
Performance Optimization of a 
Parallelized Three-Dimensional Monte-Carlo 

Ion Implanta tion Simulator 

Andreas Hassinger, Erasmus Langer , and Siegfried Selbcrherr 
Institute: for Microelectron ics, TU Vienna 

Gusshausstr 27- 29, A- 1040 Vienna, Austria 

KEYWORDS 

Monte-Carlo, Performance Analysis, Distributed Proces­
sors , VLSI & Simulation, Ion Implantation. 

ABSTRACT 

We present a parallelization method based on MPI (Mes­
sage Passing Interface) for a Monte-Carlo simulator for 
the simulation of ion implantation into three-dimensional 
structures. By this method the simulation domain is ge­
ometrically distributed among several CPUs which ex­
change simulation data during the simulation. We op­
timize the performance gain by identifying bottlenecks of 
this strategy when it is applied to arbitrary shaped simu­
lation domains consisting of various materials, which re­
quires the application of varying physical models within 
the simulation domain and which makes it impossible to 
determine a reasonable domain dist ribution before start­
ing the simulation. Due to a feedback procedure between 
the parallelization strategy and the simulation by onlin·e 
performance measurements, we obtain an almost linear 
performance gain on a cluster of workstations with just 
slightly varying processor loads. Besides an increase in the 
performance the parallelization method achieves a distri­
bution of the memory requirement, which allows also the 
use of small workstations for three-dimensional simula­
tions. 

INTRODUCTION 

When simulating semiconductor production processes, ion 
implantation is a very important, but also one of the most 
critical steps concerning the simulation time. Due to the 
complicated structures and the small dimensions of mod­
ern semiconductor devices, Monte-Carlo simulation meth­
ods often have to be used to describe non-planarity ef­
fects and phenomena resulting from ion channeling and 
large tilt angles. To reach the expected accuracy, three­
dimensional simulations have to be performed with very 
sophisticated models [Hossinger and S. Selberherr 1999], 
[Hassinger et al. 1999], especially for very shallow im­
plantation conditions. By meeting all these requirements 
the simulation times exceed one night or even more for 
large structures, depending on the required accuracy and 
the applied models. Therefore the parallelization of the 
Monte-Carlo ion implantation simulation step is desirable 

649 

to avoid a bottleneck in the process simulation Aow, since 
normally a cluster of workstations is available to perform 
process simulation and optimization [Strasser ct al 1998] 

PARALLELIZATION STRATEGY 

We use a master-slave strategy based on MPI (Message 
Passing Interface), where the master process provides all 
the I/0 operations and controls and synchronizes the be­
havior of all slaves which perform the actual simulation. 
The parallelization is achieved by spli tting the simulation 
domain into several rectangular prismatic subdomains. 
Each available CPU (Slave) is responsible for a prismatic 
scope (thick lines) consisting of several of these subdo­
mains and, therefore, for a certain part of the simulation 
domain as shown in Fig. l. 

'Q I 
I 

''d 0 
0 \ 

~ I 

9 
\ 0 
Q \ 

9 0 Q \ I 
\ 

I ' q 0 

'~ 
Q 

I 

0 
I 

'< I 
I 1 \ • I ' \ 

9 
• 

Figure 1: Schematic presentation of the split of the sim­
ulation domain into subdomains and of the distribution 
of the subdomains among several processors. The prisms 
denoted by the thick lines are the scopes of responsibility 
of the slaves. 

When performing the Monte-Carlo ion implantation the 
master process calculates the initial conditions for all ions 



and distributes them among the slave processes which per­
form the calculation of the ion trajectories through the 
simulation domain. The simulation results are the spatial 
distribution of the implanted ions when they come to rest 
due to interactions with the nuclei and the electrons of the 
target material, and the distribution of material defects 
that are generated by the implanted ions. The simulation 
results are stored locally at the slaves. Thereby not only 
a parallelization of the simulation is achieved but also a 
partitioning of the memory requirement . 

Besides the distribution scheme the trajectories of the ions 
are denoted by the long dashed lines in Fig. 1. When an 
ion moves to the scope of responsibility of an other slave 
information has to be transfered to the other slave. It is 
obvious that communication between slaves can only oc­
cur if an ion is located in the vicinity of a subdomain bor­
der. Thereby the probability for communication increases 
with a decreasing subdomain size and with an increase in 
the lateral range of the ions. By choosing a subdomain 
size larger than the lateral range of the implanted ions 
the communication overhead due to data or ion exchange 
between the slaves is almost negligible. This is the ma­
jor advantage of this parallelization method because nor­
mally communication limits the performance gain of a 
parallelized application and requires therefore very fast 
communication networks. Due to the fact that the com­
munication has just very small influence on the perfor­
mance the simulation can be performed on a cluster of 
workstations connected by a standard network. 

While in the single processor version the implanted ions 
are calculated successively whereby the damage accumu­
lation during the implantation is considered automati­
cally, a transient simulation is introduced explicitly in the 
parallelized version. This means that all ion trajectories 
belonging to one time step can be calculated indepen­
dently while a synchronization of all slaves is necessary 
after each tirne step. This synchronization is achieved by 
the master process which successively sends ion packages 
at each time step to the slaves . Between two time steps 
the master process waits until all slaves have completed 
their calculations before sending a new package of ions. 
After finishing the simulation the master process collects 
all simulation results from the slaves, does some postpro­
cessing, and writes the output files. The following list 
summarizes the simulation flow of the master and of the 
slaves. 

Master Process: 

• Parses the command line. 

• Reads the input files. 

• Initializes the physical properties of the simulation do­
main, the physical models and the implantation con­
ditions. 

• Sends the initialization data to all slaves. 

• Creates the subdomains and evaluates the distribution 
scheme. 

6.'i() 

• Sends the subdomains and distribution scheme to all 
slaves. 

• Calculates the initial conditions for all ions of the first 
time step. 

• Distributes the ions among the slaves. 

• Calculates the initial condi­
tions for all ions of the next 
time step and prepares them 
for distribution. 

• Waits until all slaves have fin­
ished their calculations before 
synchronizing the slaves and 
distributing the ions of the next 
time step. 

Repeated until 
the simulation 
is finished. 

• Collects all simulation results from the slaves. 

• Performs a statistical analysis of the resulting doping 
and point-defect distributions. 

• Prepares the generation of the output and writes the 
output files. 

Slave Process: 

• Receives the initialization. 

• Receives the distribution scheme. 

• Repeatedly waits for a request and processes the re­
quest . 

• Terminates after processing the 'Simulation Finished' 
request. 

PERFORMANCE 

The most important aspect of this parallelization strategy 
is to distribute the subdomains among the available CPUs 
in a manner that the simulation time per time step and 
CPU is constant for all CPUs. If this requirement is not 
met some slaves always hold up all other slaves because 
of the synchronization after each time step. Thereby the 
performance gain due to parallelization can become quite 
low because most of the processors are idle most of the 
execution time (Fig. 2). Worth mentioning is that even 
in the optimal case the average idle time of all CPUs will 
not be zero, because the calculation time for one ion tra­
jectory is fluctuat ing due to the statistical nature of the 
simulated physical process. T he larger the number of ions 
per time step the smaller the fluctuation. 

For the initial distribution of the subdomains it has to be 
assumed that the number of implanted ions per subdo­
main and time step is constant and that the calculation 
time per implanted ion is also constant everywhere in the 
simulation domain. By only considering the performance 
ratios of the CPUs the number of subdomains N; handled 
by CPU i which has a performance factor of CPU; is 

N, ~ ;;;~, · (I c;u, ) _, (1) 



80 

C! 

.§ 60 ...-

0 
...-
~ 

40 u 
C! 
>< w I ---..._ 

~ CJ 

E 20 

3-...- L ~ 
-0 - 0 

2 3 4 5 
Index of Slave 

Figure 2: Average ideltime of the slaves relative to t he 
execution time for two different distributions of the sub­
domain for a simulation with five slaves . The left bars 
result from a poor distribution while the right bars result 
from an optimized distribution. 

Ncpu is the total number of available CPUs and Nsub is 
the total number of subdomains. As already mentioned 
the slaves can exchange simulation results or complete 
ions by sending and accepting requests during the calcu­
lation. To minimize this communication the interface area 
between the scopes of responsibility (Fig. 1) is minimized 
when distributing the subdomains, by successively adding 
subdomains to a CPU considering following conditions in 
the specified order: 

• A subdomain with the largest number of interfaces 
to other subdomains of the CPU is prefered. 

• By adding a subdomain the aspect ratio of the gen­
erated area of responsibility must be closest to one. 

• A subdomain laying at the border of the simulation 
domain is prefered to subdomains inside the simu­
lation domain. 

If more than one subdomain pass all these requirements 
one is selected randomly. 

When the first ion trajectories are calculated it normally 
turns out that t he assumption of a globally constant cal­
culation time is not correct, because the material compo­
sition is different in the subdomains and thereby different 
physical and statistical models [Hassinger and S. Selber­
herr 1999], [Bohmayr et al. 1995] lead to varying calcula­
tion times among the subdomains. In order to optimize 
the performance the master process measures the time 
that each slave needs to finish the calculation of the ion 
package of the first time step that it received from the 
master. Due to the measured time, the calculation time 
for one time step is estimated for every subdomain and 
the subdomains are redistributed accordingly. To avoid 
an update of the simulation data at the slaves, which takes 
significantly longer than the calculation of one time step, 
all simulation results are cleared and the simulation is 
started again with the first time step. As a consequence 

651 

an almost linear performance gain is achieved for arbi­
trary simulation domains (Fig. 3), as long as the loads of 
the CPUs do not flu ctuate too much. 

ideal speed up 
measure>d speed up 

g. 4 

"O 
Q) 
Q) 

~3 
/ 

/ 
/, 

/ 
/ 

/ 
/ 

/ 

3 4 

Number of CPUs 

Figure 3: Measured speed up compared to the ideal speed 
up. 

CONCLUSION 

We have presented a method for parallelizing a Monte­
Carlo ion implantation simulator with a minimum amount 
of communication overhead. An almost linear speed up 
is obtained for arbitrary shaped simulation domains even 
if various statistical methods are applied throughout the 
simulation domain , by reducing the the average idle time 
of the CPUs to a minimum. 

ACKNOWLEDGMENT 

This work has been carried out within the SFB project 
AURORA, funded by the Austrian Science Fund (FWF) . 

REFERENCES 
[Hi:issinger and S. Selberherr 1999] A. Hi:issinger and S. Sel­

berherr, "Accurate Three-Dimensional Simulation of 
Damage Caused by Ion Implantation," in Proc. 2nd Int. 
Con/. on Modeling and Simulation of Microsystems, (San 
Juan, Puerto Rico, Apr.), pp. 363-366. 

[Hi:issinger et al. 1999] A. Hi:issinger, S. Selberherr, 
M. Kimura, I. Nomachi, and S. Kusanagi, "Three­
Dimensional Monte Carlo Ion Implantation Simulation for 
Molecular Ions," in Proc. of the 5th Int . Sym. on Process 
Physics and Modelling in Semiconductor Technology, 
(Seattle, N.J. Apr.) , pp. 18-25 

[Strasser et al. 1998] R. Strasser, R. Plasun, and S. Selber­
herr, "Parallel and Distributed Optimization in Technol­
ogy Computer Aided Design," in 12th European Simula­
tion Multiconference - Simulation: Past, Present and Fu­
ture (R. Zobel and D. Moeller, eds.), pp. 78- 80, Society 
for Computer Simulation, J une 1998. 

[Bohmayr et al. 1995] W. Bohmayr, A. Burenkov, J. Lorenz, 
H . Ryssel, and S. Selberherr, "Trajectory Split Method 
for Monte Carlo Simulation of Ion Implantation," 
IEEE Trans.Semiconductor Manufacturing, vol. 8, no. 4, 
pp. 402- 407. 


