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Abstract. Three simple mesh examples 
are presented to show that neither Delaunay 
nor strictly non-obtuse mesh elements are 
required for a finite element computation. 
Mesh requirements based on a recent con­
dition given in literature are investigated to 
guarantee certain properties of the resulting 
stiffness matrix. The experiments are con­
ducted using a general finite element and 
finite volume solver. 
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1 Introduction 

Two important discretization methods are the finite 
volume and the finite element method. Each method 
imposes certain requirements on the mesh. For the 
finite volume method Delaunay meshes are usually 
employed to utilize the Voronoi boxes as control vol­
umes [1]. For the finite element method geometrical 
quality criteria suffice for most applications. How­
ever, strictly speaking further principles need to be 
investigated. This is especially important for tran­
sient simulations as for example diffusion problems. 

2 Requirements for 
Element Meshes 

Finite 

Well pronounced requirements can be formulated for 
a specific application of the finite element method. 
The basis is the maximum principle which is the 
most important property of solutions to convection­
diffusion equations. In its simplest form it states that 
both the maximum and the minimum concentrations 
occur on the boundary or at the initial time. This im­
plies that if the boundary and initial values are pos­
itive, the solution must be positive everywhere and 
concentrations may never reach negative values. It is 
desirable that the employed discretization also satis­
fies a maximum principle. As is well known, this is 
guaranteed, if the system matrix resulting from the 
discretization is an M-matrix1 [2][4]. 
The system matrix K for a simple diffusion with a 
standard Galerkin weighted residual approach, linear 
elements, and backward Euler time discretization has 
the following form 

1 
K= ~tM+DS (1) 

where M denotes the mass matrix, S is the stiffness 
matrix, and D is the diffusion constant. K becomes 
an M-matrix if the mass matrix is lumped and S is 
an M-matrix. Since S only depends on the mesh this 
condition translates to a constraint on the mesh. The 

1 A real, nonsingular n x n matrix A where a;,j ::; 0 '<I i -::f. j 
and A-1 > O. 
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off-diagonal entries Sij, i =f j of S must not be pos- which is equivalent to 
itive. These coefficients can be generally expressed 
as (8) 

Sij = L 1 Y'Ni·Y'Nj dA 
elements e 

(2) Due to (5) and (8) the finite element mesh criterion 
(Crit. 1) can be expressed in two dimensions as 

where Ni, Nj denote the basis functions and A is 
the area (volume) of element e. The in-product 
(V' Ni · V' Nj) has a simple geometrical meaning and 
leads to an angle criterion for each edge in the mesh, 
which was recently introduced by (6]. It is an impor­
tant consideration in three-dimensional finite element 
mesh generation for diffusion applications with a high 
concentration gradient. 

Criterion 1 (sum of dihedral angles) Let ei,j be 
an edge with n adjacent tetrahedra tk. For each tk 
two planes exist which do not contain ei,j and which 
span a dihedral angle fh. The two planes share an 
edge with length lk. The sum over k = 1 ... n of 
the cotangens of fh weighted by lk must be greater or 
equal than zero. 

n 

... 

Ri······ ... . .. 

··' 
................ ... 

.... -·· . ---·- --·-

(9) 

.. 

L lk cot Ok ~ 0 
k=l 

(3) Figure 1: Finite element mesh criterion for two di­
mensions. 

Fig. 2 depicts an example where this criterion is vio­
lated for the interior edge ei,j. Four adjacent tetra­
hedra exist of which two span a 90° angle. Hence, 
cot 03 = 0 and cot 04 = 0. As one can see from 
the figure cot 01 = cot 02 = - ~ ( 01, 02 are obtuse, 
"' 125.3°) and hence the total sum is negative. 

In two dimensions (10) describes the relation between 
the circumcircle radius, the edge length, and the op­
posite angle in a triangle. 

. 0 li 
sm i = 2R (10) 

In two dimensions (3) can be written as 
In three dimensions a relation for the circumsphere 

( 4) radius, the edge length, and the opposite dihedral 
angle Ok (which is important for Crit. 1) in a tetrahe­
dron does not exist as illustrated in Fig. 3. This leads 
to a very interesting conclusion. It can be shown due 
to the existing relation (10) that the finite element 

where 01 and 02 are the angles of two triangles sharing 
a common edge ei,j as shown in Fig. 1. It can be 
assumed that 

0 < 01,2 < 180° 

and therefore 
sin 01 sin 02 > 0 

Hence, multiplying ( 4) with sin 01 sin 02 results in 

(5) mesh requirement (Crit. 1) is in two dimensions iden-
tical to the finite volume mesh requirement which is 
based on the empty circumcircles Delaunay criterion. 

(6) To see this equivalence of the angle condition (9) and 
the Delaunay criterion dependent on (10) consider 
the extreme case where (9) becomes 

(7) (11) 
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Figure 2: T6 tessellation and Crit. 1. 

It follows that 
sin 81 = sin 82 

and furthermore with Equation 10 

(12) 

(13) 

1 =const. 
e-.o 

Figure 3: With constant edge length and circum­
sphere radius the opposite dihedral angle in a tetra­
hedron can have arbitrary values. 

like stationary problems or problems with less high 
gradients, the use of Delaunay meshes can often be 
omitted. In three dimensions Crit. 1 and the Delau­
nay criterion are of quite different nature as will be 
shown with simple examples in the next section. In 
practice finite element mesh generators may generally 
try to avoid extremely obtuse (dihedral) angles and 
badly shaped elements without too much concern on 
the Delaunay property and without a technique to 
directly enforce Crit. 1. Such a technique remains 
open to further research. 

The two triangles with the common edge ei,j (Fig. 1) 
must possess circumcircles with equally sized radii. 
Because of (11) the circumcircles must be in fact iden- 3 
tical. Each circumcircle passes therefore through all 
four vertices of the two triangles and the Delaunay 
criterion is "just" fulfilled. With a decreasing sum 

Simple, 
Examples 

Distinctive Mesh 

(81 + 82) the distance between the two circumcen­
ters (centers of the circumcircles) increases and the 
Delaunay criterion is definitely satisfied. 
As expected, in two dimensions the finite volume and 
the finite element method lead to the same discretiza­
tion with identical requirements. They both rely on 
Delaunay meshes to fulfill the maximum principle. 
For other finite element applications than diffusion, 

The pure diffusion equation is solved with the fi­
nite element and the finite volume method using 
AMIGOS [5]. This allows the comparison of the 
solutions on identical meshes with the same linear 
solver. A Gaussian profile is used as the initial dis­
tribution. In two dimensions correct and identical 
results are obtained with both methods on Delau-
nay meshes. In three dimensions the finite volume 
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method still achieves qualitatively correct results on 
a Delaunay mesh as expected. However, the finite 
element method fails on the same three-dimensional 
Delaunay mesh. Even for such a simple test problem 
the finite element solution strongly violates the max­
imum principle. The resulting concentration reaches 
negative values in some areas. These areas spread out 
in time and the absolute value of the emerging nega­
tive concentrations is much larger than the minimal 
initial concentration. The relative error between the 
solutions of the two methods oscillates strongly and 
is large in regions where the concentration is nega­
tive. These negative concentrations are particularly 
annoying for diffusion applications in semiconduc­
tor process simulation where the concentration varies 
many orders of a magnitude within a small area. For 
a more complicated transient problem like the pair 
diffusion model the negative concentrations lead to 
severe instabilities. 
The aim of this section is to investigate the observed 
effects in terms of mesh requirements and to con­
struct simple mesh examples where the finite element 
method can be applied successfully to the diffusion 
problem. 

Mesh Example 1: A Delaunay mesh which is not 
suitable as a finite element mesh for diffusion 
applications. 

Mesh Example 2: A Delaunay mesh which is suit­
able for finite element diffusion simulation. 

Mesh Example 3: A non-Delaunay mesh with ob­
tuse dihedral angles which is still suitable as a 
finite element mesh. 

The three presented meshes illustrate the different 
scope of the Delaunay criterion and Crit. 1. They 
prove that in three dimensions the Delaunay criterion 
is neither sufficient nor necessary to obtain a correct 
finite element mesh for diffusion so that the maximum 
principle is fulfilled. The examples also show that a 
strict adherence to a sole non-obtuse angle criterion 
is not necessary. This important insight complements 
previous research [3] where one example, a Delaunay 
mesh insufficient for such applications, was given. 
The examples were constructed by exploiting an 
ortho-product point distribution. A cube defined by 

eight points can be tetrahedralized in two qualita­
tively different ways. 

T6 Tessellation: A cube is composed of six tetrahe­
dra (Fig. 2). 

T5 Tessellation: A cube is composed of five tetra­
hedra (Fig. 4). 

For comparison purposes a specific tessellation T6 is 
used which contains sliver elements with obtuse di­
hedral angles. The tessellation T5 on the other hand 
does not contain such elements. Note that also T6 tes­
sellations exist which do not contain obtuse angles. 
The Delaunay Triangulation is known to maximize 
the minimum angle in two dimensions only. How­
ever, in three dimensions Delaunay slivers may exist. 
The key idea is that all elements of both tessellations 
fulfill the empty circumsphere Delaunay criterion, be­
cause all points lie on the perimeter of a single sphere. 
On the other hand Fig. 2 clearly shows that the fi­
nite element mesh requirement (Crit. 1) is not met 
by the chosen T6 tessellation. It is only met by the 
T5 tessellation, because of the total absence of obtuse 
dihedral angles. 
Suitable meshes for simulation are then built by 
stacking a large number of such tessellated cubes. 
The typical characteristics of each tessellation type 
are thereby conserved. Hence, both meshes are global 
Delaunay meshes and yet only one satisfies Crit. 1. 
The two fundamentally different meshes based on an 
identical ortho-product point cloud are depicted in 
Fig. 5 and Fig. 6. The finite element simulation 
on the T6 type Delaunay mesh results in negative 
concentrations as was previously pointed out. The 
T5 type Delaunay mesh which fulfills Crit. 1 indeed 
succeeds to yield the required entries in the stiffness 
matrix and the concentrations remain positive at all 
times during the transient simulation. 
The most important fact however is shown by the 
third example. Further exploiting the ortho-product 
point set and its T5 type tessellation with slightly 
shifted points in certain locations results in a non­
Delaunay mesh which still satisfies Crit. 1. Fig. 7 
shows an instance of the mesh consisting of eight 
cubes. The point in the middle has been shifted. The 
Delaunay criterion must be violated, because the cir-
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Figure 4: T5 tessellation, no obtuse dihedral angles. 

cumspheres of several unmodified tetrahedra contain 
the shifted point in its interior. 

mesh with obtuse angles could be constructed for 
a successful finite element computation. Existing 
meshing techniques often try to avoid any obtuse di­
hedral angles. This is not necessary if techniques can 
be developed to generate finite element meshes which 
satisfy Crit. 1. 
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Figure 7: n type tessellation with a shifted point. 
Figure 5: Delaunay mesh (T6 ), 3072 tetrahedra. 

Figure 6: Delaunay mesh (T5 ), 2560 tetrahedra. Figure 8: Non-Delaunay mesh, 2560 tetrahedra. 
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