of the simulation
domain from one host to another. In case an element over­
laps more than one host a copy of this element is kept on
each computer, which conforms to a primitive caching al­
gorithm.

3.4 MIGRATION

When the simulator discovers that the hosts are
severely imbalanced it might be useful to change the size
of a region on a certain host or even to migrate a whole re­
gion from one host to another. In this case the application
simply requests a cuboidal region to be transferred. All el­
ements are then deleted from the first region and inserted
into the second one the same way a regular insert operation
would take place. Note, that not only the elements have
to be transferred over the network, but also the geometrical
tests are performed twice (for the delete and for the insert
operation). This rather drastic measure makes sense in long
lasting simulations where the load shifts from one host to
another during the simulation and, as a consequence, the
communication overhead increases dramatically.

4 CONCLUSION

We present a new method to distribute simulation data
as they occur in standard semiconductor fabrication pro-

HI H2

I
-·····1

'
I H3
I

~-· · -···-···- · · ·-J
nrt ttttJrJ.:-lf'l:j

I

(a) local point-location

HI H2

(b) remote point-location

Figure 5: Projection of an oct-tree leaf onto a plane.

The grey shaded part denotes the host (H 1) where the

point-locations take place

cess simulations like Monte-Carlo ion implantation, etch­
ing, diffusion or oxidation over a cluster of heterogenous

workstations. The method assists the simulators in perform­

ing parallel simulations.

The parallel oct-tree is used in our parallel wafer state

server which integrates several services like gridding, dif­

ferent file fonnats, visualization. This wafer state server is

used to assist the TCAD frameworks in simulating whole

process flows.

The chosen programming language for implementing

the parallel oct-tree is C++. This language facilitates a full

object-oriented design as employed in the act-tree's core

classes as well as a good level of abstraction from operat­

ing system specifics like multi-threading or network com­

munication. Due to the very object-oriented design of our

standard oct-tree the parallel extensions were implemented

without the need to change or even recompile the standard

oct-tree.

- 616-

References

[I) A. Hossinger and S. Selberherr, "Accurate three.
dimensional simulation of damage caused by ion implanta­
tion," in Proc. 2nd Jnr. Conj on Modeling and Simulation of
Microsystems, San Juan, Puerto Rico, USA, Apr. 1999, pp.
363-366.

[2) W. Pyka, R. Martins, and S. Selberherr, "Efficient algorithms
for three-dimensional etching and deposition simulation," In
Meyer and Biesemans [14], pp. 16-19.

(3) R. Mickus, Ch. Ledl, E. Strasser, and S. Selberherr, "Polyg.
onal geometry reconstruction after cellular etching or depo­
sition simulation," in Simulation of Semiconductor Devices
and Processes, H. Ryssel and P. Pichler, Eds., Wien, 1995,
vol. 6, pp. 50-53, Springer.

(4) M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr,
"Amigos: Analytical model interface & general object­
oriented solver," in Basics and Technology of Electronic
Devices, K. Riedling, Ed., Grossarl, Austria, Mar. 1997,
Gesellschaft flir Mikroelektronik, pp. 57-60, Proc. of
the Seminar "Grundlagen und Technologie Elektronischer
Bauelemente".

[5) M. Radi, Three-Dimensional Simulation of Thermal Oxida­
tion, Dissertation, Technische Universitat Wien, 1998.

[6] R. Strasser, Ch. Pichler, and S. Selberherr, "VISTA - a
framework for technology CAD purposes," in 9th European
Simulation Symposium, W. Hahn and A. Lehmann, Eds.,
Passau, Germany, Oct. 1997, pp. 450-454, Society for Com­
puter Simulation International.

[7] R. Strasser and S. Selberherr, "Parallel and distributed
TCAD simulations using dynamic load balancing," In Meyer
and Biesemans (14), pp. 89-92.

[8] M. Miintylii., An Introduction to Solid Modeling, Computer
Science Press, Rockville, 1988.

[9) Jonathan Richard Shewchuk, "Adaptive Precision Floating·
Point Arithmetic and Fast Robust Geometric Predicates,"
Discrete & Computational Geometry, vol. 18, no. 3, pp.
305-363, Oct. 1997.

[10) IEEE Std. 754, "IEEE Standard for Binary Floating Point
Arithmetic," Reaffinned 1990, 1985.

[I I] Message Passing Interface Forum, "MPI: A message·
passing interface standard," International Journal of Super­
computer Applications, 8(314), 1994.

(12) Message Passing Interface Forum, "MPI: A message·
passing interface standard," Computer Science Dept.
Technical Report CS-94-230, University of Tennessee,

Knoxville, TN, 1994.

(13) William Gropp, Ewing Lusk, and Anthony Skjellum, "Us­
ing MPI: Portable Parallel Programming with the Message
Passing Interface," MIT Press, 1994.

(14] K. De Meyer and S. Biesemans, Eds., Simulation of Semi­
conductor Processes and Devices, Leuven, Belgium, 1998.
Springer.

